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Abstract. Today’s follow-up of patients presenting abdominal tumors is
generally performed through acquisition of dynamic sequences of contrast-
enhanced CT. Estimating parameters of appropriate models of contrast
intake diffusion through tissues should help characterizing the tumor
physiology, but is impeded by the high level of noise inherent to the ac-
quisition conditions. To improve the quality of estimation, we consider
parameter estimation in voxels as a multi-task learning problem (one
task per voxel) that takes advantage from the similarity between two
tasks. We introduce a temporal similarity between tasks based on a ro-
bust distance between observed contrast-intake profiles of intensity. Us-
ing synthetic images, we compare multi-task learning using this temporal
similarity, a spatial similarity and a single-task learning. The similarities
based on temporal profiles are shown to bring significant improvements
compared to the spatial one. Results on real CT sequences also confirm
the relevance of the approach.

Keywords: Multi-task learning, CT perfusion, model parameter
estimation.

1 Introduction

Providing earlier assessment of drugs efficiency is a major challenge for the im-
provement of patient care in oncology. Today’s follow-up of patients presenting
tumors is performed using dynamic sequences of contrast-enhanced CT (DCE-
CT) [1]. The goal is to associate the temporal behavior of contrast intake to
physiological parameters that characterize vascularisation of the tissues.

A possible approach relies on modeling the diffusion of contrast agent in a
spatially discretized region [2]. However, estimation of physiological parameters
from the intensity profile of enhancement curves remains a challenging task.
First, sequences acquired in free-breathing condition are contaminated by errors
resulting from their registration and noise due to low-dose settings required to
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limit X-Ray exposure of the patient. Second, physiological models are highly
nonlinear and may induce non-convexity in the least square criterion. Several
studies have examined the use of prior knowledge in order to reduce variance
in estimation and focus on relevant local minima, especially in DCE-MR [3,4].
They introduce spatial knowledge under the form of a smoothing prior in a
Bayesian approach to impose that parametric models attached to voxels in the
same neighborhood have close parameters. However this raises the issue of the
tissue boundaries where the constraint must be locally relaxed. [3] developped an
adaptive Gaussian Random Field for which they also update locally the variance
of each prior to be robust on tissue boundary. In the case of [4], a Generalized
Gaussian Random Field (GGRF) was used with a smoothing spatial prior. In
our work, we adopt a compatible but different angle using a multi-task learning
approach, considering one parametric model estimation task per voxel. Expressed
in the regularization framework, the smoothness constraint involved in multi-task
learning is based on the definition of a similarity between tasks. It allows us to
consider other similarity candidates than the spatial one: a temporal similarity
between tasks from a robust distance between intensity time-course of two voxels.
Numerical results on synthetic and real image sequences show the relevance of
this approach compared to the use of spatial similarity.

2 Framework of Two-Compartment Models of Perfusion

In oncology, the objective of DCE-CT imaging is to assess tissue microvascu-
lature and microcirculation in abdominal regions using the temporal change of
the image signal following the administration of a diffusive contrast agent. Sev-
eral types of compartmental models have been developed [5,2], that describe the
temporal evolution of the tissue concentration of contrast agent (C(t)) in a re-
gion of interest as a function of its physiological properties. Most of them can be
written under the following generic formalism of a set of first-order non-linear
ordinary differential equations (ODEs) including hidden state variables:

∀i ∈ Ω, ∀t > 0,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dxi

dt
(t) = f(xi(t), t, θi)

xi(0) = c
i
0

Ci
tiss(t) = g(xi(t), θi)

yi(tl) = Ci(tl) + ǫi(tl), ∀tl ∈ ΩT

(1)

where Ω = {1 . . . , N} refers to the set of voxels; xi(t) is a set of state variables,
for instance the concentrations of contrast agent in the tissue; g expresses tissue
concentration from the internal state variables, and θ

i ∈ R
m is a vector of m

parameters related to the physiological properties of the tissue. These parameters
have to be estimated for the multiple local models

(

Ci
)

i∈Ω
from noisy contrast-

intake curves yi(tl), where tl ∈ ΩT = {t0 . . . , tT−1} is the sequence of acquisition
times and where ǫi(tl) denotes the noise in the ith zone at time tl. A particular
set of initial conditions, ci0, is associated to each voxel.

In this paper, we assume that there exists an analytical solution for Ci (Eq. 1),
noted Ci(t, θi, ci0) as the concentration at time t.
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3 Parametric Estimation Using a Multi-task Learning

Approach

A direct approach to parameter estimation for each voxel i ∈ Ω consists in
minimizing the square loss function under constraints 0 ≤ θ

i ≤ θmax:

θ̂
i
= argminθi

p∈Rm

1

T

∑

t∈ΩT

(Ci(t; θi, ci0)− yi(t))2, ∀p ∈ {1, . . . ,m} (2)

Such voxelwise estimation of each model raises different issues depending on the
nature of the function f (Eq. 1) and the corresponding analytical solution of the
ODE. A complex function C can lead to a solution with some practically non-
identifiable parameters due to the lack of data [6]. Another issue concerns the
loss function itself, that can exhibit multiple local minima. To circumvent these
difficulties, we can add additional information. For that purpose, we introduce a
multi-task learning approach to jointly estimate all the models while benefiting
from the similarity between tasks. Multi-task learning has been developed in
other fields using nonparametric models. In this case [7], a smoothness constraint
forcing two models to be close when the underlying tasks are close is added to the
empirical loss function (Eq. 2). Since our models are parametric, the constraint
will directly use their parameters: two voxels in similar tissue will correspond
to similar parameters. Sharing parameters can be expressed as an additional
smoothing constraint under the form of a weighted norm of the two parameters.
Thus, the complete loss functional L(Θ) writes as a penalized least square loss:

L(Θ) =
1

T.N

∑

i∈Ω
t∈ΩT

(

Ci(t; θi, ci0)− yi(t)
)2

+ λ
1

N2

∑

(j,ℓ)∈Ω2

wj,ℓ||θ
j − θ

ℓ||22 (3)

where λ weights the trade-off between the square loss and the regularization
term; W = (wij) is a N ×N matrix encoding the similarity between the ith and
the jth tasks. ||.||2 corresponds to norm ℓ2.

In multi-task learning problems, W is defined prior to the data if some knowl-
edge is available or defined from the data. We discuss two choices of data-based
similarity. A first choice is a similarity between tasks, based on spatial proximity
between voxels. Let ds denote the Euclidean distance between two voxels. The
similarity matrix Ws = (ws

i,j) is defined as the Gram matrix of a Gaussian kernel

∀(i, j) ∈ {1, . . . , N} × {1, . . . , N}, ws
i,j = exp(−γsds(i, j)

2) (4)

where γs is the kernel parameter.
The constraint based on the spatial similarity encourages that two voxels in

the same neighborhood share the same parameters. However, when two voxels
are spatially close but reflect different temporal behaviors or belong to different
organs, this constraint must be relaxed. So, we introduce a second distance
between the estimation tasks that compares two observed temporal intensity
profiles Ci and Cj , noted dt(i, j). To ensure robustness to noise, this distance is
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defined between two nonparametric kernel-based models of the observed data.
In the Reproducing Kernel Hilbert Space H, built from a Gaussian kernel k, we
define the distance dt(i, j) =‖ hi − hj ‖2

H
where hi (resp. hj) is a nonparametric

kernel-based model built from the data Ci (resp. Cj). For a given i ∈ Ω, the
kernel-based function hi is obtained by minimizing the ridge loss

∑

ℓ∈ΩT
(hi(tℓ)−

yi(tℓ))
2 + βi ‖ hi ‖2

H
. This equation admits a closed-form solution

hi(t) =
∑

ℓ∈ΩT

αi
ℓk(t, tℓ)

where αi = (K + βiI)
−1yi ; K = (k(tℓ, tm))ℓ,m the Gram matrix of the kernel

on the data, e.g. the time points and I, the identity matrix of same size {T ×T }.
Given that the squared norm of hi(·) =

∑

ℓ α
i
ℓk(·, tℓ) is ||h

i||2
H

= (αi)TKαi, this
leads to the following distance dt and the temporal similarity matrixWt = (wt

i,j),
with γt is the kernel parameter:

∀(i, j) ∈ {1, . . . , N} × {1, . . . , N} dt(i, j)
2 = (αi −α

j)TK(αi −α
j)

wt
i,j = exp(−γtdt(i, j)

2)
(5)

Minimizing L (Eq. 3) is a nonlinear optimization problem that we solve us-
ing the interior-point method [8] with the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method to calculate the Hessian.

4 Results: Validation on Synthetic Sequences and

Application to CT Abdominal Images

4.1 Synthetic Sequences

In order to test our joint estimation method over voxelwise estimations, we use
a simple parametric model for the concentration intake curve [9]:

∀i ∈ Ω, ∀t ∈ ΩT ,
dCi(t)

dt
= θi1Ca(t) − θi2C

i(t) (6)

where Ca represents the arterial input function and Ci the tracer concentration
which varies with time in tissue at the voxel i. Vector θ = (θ1, θ2) is a vector of
parameters to estimate, with θ1 = (θi1)i∈Ω and θ2 = (θi2)i∈Ω . These parameters
have biophysical meaning [9]: θ1 is related to the rate of molecule transfer be-
tween the blood plasma and the extravascular extracellular space (EES) while
θ2 include the influence of the relative EES volume within the considered voxel.

We compare our proposed framework of multi-task parameter estimation with
the voxelwise method (Eq. 2), noted E. The multi-task estimation can be derived
with a spatial similarity (Eq. 4) or a temporal one (Eq. 5). These estimation
methods are respectively noted SE and TE.

To evaluate the accuracy of estimation, we build synthetic perfusion sequences.
The simulations used to build the test sets are based on realistic values of the
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perfusion parameters θ = (θ1, θ2) and on Ca values extracted from a real se-
quence. A reference sequence (RS) of (6 × 6) frames is simulated with T = 66
and real time intervals ranging from 2.5 sec to 10 sec. Each frame is composed of
3 regions, with two types of tissue. To reflect the noisy conditions of real acquisi-
tions, we generate noisy sequences NS from our RS with a zero-mean gaussian
white noise of local variance (σ = 0.01). For statistical validation of parameter
estimation, we create 50 instances of NS, noted NSs, s ∈ {1, ...50}.
Selection of Hyperparameters. Hyperparameter γs (resp. γt) is fixed to the
inverse of the empirical variance of the distance ds (resp. dt). These values corre-
spond to the maximum of the corresponding Gram matrix entropies. Hyperpa-
rameters βi involved in the one-dimensional nonparametric modeling for defini-
tion of dt are fixed using Generalized Cross Validation [10]. Hyperparameter λ,
the most important one, is fixed by studying the sensitivity of estimators from
NS inputs on a grid of candidate values for λ.

To this end, we define the images of errors IEp,s for each parameter θp on

each image NSs: IE
i
p,s = |θ̂ip,s − θip|/θ

i
p with p = {1; 2} and θ̂p,s the estimated

parameter of θp. We then define a global estimation error for each sequence NSs

by: EFs =
∑

i∈Ω

∑2
p=1

(

θ̂ip,s − θip

)2

.

Each method of multi-task parameter estimation (SE and TE) is run using
different values of λ on the 50 samples NSs. Figure 1 shows the behavior of EFs

as a function of λ. The value λ = 105 corresponds to a minimum of EFs for all
the tested estimation approaches, and is thus selected in the experiments.
Results on Synthetic Sequences. To evaluate our method, we compute the
empirical means of IE1,s and IE2,s, respectively noted IE1 and IE2, and the
empirical variances var(IE1) and var(IE2) for each image NSs. The improve-
ment for parameter 1 is about 0.2% in variance and 1% in average which seems
modest but was expected given that even voxelwise estimates were relatively ac-
curate. Results (Fig. 2) show that multi-task estimation allows in all cases (SE
and TE) to reduce the variance on the error of parameter estimations. The tem-
poral similarity provides an additional improvement on the estimation accuracy.
More gain is obtained for the second parameter. The improvement is about 1%
in variance and 5% in average. In addition, the overall variances of the estimates
are much reduced by multi-task estimation as shown in the boxplots.

4.2 Application to Real CT Abdominal Images

In real sequences, patients are on free-breathing during the whole acquisition
(∼ 5 minutes). A registration algorithm [11] is therefore first applied. An ad-
ditional DCT-based temporal denoising is then used to limit the influence of
residual patient motions and of high noise level due to CT low-dose.

Figure 3 shows the perfusion parameters that are estimated from 5 patients in
specific regions of interest (ROI) with the three methods (E, SE and TE). For
computational performance reasons, estimations are performed at lower image
resolutions. For Patient 1 and 2 (ROI at the boundary of the left kidney), the
parameters in each zone are more homogeneous using our joint estimation meth-
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Fig. 1. Sensitivity of the dif-
ferent estimators to λ. Results
are averaged on 50 samples.

Fig. 2. Boxplots on the 50 images NSs, s ∈
{1, . . . , 50} for the error variances (top) and
means (bottom). Left: Param. θ1, Right: θ2.

ods, with organ borders slighlty less blurred with the temporal similarity. For
Patient 3, the ROI consists a part of the tumor, a part of the right kidney and
its boundaries. These regions can be better identified when including a regular-
ization term, with similar performance of the SE and TE methods. For Patient
4, the ROI is in a tumor near the left kidney. The tumor is well drawn when
we display the parameters that are estimated with TE method, in particular for
θ2. For Patient 5, the ROI is a tumor inside the liver and its low vascularization
level makes the estimation task particularly difficult. The parametric images are
therefore very noisy, but the form of the tumor can be distinguished on those
obtained with TE method, in particular with θ2.

To have more quantitative validation, we also computed an index, defined as
the number of connected regions obtained after a threshold segmentation into
3 parameter classes. We found in average 22.6 regions for E, 8.6 for SE and
7 for TE, thus quantifying the gain provided by the regularization. To further
differentiate SE and TE, we counted the “artifact” regions, consisting of 1 or 2
pixels: there were in average 5.2 for SE and 4 for TE.

5 Discussion

Other works [3,4] have proposed to use spatial prior knowledge in parametric
estimation by encoding this knowledge as a smoothing prior in the Bayesian
estimation of Gaussian Random Fields.

The multitask angle we adopt in this paper differs from those two approaches.
First, instead of developing a Bayesian approach, we use a regularization frame-
work to encode a smoothness constraint that only requires to define a similarity
matrix between tasks. Second, we have chosen a similarity that expresses how
close are the input data. Such a similarity measures how two estimation tasks
are close whatever the position of a voxel and consequently, the corresponding
constraint tends to reinforce the continuity of the parametric estimator. The
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Patients θ E SE TE

Patient 1: the ROI is at the border of the
left kidney

θ1

θ2

Patient 2: the ROI is the top of the left
kidney

θ1

θ2

Patient 3: the ROI is a border of the right
kidney and a border of the tumor

θ1

θ2

Patient 4: the ROI is in a tumor at the bor-
der of the left kidney

θ1

θ2

Patient 5: the ROI is a tumor in the liver

θ1

θ2

Fig. 3. Estimated parameters on 5 patients. For each patient, the first line represents
θ1 and the second line represents θ2, using 3 methods: single-voxel estimation E, joint
estimation with spatial similarity SE, and with temporal similarity TE.

strength of this constraint is simply controlled by a single hyperparameter λ
and does not require the definition of local priors. Clinically, two voxels located
in a same organ, but at a large spatial distance, are expected to exhibit a high
temporal similarity, and their perfusion parameters may be jointly estimated in
a multi-task framework. Our results show that the estimation using temporal
similarity instead of spatial one improves the quality of the parameters.

7



Interestingly, our multitask approach can be developed for other diffusion
models that enjoy an analytical solution. In more complex models, such as those
reviewed in [2], we expect that the approach will help with non-identifiability
of some parameters (see for instance [5]). Moreover, even if the ODE system
does not admit an analytical solution, methods of parametric estimation using
numerical approximations of the ODE integration can also benefit from the same
multitask approach but at the cost of increased computational complexity.

This regularized estimation based on a smoothing constraint can still be ap-
plied to larger images and the complexity order reduced: the similarity matrix
W can be thresholded and quantized into binary values. Then the computational
cost is related to the sparsity level of the matrix because only neighbors with
non-zero weights are considered.
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