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Abstract. We study theMax k-colored clustering problem, where, given
an edge-colored graph with k colors, we seek to color the vertices of the
graph so as to find a clustering of the vertices maximizing the number
(or the weight) of matched edges, i.e. the edges having the same color
as their extremities. We show that the cardinality problem is NP-hard
even for edge-colored bipartite graphs with a chromatic degree equal to
two and k ≥ 3. Our main result is a constant approximation algorithm
for the weighted version of the Max k-colored clustering problem which
is based on a rounding of a natural linear programming relaxation. For
graphs with chromatic degree equal to two, we improve this ratio by
exploiting the relation of our problem with the Max 2-and problem. We
also present a reduction to the maximum-weight independent set (IS)
problem in bipartite graphs which leads to a polynomial time algorithm
for the case of two colors.

1 Introduction

We consider the following problem: we are given an edge-colored graph G =
(V,E), where every edge e is labeled with one color among {1, 2, . . . , k} and it
is associated with a weight we. We are interested in coloring every vertex of the
graph with one of the k available colors so as to create at most k clusters. Each
cluster corresponds to the subgraph induced by the vertices colored with the
same color. Given a coloring of the vertices, an edge is called matched if its color

⋆ This work has been partially supported by the ANR project TODO (09-EMER-
010), and by the project ALGONOW of the research funding program THALIS
(co-financed by the European Social Fund-ESF and Greek national funds).



is the same as the color of both its extremities. Our goal is to find a clustering
of the vertices maximizing the total weight of the matched edges of the graph.
We call this problem the Max k-colored clustering problem and we denote it as
Max-k-CC.

Our model has similarities with the centralized version of the information-
sharing model introduced by Kleinberg and Ligett [2, 7]. In their model, the
edges are not colored and two adjacent nodes share information only if they are
colored with the same color. As they mention, one interesting extension of their
model would be the incorporation of different categories of information. The use
of colors in our model goes in this direction. Every edge-color corresponds to
a different information category and two adjacent vertices share information if
their color is the same as the color of the edge that connects them. While the
centralized version of the information-sharing problem of Kleinberg and Ligett
is easy to solve, we show that the introduction of colors in the edges of the graph
renders the problem NP-hard. In this paper, we focus on the centralized variant
of our problem and we study its approximability. Studying our problem from a
game theoretic point of view would be an interesting direction for future work.
Our problem is also related to the classical correlation clustering problem [1, 6].

1.1 Related works and our contribution

In Section 2, we formulate the problem as an integer linear program and we pro-
pose a constant-approximation ratio algorithm which is based on a randomized
rounding of its linear programming relaxation. Notice here that simpler rounding
schemes, apparently do not lead to a constant approximation algorithm. Another
observation is that our problem can be formulated as a combinatorial allocation
problem [4]. We can consider each color as a player and each vertex as an item,
where items have to be allocated to competing players by a central authority,
with the goal of maximizing the total utility provided to the players. Every player
(each color) has utility functions derived from the different subsets of vertices.
Feige and Vondrák [4] consider subadditive, fractional subadditive and submod-
ular functions. It is easy to see that in our case the function is supermodular
and hence, their method cannot be directly applied. At the end of Section 2, we
show that in the special case where the chromatic degree1 of the graph is equal
to two, our problem is a special case of the MAX 2-AND problem [10]. We show
in Section 3 that the cardinality Max k-colored problem is strongly NP-hard by
a reduction from Max-2-Sat, even for bipartite graphs with chromatic degree
equal to two, whenever the number of colors is any constant number k ≥ 3. In
Section 4, we present a reduction to the maximum-weight independent set (IS)
problem in bipartite graphs which allows us to get an optimal polynomial-time
algorithm for the case of two colors. Furthermore, we exploit this idea to get a
2
k
-approximation algorithm whose approximation ratio is better than the ratio

of the constant-approximation algorithm presented in Section 3 for any k ≤ 14.

1 We define the chromatic degree of a vertex as the number of different colors which
appear in its incident edges. The chromatic degree of an edge-colored graph is the
maximum chromatic degree over all its vertices.
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2 A constant approximation algorithm

As the problem is strongly NP-hard (see section 3), in the first part of this
section, we present a constant-factor approximation algorithm for our problem,
while in the second part we focus on graphs with chromatic degree equal to two.

For every vertex i of the graph and for every available color c, we introduce a
variable xic which is equal to one if i is colored with color c and zero otherwise.
Also, for every edge e = [i, j], we introduce a variable zij which is equal to one
if both extremities are colored with the same color as e, and zero otherwise. We
obtain the following ILP:

max
∑

e

weze

ze ≤ xic, ∀ e = [i, j] which is c-colored

ze ≤ xjc, ∀ e = [i, j] which is c-colored
∑

c

xic = 1, ∀i

xic, ze ∈ {0, 1}, ∀i, c, e

We consider its linear relaxation, and we denote it by LP.
Our algorithm works in k iterations, by considering each color c, 1 ≤ c ≤ k, in-
dependently from the others, and so the order in which the colors are considered
does not matter. When an edge is chosen, this means that its two extremities get
the color of this edge. Since in general a vertex is adjacent to edges of different
colors, a vertex may get more than one colors. We want to avoid such situations,
and the way the algorithm assigns colors to vertices is designed to minimize the
number of such conflicts.

The algorithm is given below.

Algorithm RR

Phase I:
Solve the linear program LP, and let z∗e be the values of variables ze.
For each color c

Order, non decreasingly, the c-colored edges e1, . . . , el(c) according to
their z∗e values.
Let us assume that we have z∗e1 ≤ z∗e2 ≤ . . . ≤ z∗el(c) .

Let r be a random value in [0, 1].
Choose edges e with z∗e > r.

End For
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Phase II:
For each vertex v

If v gets no color or more than two colors, remove it (together with all its
adjacent edges) from graph G.

End For

Let G′ be the obtained graph.
For each vertex v in G′

If v got one color, then assign this color to it.
If v got two colors, then choose randomly one of them, each one with

probability 1/2.
End For

Notice that the algorithm does not assign colors to all vertices. Indeed, at
the end of Phase I some vertex may get no colors, and then in Phase II the
algorithm assigns colors only for a subgraph G′ of the initial graph G.

The folowing two Lemmas are straighforward to prove.

Lemma 1. For any edge e, the probability that e is chosen is z∗e .

Notice that for a vertex v, it may be the case that none of its adjacent edges
are chosen. In that case, v gets no color. But in general, several of its adjacent
edges can be chosen, and the vertex v can get more than one colors. We denote
by Xvc (resp. Xvc) the event that v gets (resp. does not get) color c.

Lemma 2. For any vertex v, if there exists at least one c-colored edge which is
incident to v then one has Pr(Xvc) = z∗e′ with e′ the c-colored edge which has
the maximal value of z∗e among all c-colored edges e which are incident to v.

Lemma 3. For any vertex v, one has
∑

c Pr(Xvc) ≤ 1.

Proof. For any color c, let e(c) be the c-colored edge which is incident to vertex v
(if such an edge exists), and with the maximal value of z∗e among all such edges.
From Lemma 2, one has Pr(Xvc) = z∗

e(c). Therefore,
∑

c Pr(Xvc) ≤
∑

c z
∗
e(c) ≤∑

c x
∗
vc = 1.

As stated before, a vertex v can get more than one colors during the execution
of the algorithm. However, in general this number will be small. We have the
following lemmas.

Lemma 4. Given a set of independent events such that the sum of their proba-
bilities is less than or equal to 1, the probability of getting at most one of them
is greater or equal to 2/e.

Lemma 5. At any time during the execution of the algorithm, for any vertex v,
the probability that v gets at most one additional color until the end of the Phase
I of the algorithm is greater than or equal to 2/e.
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Proof. The events: “v gets color c” for 1 ≤ c ≤ k, are independent, and the sum
of their probabilities is less than or equal to 1 according to Lemma 3. Therefore,
the result follows from Lemma 4.

Proposition 1. At any time during the execution of the algorithm, consider
any edge e = [u, v], and let us denote by pu (resp. pv) the probability that u
(resp. v) gets at most one additional color until the end of the Phase I of the
algorithm. Let us denote by pu∧v the probability that both u and v get each one
at most one additional color until the end of the Phase I of the algorithm. Then,
one has pu∧v ≥ pu · pv.

Proof. In order to prove that the proposition holds, we consider a sequence of
algorithms denoted by Σ0, . . . , Σk, where Σ0 is our algorithm.

The difference among these algorithms comes from the way in which the
vertices get a color. Let us fix a color c. We consider two different procedures
for assigning colors to the vertices. The First procedure, assigns the colors in the
same way as our algorithm does. Let us recall how our algorithm works for just
two vertices: Without loss of generality, we assume that there exist an edge e′

adjacent to u with color c and an edge e′′ adjacent to v with color c (if such an
edge e′ does not exist, we are in the case p = 0 and y = q). Moreover e′ (resp. e′′)
is the edge with the maximal value of z∗e′ (resp. z

∗
e′′) among all c-colored edges

incident to u (resp. v). Let us assume that z∗e′ ≤ z∗e′′ . Let p be the probability
that u gets color c in the algorithm (we know that it is z∗e′ from Lemma 2),
and let q be the probability that v gets color c assuming that u does not get
color c. Using the First procedure, we color both vertices u and v (with color c)
with probability p, and we color only vertex v with probability (1 − p)q. The
Second procedure colors the vertices with color c independently. More precisely,
we color vertex u with probability p, and we color vertex v with probability
(1− p)q + p := y.

In the algorithm Σ0, for each color c, 1 ≤ c ≤ k, we use the First procedure
for assigning colors to vertices. In the algorithm Σi, 1 ≤ i ≤ k, for colors c such
that 1 ≤ c ≤ i (resp. i + 1 ≤ c ≤ k) we use the Second procedure (resp. First
procedure) for assigning those colors to vertices. Thus, in algorithm Σk, all colors
are assigned to vertices using the Second procedure.

Let us fix any iteration (color) t, and let us analyze the behavior of those
algorithms from iteration t until the end of their execution (at the end of Phase
I), i.e. when colors t, t+1, . . . , k are assigned to vertices. Let us also consider any
edge e = [u, v]. We denote by pu(Σi) (resp. pv(Σi)) the probability that u (resp.
v) gets at most one additional color from iteration t until the end of iteration
k, for the algorithm Σi. Moreover, we denote by pu∧v(Σi) the probability that
both u and v get each one at most one additional color from iteration t until the
end of iteration k, for the algorithm Σi. Notice that one has for any vertex v,
pv(Σi) = pv(Σ0) for 1 ≤ i ≤ k. Let us now prove that for any 1 ≤ i ≤ k− 1, one
has pu∧v(Σi) ≥ pu∧v(Σi+1).
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If t ≥ i + 2, since both algorithms Σi and Σi+1 use the First procedure to
assign colors c to vertices, for i+2 ≤ c ≤ k, they behave in the same way during
iterations t, t+ 1, . . . k, and so pu∧v(Σi) = pu∧v(Σi+1).

We now assume that 1 ≤ t ≤ i+1. Algorithms Σi and Σi+1 only differ in the
way they assign color i+1 to vertices. If there is no (i+1)-colored edge adjacent
to either u or v, then again those two algorithms have the same behavior from
iteration t to k and so pu∧v(Σi) = pu∧v(Σi+1). Let us assume now w.l.o.g. that
there exists at least one (i+ 1)-colored edge which is adjacent to u. Recall that
we denote by Xvc (resp. Xvc) the event that v gets (resp. does not get) color c.
We have the following probabilities:

when Σ = Σi when Σ = Σi+1

PrΣ(Xu,i+1 ∧Xv,i+1) 0 p(1− y)

PrΣ(Xu,i+1 ∧Xv,i+1) (1− p)q (1 − p)y

PrΣ(Xu,i+1 ∧Xv,i+1) (1− p)(1 − q) (1 − p)(1− y)

PrΣ(Xu,i+1 ∧Xv,i+1) p py

Let us denote by A0 (resp. B0) the event which corresponds to the situation
where vertex u (resp. v) gets no additional color when considering iterations
(colors) in {t, t+1, . . . , k}\{i+1}. Let us also denote by A1 (resp. B1) the event
which corresponds to the situation where vertex u (resp. v) gets one additional
color when considering iterations (colors) in {t, t+1, . . . , k}\{i+1}. Since these
events do not depend on the color i + 1, they have the same probability for
algorithms Σi and Σi+1.

For Σ ∈ {Σ0, . . . , Σk}, one has pu∧v(Σ) = Pr(A0 ∧ B0) + Pr(A1 ∧ B0) ·
[PrΣ(Xu,i+1 ∧Xv,i+1) + PrΣ(Xu,i+1 ∧Xv,i+1)] + Pr(A0 ∧B1) · [PrΣ(Xu,i+1 ∧
Xv,i+1) + PrΣ(Xu,i+1 ∧Xv,i+1)] + Pr(A1 ∧B1) · [PrΣ(Xu,i+1 ∧Xv,i+1)].

As stated above, Pr(A0 ∧ B0), P r(A1 ∧ B0), P r(A0 ∧ B1), P r(A1 ∧ B1) are
the same for Σi and Σi+1. In the following table, we give the remaining terms,
with A = PrΣ(Xu,i+1 ∧ Xv,i+1) + PrΣ(Xu,i+1 ∧ Xv,i+1), B = PrΣ(Xu,i+1 ∧
Xv,i+1) + PrΣ(Xu,i+1 ∧Xv,i+1), and C = PrΣ(Xu,i+1 ∧Xv,i+1).

Σ = Σi Σ = Σi+1

A
(1 − p)q + (1 − p)(1 − q) =
(1− p)

y(1 − p) + (1 − p)(1 − y) =
(1− p)

B (1− p)(1− q)
p(1 − y) + (1 − p)(1 − y) =
(1− p)(1− q)

C (1− p)(1− q) (1− p)(1− y)

A term-by-term comparison is sufficient for concluding that pu∧v(Σi) ≥
pu∧v(Σi+1).

Since in algorithm Σk, all colors are assigned to vertices using the Second
procedure, i.e. in an independent way, one has pu∧v(Σk) = pu(Σk) · pv(Σk).
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Then pu∧v = pu∧v(Σ0) ≥ pu∧v(Σ1) ≥ . . . ≥ pu∧v(Σk) = pu(Σk) · pv(Σk) =
pu(Σ0) · pv(Σ0) = pu · pv.

Corollary 1. At any time during the execution of the algorithm, for any edge
e = [u, v], the probability that both u and v get each one at most one additional
color until the end of the algorithm is greater than or equal to 4/e2.

Proof. It follows directly from Proposition 1 and Lemma 5.

Definition: An edge e = [u, v] is safe if both its extremities u and v are colored
with the color of edge e and each one of them gets at most one additional color.

Theorem 1. The algorithm RR is 1/e2 ≃ 0.135-approximate for Max-k-CC.

Proof. Let e be any edge of the graphG. We are going to evaluate the probability
that edge e is matched in the solution returned by the algorithm. Let OPT be
the sum of weights of the matched edges in an optimal solution. Since the linear
program LP is a linear relaxation, we have

∑

e∈E wez
∗
e ≥ OPT . Since the colors

are considered in an independent way by the algorithm, we can assume w.l.o.g.
that edge e has color 1. This edge needs to be chosen in the first iteration of the
algorithm (i.e. when color 1 is considered). This occurs with the probability z∗e
according to Lemma 1. Then during the remaining iterations until the end of the
Phase I of the algorithm, i.e. when colors from 2 to k are considered, this edge
must remain safe so that it belongs to graph G′. This occurs with a probability
greater than or equal to 4/e2 according to Corollary 1. Thus, we have proved
that each edge e = [u, v] from G belongs to the graph G′ with a probability
greater than or equal to 4z∗e/e

2. We also know that if e = [u, v] belongs to G′

then each of the two vertices u and v got either one color, in this case it is
the color of edge e, or two colors, and in this case one of them is the color of
edge e. So assuming that e belongs to G′ the probability that e is matched is at
least 1/4. Overall, this probability is equal to 4z∗e/e

2 × 1/4 = z∗e/e
2. Thus the

cost of the solution returned by the algorithm is in expectation at least equal to
∑

e∈E wez
∗
e/e

2 ≥ OPT/e2.

This algorithm can be derandomized by the method of conditional expecta-
tions [9]. The algorithm RR can also be used for the case where there are more
than one colors on the edges. It is sufficient to create parallel edges, i.e. one edge
for each color.

2.1 Graphs with a chromatic degree equal to 2

In this case it is possible to define a quadratic program for this problem and
use semi definite relaxations to obtain algorithms with constant approximation
ratio.

We associate to each vertex v ∈ V a variable yv ∈ {−1, 1}. Furthermore,
we have an additional variable x ∈ {−1, 1}. Now for each couple (v, e), with
e an edge adjacent to v, we define a label l(v, e) ∈ {−1, 1}. This set of labels

7



must satisfy the following condition: For any vertex v, if e and e′ are two edges
adjacent to v with different colors, then l(v, e) 6= l(v, e′). Since we know that in
the graph G′, for any vertex v, the set of its adjacent edges are colored with at
most 2 colors, it is easy to define such a set of labels (i.e. for all edges e colored
with the first (resp. second) color we set l(v, e) = 1 (resp. l(v, e) = −1). Notice
that it is possible to have l(u, e) 6= l(v, e) for an edge e = [u, v]. An example is
given in Figure 1.

−1

1

−1

1 1

−1

−1
−1

−1

−1 1 1

v1 v2

v3

v4
v5 v6

Fig. 1. An example of labeling.

Now, for each edge e = [u, v] we define f(e) = 1+l(u,e)yux

2 + 1+l(v,e)yvx

2 .
It is easy to see that the objective function that we need to maximize can be
written as

∑

e∈E′ wef(e). Various approximation ratios have been found for such
problems like MAX DICUT (see for example [10, 8, 3]).

In particular, this problem can be seen as a particular case of the problem
MAX 2-AND [10]. An instance of MAX 2-AND is composed of a collection of
clauses (with non-negative weights assigned to them) such that each clause is
either of the form zi or zi ∧ zj, where each zi is either a boolean variable xk

or its negation xk. The goal is to find an assignment of the boolean variables
x1, . . . xn, in order to maximize the weight of the satisfied clauses. It is easy to
see that any instance of our problem can be transformed to an equivalent MAX
2-AND instance for which an algorithm with an approximation ratio of 0.859
exists [10]. For example, for the instance given in Figure 1 we obtain the set of
clauses: x1 ∧ x2 (for edge [v1, v2]), x1 ∧ x5 (for edge [v1, v5]), x5 ∧ x4 (for edge
[v5, v4]), and so on.

3 Complexity

In this part we show that the problem is NP-complete for bipartite graphs if
we allow the initial coloring of the edges to contain three or more colors. Our
reduction is from Max-2-SAT.

Theorem 2. The Max-3-CC problem is NP-complete even for bipartite graphs
with chromatic degree two and we = 1, for every edge e of the graph.
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Proof. Clearly the problem is in NP. Let us now give a polynomial time reduc-
tion R that maps any instance of the Max-2-SAT problem IMax-2-SAT =<
X , C, B > where X = {x1, . . . , xn} is a set of variables, C = {c1, . . . , cm} is a set
of disjunctive clauses with exactly two literals, and B ≤ m is a positive integer, to
an instance R(IMax-2-SAT) = IMax-3-CC =< G,C, f, 3 > for the Max-3-CC

problem. For the rest of the proof we assume that C = {R(ed),B(lue),G(reen)}.
The reduction is based on the gadgets presented in Figures 2 and 3.

The Gadgets. The set V is constructed as follows: For each variable xi of the
MAX-2-SAT formula we create a new node vi and for each c ∈ C we construct
four nodes vcup, v

c
down, v

c
left and vcright. Then for each clause, we add six edges

based on whether both of the literals are positive or negative, or one of them is
negative and the other positive.
First Case: Assume that both of the literals are positive or both are negative
i.e. the clause is either ck = (xα ∨ xβ) or ck = (x̄α ∨ x̄β). Then we construct the
gadgets in Figure 2.

G

G

RR

B B

vβ

vα
ck = (xα ∨ xβ)

R

R

GG

B B

vβ vβ

vα
ck = (x̄α ∨ x̄β)

Fig. 2. The case when all literals are positive or all literals are negative.

Second Case: Assume that one literal is positive and the other is negative.
That is, the clause is of the form ck = (xα ∨ x̄β) or ck = (x̄α ∨ xβ). Respectively
we construct the gadgets in Figure 3.
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R

G

RR

G G

vβ

vα
ck = (xα ∨ x̄β)

G

R

GG

R R

vβ

vα
ck = (x̄α ∨ xβ)

Fig. 3. The case when one literal is positive and one literal is negative

Finally we set P = 3B + 2(m−B), where m is the total number of clauses.
It is not difficult to check that the constructed graph does not contain any

odd cycle and so it is bipartite. Also, for every vertex of the constructed graph
the edges that are incident to this vertex are colored with at most two different
colors, i.e. the chromatic degree of the graph is two.

Lemma 6. The maximum contribution that any gadget can have is exactly 3
and is obtained when at least one of the nodes vα and vβ has the same color as
the edge that connects it with the rest of the gadget. If none of vα and vβ has
the same color with the edge that connects it with the rest of the gadget then the
maximum contribution that can be achieved is 2.

Proof. Simple case analysis.

Lemma 7. For an instance of the Max-2-SAT problem IMax-2-SAT =<
X , C, B >, there is a truth-assignment that satisfies at least B clauses if and
only if there is a clustering for the corresponding Max-3-CC problem with con-
tribution greater than or equal to 3 ·B+2(m−B), where m = |C| is the number
of clauses.

Proof. To prove the if direction, let T be a truth assignment that satisfies at least
B clauses of a 2-SAT formula F . In the derived graph, color green all the nodes
that correspond to variables that are true and red all the nodes that correspond
to false variables. In this way, for each satisfied clause the corresponding gadget
in the optimum clustering will have pay-off three.

Since each of the gadgets representing a satisfied clause will contribute three
to the pay-off and the satisfied clauses are L ≥ B the total optimal contribution
of these clauses will be 3 ·L. The gadgets of the rest m−L clauses will each have
optimal contribution 2 and the total optimal contribution from the unsatisfied
clauses will be 2 · (m− L). Hence the total pay-off will be 2 · (m− L) + 3 · L =
2 ·m+ L ≥ 2 ·m+B = 3 ·B + 2(m−B).
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For the opposite direction, suppose that the corresponding graph of a formula
F has a partition with pay-off at least 3 ·B + 2(m−B) = 2 ·m+B. Since each
one of the gadgets contributes to the pay-off either 2 or 3, there must exist at
least B gadgets with pay-off 3.

Let us assign the value true to the variables with green corresponding nodes
and the value false to the rest of the variables. Notice now that each one of the
gadgets with pay-off three corresponds to a satisfied clause.

Since the gadgets with pay-off 3 are at least B, there are at least B clauses
that are satisfied and the only if direction holds too.

4 A reduction to the Independent Set problem

In this section we will show that the colored clustering problem can be reduced
to the IS problem in bipartite graphs.

Given an instance of the Max-k-CC problem, we create the line graph Gline

corresponding to the initial graph. We then construct a new graph G′
line by

deleting the edges between the vertices of Gline that correspond to neighboring
edges of the same color in G.

Lemma 8. The Max-k-CC problem has a clustering with pay-off P if and only
if the graph G′

line has an independent set of size P .

Proof. For the if direction, suppose that the initial problem has a partition with
pay-off P . For this to happen there must exist a set L of P edges with properly
colored ends. Each edge e ∈ L is either adjacent to some other edges in L and all
have the same color or not adjacent with any other edge in L. In either case, the
vertex in G′

line that corresponds to e is not adjacent to any vertex corresponding
to some other edge in L, because in G′

line we have eliminated the edges between
vertices corresponding to adjacent edges with the same color. Hence, the nodes
of G′

line that correspond to edges in L form an independent set of size P .
To prove the opposite direction, let us examine an instance of the induced

problem that has an independent set of size P . The nodes that form the inde-
pendent set correspond to edges of the initial graph that either are not adjacent
or are adjacent and have the same color. Therefore it is possible to color the ex-
tremities of these edges with the same color as the edges themselves and hence
to produce a solution with pay-off P , because there are P such edges.

For k = 2, the constructed graph is always bipartite. Indeed, in G′
line we

have eliminated the edges between nodes of the line graph Gline that correspond
to edges of the same color in the initial graph G. So, while traversing any cycle
of G′

line the color of the corresponding edge must change from node to node.
Since there are only two different colors, any cycle must have even length and,
therefore, the graph is bipartite. Notice that our reduction holds also for the
weighted case.

As a result, given that a weighted independent set can be found in polynomial
time in a bipartite graph, we get that the weighted Max-2-CC is polynomially
solvable.
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For any k ≥ 3 we can also derive from Lemma 8 a 2
k
approximation algorithm

for the weighted Max-k-CC. Although, it is not a constant-approximation al-
gorithm its ratio is better than 1/e2 for every k ≤ 14. We use the following
Theorem, from [5]: Let G be a weighted graph with n vertices and m edges; let k
be an integer greater than one. If it takes only s steps to color the vertices of G
in k colors, then it takes only s+O(nm log(n2/m)) steps to find an independent
set whose weight is at least 2/k times the weight of an optimal independent set.
In our case we have s = 0.
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APPENDIX

A. An example of the NP-completeness reduction

Example 1. For example, for the formula (x1 ∨x2)∧ (x1 ∨x3) the graph that we
construct is pictured in Figure 4.

v3

v1

v2

G

R

GG

R R

G

G

RR

B B

Fig. 4. The graph devised for the formula (x1 ∨ x2) ∧ (x1 ∨ x3)

B. Derandomization of RR.

We can represent the execution of the algorithm with a tree T with k levels.
Each node on level i represents a partial solution, in which only the i-th first
colors have been assigned. A path from the root of T to a vertex on level i
determines the coloring of edges and vertices with colors c1, . . . , ci. To apply
the derandomization of the algorithm, we need to be able to calculate the exact
conditional expectation of the number of matched edges using our randomized
algorithm, in any node of this tree. This can be done in polynomial time. Then
at each level, we follow the next vertex with the highest conditional expectation.
We repeat this procedure, and from the property of the conditional expectations
(see [9]) after k iteration, we reach a leaf of this tree and we find the desired
solution.

C. Proof of Lemma 4.

Lemma 4 Given a set of independent events such that the sum of their
probabilities is less than or equal to 1, then the probability of getting at most one
of them is greater or equal to 2/e.

Proof. We denote by Xi (for 1 ≤ i ≤ l) the events. The probability of getting at

most one of them is p =
∑l

i=1 Pr(Xi)
∏

i′ 6=i(1− Pr(Xi′ )) +
∏l

i=1(1− Pr(Xi)).
We are going to show that the minimum of this expression is obtained when

each X value is equal to 1/l. To simplify the presentation we denote by Xi,
i = 1, 2, . . . , l, both the event Xi and its probability. Notice that we can assume
that

∑l

i=1 Xi = 1 (If this is not the case, we can increase the value of one Xi

in order to obtain the equality, the probability of getting at most one event will
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decrease, and if we show that it is at least 2/e it shows that it is also at least
2/e for the original value Xi).

Also, without loss of generality, we rename the variables Xi such that X1 has
the biggest value and X2 has the smallest value. If X1 = X2 then all the values
are equal to 1/l. Let us now assume that X1 > X2. In that case we have:

p =

l∑

i=1

Xi

∏

j 6=i

(1−Xj) +

l∏

j=1

(1−Xj)

= X1(1−X2)
∏

j≥3

(1−Xj) +X2(1−X1)
∏

j≥3

(1−Xj) + (1−X1)(1 −X2)
∑

i≥3

Xi

∏

j 6=i

j≥3

(1−Xj) +

(1−X1)(1 −X2)
∏

j≥3

(1−Xj)

= (1−X1X2)
∏

j≥3

(1−Xj)

︸ ︷︷ ︸

A

+(1−X1)(1 −X2)
∑

i≥3

Xi

∏

j 6=i

j≥3

(1−Xj)

︸ ︷︷ ︸

B

= (1−X1X2)A+ (1−X1)(1−X2)B

= A+B + (B −A)X1X2 −BX1 −BX2

Let g(∆) = A+B + (B −A)(X1 −∆)(X2 +∆)−B(X1 −∆)−B(X2 +∆)
for some small enough ∆. Next, we claim that this expression has a minimum
when X1 −∆ = X2 +∆.

One has

g(∆) = A+B + (B −A)(X1X2 −∆X2 +∆X1 −∆2)−B(X1 +X2)

= (−∆X2 +∆X1 −∆2)(B −A) + constant

and thus g′(∆) = (−X2 +X1 − 2∆)(B − A), and g′(∆) = 0 for ∆ = (X1 −
X2)/2.

We are going to show that B −A < 0.

B −A =
∑

i≥3

Xi

∏

j 6=i

j≥3

(1−Xj)−
∏

j≥3

(1−Xj)

=




∑

i≥3

Xi

1−Xi

− 1





︸ ︷︷ ︸

<0

∏

j≥3

(1−Xj)

︸ ︷︷ ︸

>0

One has
∑

i≥3

Xi

1−Xi

≤
∑

i≥3

Xi

1−X1
≤ 1,

since
∑l

i=1 Xi = 1, and this concludes the proof of our claim.
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Consequently, the minimum value of p is obtained when every Xi is equal to
1/l. In that case, the probability is (k−1

l
)l−1 + ( l−1

l
)k ≥ 2

e
for any l ≥ 2.
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