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ABSTRACT

We propose a new method for approximate k-NN search in large
scale image databases, based on top-k multi-criteria search tech-
niques. The method defines a simple index structure based on sorted
lists, which provides a good compromise between fast retrieval, stor-
age requirements and update cost. The search algorithm delivers ap-
proximate results with guarantees about false negatives, with fast
emergence of good approximations, monotonically improved and
leading if necessary to an exact result. Experiments with the on-disk
implementation show that our method produces very good approxi-
mate results several times faster than the Baseline method.

Index Terms— CBIR, k-NN search, image databases, multi-
criteria search, top-k algorithms

1. INTRODUCTION

Large Scale Content Based Image Retrieval (LSCBIR) aims at find-
ing in a huge collection of images, the subset of images that are the
most visually similar to a given query image.

The most efficient systems rely on the extraction of local fea-
tures (typically SIFT descriptors). Then, the descriptors of the query
are matched with those of the images in the collection, and images
with the highest number of matches are considered the most simi-
lar (like in [1]). Alternatively, the descriptors are combined into a
single vector signature, and the signature of the query is compared
to that of the images in the collections (see [2, 3] for example). In
either case, the goal is to perform the computation of image simi-
larities as fast as possible. To achieve this nearest neighbor search,
indexing structures and the associated search algorithms have been
proposed, such as LSH [4], inverted files [2], NV-Tree[5], etc. The
main challenges regarding these structures are threefold. First, the
query time should be as low as possible. Second, the storage cost of
the indexing structure should also be as low as possible. Finally, the
update procedure of the index structure (when new images enter the
collection) should be as light as possible.

In this paper, we propose MSA (Multi-criteria Search Algo-
rithm), a new indexing and search method for LSCBIR based on
top-k multi-criteria search algorithms [6, 7]. These algorithms con-
sider multiple evaluation criteria returning a score for each object in
a given collection. The global score is obtained by composing indi-
vidual scores through an (usually monotone) aggregation function.
Top-k multi-criteria algorithms provide efficient methods to find ob-
jects with the & best global scores that avoid exhaustive computation.

Our method exploits the multi-dimensional nature of image sig-
natures to reformulate the LSCBIR k-NN search issue as a top-k
multi-criteria problem. This contribution provides a good compro-
mise between fast retrieval, storage requirements and update cost.
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These properties come from a very simple index structure based on
sorted lists, easy to create, to update and to distribute. The related
search algorithm proposes a new approximate k-NN search method
based on top-k multi-criteria techniques, with guarantees about false
negatives, with fast emergence of good approximations, monotoni-
cally improved and leading if necessary to an exact result.

The proposed method is validated through experimental evalu-
ation over a 1 million images dataset. Implemented with on-disk
structures, it provides high-quality approximate results several times
faster than the Baseline exact method.

The rest of the paper is organized as follows: after we present
the related work in section 2, the section 3 describes our contribu-
tion. Then, section 4 reports experimental evaluation of the proposed
method before we conclude.

2. RELATED WORK

To perform the retrieval of visually similar images in a collection,
highly discriminative local features (or descriptors) are extracted
from the images. Then, each feature of a given query is searched for
its k nearest neighbors (k-NN) in the set of all features from all im-
ages. Each of such neighbors casts a vote for the image it belongs to
and the retrieved images are those with the highest number of votes
[1]. The cost of an exhaustive k-NN search in high dimensional
spaces with an extremely large number of elements (more than a
billion) is clearly prohibitive.

Approximate k-NN search methods based on specific index
structures have been proposed to overcome this problem. The
Locality-Sensitive Hashing [4] is one of the most popular, with
the idea to group nearby points into a same hash bucket with high
probability thanks to well chosen hash functions. Several extensions
of LSH have been proposed, mainly with more appropriate hash
functions. Other methods have been proposed with tree structures
such as KD-tree [8], NV-tree [5], or inverted files [2].

However, voting based methods need to perform a k-NN search
for each descriptor of the query, which is problematic when a large
number of descriptors per image is considered. Moreover, all de-
scriptors are often stored in addition to the index structures, which
can be prohibitive in storage cost. To address this problem, aggrega-
tion strategies that map the set of descriptors of an image to a single
vector (called signature) have been proposed [9, 3]. The retrieval is
then reduced to a single k-NN search for the query image by com-
paring the signatures. Having a single compact vector per image has
clearly a computational and storage advantage. Recently, the authors
of [9] proposed a Quantization/Inverted File approach to index such
signatures. In this paper, we are interested in top-k multi-criteria
algorithms and their associated index structures.

Top-k multi-criteria algorithms have been extensively studied,
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Fig. 1. The Threshold Algorithm strategy

e.g. in the context of data integration. Queries are expressed through
a set of ranked predicates, each one being independently evaluated
and returning a relevance score for any input object. A monotone ag-
gregation function combines partial scores from each predicate into
the final object score and objects with the best k scores are returned.
Many algorithms have been proposed in this context, considering
different types of access to the partial score lists and cost models.
The survey [6] presents a rich overview of these techniques.

We consider here algorithms having both sorted and random ac-
cess to all the score lists, the best known one being TA (Threshold
Algorithm) [10]. Figure 1 illustrates the TA strategy over an exam-
ple of top-k query processing. The example considers two criteria,
each one producing a list of scores in the [0, 1] range for the same
object collection, with sum as the aggregation score function. TA
has for each list both sorted access (in decreasing order of scores)
and random access (to a given object). The TA strategy successively
considers each list for a sorted access, then for each new discovered
object gets the other scores through random access in the other lists.
Other strategies [11] use a benefit-based approach and select at each
step the “best” list for a sorted access.

TA maintains a list of candidates sorted by decreasing order of
the global score and a threshold value representing the highest score
that a new object could have from now on. In Figure 1, objects O
and O» are discovered by sorted access to lists L1, respectively Lo,
then random accesses for the missing scores allow computing their
global scores. The threshold value becomes 1.3, because no new
object could have scores greater than 0.9 in L; and 0.4 in L. TA
stops when the scores of the best k candidates exceed the threshold
value. A new sorted access to L; would discover O3 (global score
0.75), but would also decrease threshold to 1 (0.6+0.4), allowing O1
(score 1.2) to be safely reported as the best object.

The MSA algorithm is directly inspired by these top-k algo-
rithms, adapted to the MSA index structure.

3. PROPOSED METHOD

The Multi-criteria Search Algorithm (MSA) borrows from top-k
multi-criteria techniques to perform efficient approximate k-NN
search in large-scale image databases. MSA is based on an index
structure composed of m ranked lists, one for each dimension of
the image signatures. For a given query object, the MSA algorithm
exploits this index to generate m independent search processes,
merged through a top-k multi-criteria approach.

The general idea of MSA is that the search process for each di-
mension successively discovers candidates for the global k-NN re-
sult. An approximation parameter e controls the moment when the
MSA algorithm stops. The returned result is the set of the k best can-
didates at that moment. As shown below, MSA provides monotone
approximation; increasing e values lead to a later stop, thus adding
new candidates and improving the quality of the approximate result.

We first characterize the approximate k-NN result produced by
MSA, then we present the MSA index structure and algorithm.

Fig. 2. e-exclusive k-NN search example

3.1. e-exclusive Search

We consider a database D as being a set of points in the normed
space I, representing the Euclidean space R™ with the I, norm and
the distance d(-, -) induced by this norm. For a query object ¢ € R™
and an approximation parameter e > 0, we note P (q) C D the
approximate k-NN result returned by the MSA algorithm.

Definition 1 (e-exclusive k-NN search)

Given a query object q and a threshold € > 0, a k-NN approximate
search for q in the database D is said to be e-exclusive, if, given
Py, (q) the result of the approximate search and Py (q) an exact k-
NN result, for any x € Pi(q) — Pi,c(q) we have d(z,q) > e

Intuitively, e-exclusive search guarantees that missed points
(false negatives) in the approximate result have “low quality”, i.e.
they are at distance at least ¢ from g. Note that the e-exclusive
condition implies that any € D — Pj,(q) has d(z, q) > e.

Figure 2 illustrates e-exclusive k-NN search. Here k=5 and the
approximate result Py .(q) = {p1, ..., ps }. Points not returned by the
algorithm (including those better than p4 or ps) are all at distance at
least € from q. Note that points in Py (g) at distance at most € from
q (here p1, p2, p3) surely belong to an exact solution Py (q).

If we note { = maz,cp, . (q)(d(x, q)) the greatest distance to ¢
for points in the approximate solution, then the quality of the approx-
imate result improves when e grows and ¢ decreases. We demon-
strate that MSA provides e-exclusive k-NN search with monotone
increase of € and decrease of (.

3.2. The MSA index structure

Figure 3 presents the index structure used by the MSA algorithm.
As mentioned above, we consider a database D of image signatures
(m-dimensional vectors). The MSA index is composed of m sorted
lists L1, ..., L., one for each dimension. Each element of a list I;
is a couple (z, x;), where x references an image signature in D and
x; is the i-th component of that vector. Each list L; indexes all the
elements in D and is sorted in decreasing order of x;.

Given a query ¢=(q1, ..., gm ), the index enables fast retrieval by
binary search of the position corresponding to g; in the sorted list
L;, for each i. The role of each list L; is to successively deliver en-
tries (, x;) in increasing order of the distance between z; and ¢;, by
sequential access from ¢; in both directions. At each step, two can-
didates are considered, up (u;) and down (d;) from g;, at distance
Aju=u; — qi, respectively A,q4=q; — d; from g,. The selected candi-
date is the one closer to ¢;, i.e. at distance A;=min(A;u, Aiq). The
next entry in the chosen direction will be considered as a candidate
for the next step. Note that only one candidate is considered at each
step if candidates in the other direction are exhausted.

This corresponds to two access methods provided by the MSA
index: (i) init(q) that finds the position of each g; in L;, and (ii)
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Fig. 3. MSA index structure

getNext(L;, q;) that returns the next entry (x, z;) in L; in increas-
ing order of distance to g;.

Although the MSA index may be implemented in main memory,
we consider here the case of very large image databases, where the
index and the database must be stored on disk. Index lists and the
database are both implemented as files with sequential/random ac-
cess. The database file sequentially stores the signature vectors, the
ordinal number in this sequence being used in the index entries as a
reference to the signature. Alternatively, index lists may be imple-
mented as B+ trees in order to optimize updates.

We emphasize the good properties of the MSA index structure
(i) for search, with logarithmic binary search for init and constant
time for getNext, (ii) for creation and update, as simple as for sorted
lists or B+ trees, (iii) for distribution, with independent index lists
that could be stored on different sites, and (iv) for storage needs,
which are of m X n X (|ref| + |comp|), where n is the number
of signatures, m their dimensionality, |ref| the size of an object
reference and |comp| the size of a signature component.

3.3. Multi-criteria Search Algorithm

The MSA algorithm, presented in Algorithm 1, uses a top-k£ multi-
criteria approach to merge information about the most promising
candidates returned by the individual index lists. Inputs are the query
vector g, the e approximation parameter and the number of results k.
MSA maintains a list of candidates cand sorted in ascending order
of the distance to ¢ and a threshold €.

The monotone generic aggregation function F computes the
distance between two vectors by combining distances on each di-
mension. It may be instantiated e.g. to the [, distance d(z,y) =
®/> % |lei — yi|P. Threshold ecr; represents the minimum dis-
tance to ¢ that a new candidate could have; at each moment it is
computed by merging through F the current A; for each dimension.
Also, the initial search position in the index lists is fixed through a
call to the init method.

At each iteration, MSA first selects a dimension % to be probed.
Different strategies may be implemented through the ChooseDimen-
sion function, e.g. the TA strategy that successively probes all the
dimensions, or some benefit-based strategy selecting the “best” di-
mension at that moment. Then, the index list L; is probed by getNext
to get the next best candidate. If L; has no more entries (x = nil),
the loop stops because all the database objects have been considered.
If candidate « returned by L; is a new one, it is added to the cand
list after its distance to g is evaluated by the ComputeDistance func-
tion, which accesses the database to get the signature of x. Finally,
threshold €., is updated after the new value of A; is computed.

The algorithm stops when there are at least k£ candidates and,
either threshold e.,+ exceeds the approximation parameter e, or €.t
exceeds (.r+ = KthDistance(cand), the k-th best distance. The latter
case corresponds to an exact k-NN result, since any new candidate
would be at distance at least €.+ from g, i.e. it could not improve

Algorithm 1 MSA algorithm

Require: ¢ € R™ ande € R} and k € N*
cand + ()
A+ 0,i=1,m
€Ecrt < ]:(Al, ceey Am)
init(q)
repeat
1 < ChooseDimension()
(z, ;) < getNext(L;, q;)
exit loop when x = nil
if x not in cand then
d < ComputeDistance(x, q)
AddCandidate(cand, x, d)
end if
A; |z — qil
€crt —— F(A1, ..., Ap)
until |cand| > k and (ecrt > € Or €0t > KthDistance(cand))
return TopK(cand)

the k-th best distance in cand. In all the cases, the result returned by
MSA is composed of the k best candidates TopK(cand).

The monotonicity of the aggregation function F and the prop-
erty of the MSA index to deliver candidates with increasing values
of A; guarantee that threshold e.,; always increases and that unseen
signatures are at distance at least €.+ from g. Given these remarks,
the following properties are true for the MSA algorithm:

Property 1 The MSA algorithm provides e-exclusive k-NN search.

Indeed, any false negative x being an unseen object, d(x, q) > €cre,
but €.+ > € when MSA stops, thus, d(z, ¢) > €.

Property 2 MSA is monotonic in € and in time: (i) the execution of
MSA(q, €1, k) corresponds to an early stopping of MSA(q, ez, k) if
€1 < e2; (ii) increasing execution durations correspond to increas-
ing € values and to decreasing C values.

Point (i) comes from the monotonic increase of €.+ in time and from
the fact that TopK(cand) at some moment corresponds to the result
of MSA(q, €crt, k). Point (ii) is true because €.+ increases in time,
while .+ decreases because new candidates added to cand improve
the k-th best distance. Note that monotonicity enables an alternative
approach in practice, by fixing a maximum execution time if the
value of € is difficult to decide.

4. EXPERIMENTS

We use the Holidays database [9] to report the experimental evalu-
ation of our method. The Holidays dataset contains images drawn
from personal holidays photos, created to test methods of near-
duplicate search. It contains 1491 images gathered in 500 subgroups,
each group representing a distinct scene or object (Figure 4). Images
in this database are in high resolution color. The Holidays dataset
also includes a set of SIFT descriptors. For our experiments, we used
the Holidays database artificially enlarged with a set of 1 million
unrelated images from the Flickr-10M database. For each image, we
computed a single compact VLAT signature of 64 dimensions, such
as in [3]. Note that signature vectors are normalized.

Tests are performed on a computer with 4GB of DDR mem-
ory and dual core cpu (2.13GHz), under Linux. The MSA index
is implemented on disk as described in section 3, with one file per
sorted list and one file for the signature database. Algorithms are
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Fig. 5. Execution time for MSA variants as a function of €, compared
with Baseline(BM)

programmed in Java, using the java.nio package that already opti-
mizes disk I/O.

Evaluated algorithms

Experiments compare two variants of MSA, called MSA74 and
MSA*, with the Baseline method. We report average measures over
500 queries, each query being a signature extracted from each of the
Holidays dataset subgroups. The value of & for all the queries is 10.
Comparison between images uses the [2 distance.

MSAT 4 uses the TA strategy to successively access index lists
for getting candidates. MSA* tries to limit I/O by looking for can-
didates in only one of the index lists. In this case, the ChooseDi-
mension function always returns the same value. The selected list
is that with the greatest amplitude for the indexed value, as being
potentially the most discriminant for the candidates.

The Baseline method (BM) sequentially scans the signature
database on disk, computes distance to the query signature and
keeps the k best results.

Experimental results
We first analyze the variation of the execution time with € for MSA
and compare it with the Baseline method. Figure 5 shows that the
execution time grows with € in a different fashion for MSA7 4 and
MSA*. The execution time of the Baseline method (BM) is around
1100 ms, independent of €. For small values of € (less than 0.25),
MSAT4 and MSA* are faster than BM and their variation curves
are very close. The difference between them appears for larger e
values; while MSA* remains slightly better than BM even for exact
results obtained with large e values, MSAr 4 performance degrades
until almost three times worse than BM for exact k-NN. This may
be explained by the extra I/O swapping of MSAr 4, induced by the
access to 64 index files, avoided by MSA*, which uses a single list.
In conclusion, MSA clearly outperforms the Baseline method
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Fig. 6. Search mAP for MSA variants as a function of time, com-
pared with Baseline(BM)

for small values of e, but is less appropriate for exact k-NN. How-
ever, MSA has the advantage to monotonically improve in time its
approximate result, going if necessary to an exact result in a time
slightly better than the Baseline method (for the MSA* variant).

Finally, we measure the quality of the MSA approximate results
in the case where MSA is faster than the Baseline method. Figure
6 represents the mean Average Precision of MSA results, as a func-
tion of the execution time. The Baseline method appears as a single
point, the dark square on the right. We notice that MSA continuously
improves the quality of its results and that MSAr 4 produces a better
approximation than MSA* for small € values, because it considers
the best candidates from all the dimensions. MSA7T 4 reaches very
good mAP values (0.35 vs 0.39 for BM) already after 300 ms for
MSAT 4 and after 450 ms for MSA*, vs 1100 ms for BM.

In conclusion MSA may deliver very good quality approximate
results several times faster than the Baseline method (3-4 times faster
in our case).

5. CONCLUSION

In this paper we proposed MSA, a new method for approximate k-
NN search for large scale CBIR, based on top-k multi-criteria search
techniques. MSA uses a simple index structure that provides a good
compromise between fast retrieval, storage requirements and update
cost. The MSA algorithm delivers e-exclusive approximate k-NN
results with guarantees about false negatives, with fast emergence of
good approximations, monotonically improved and leading if nec-
essary to an exact result. Experiments with on-disk implementation
of MSA over a 1 million image database show that MSA produces
very good approximate results several times faster than the Baseline
method.
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