Colin De La Higuera

Jean-Christophe Janodet
email: jean-christophe.janodet@ibisc.univ-evry.fr

Émilie Samuel
email: emilie.samuel@univ-st-etienne.fr

Guillaume Damiand
email: guillaume.damiand@liris.cnrs.fr

Christine Solnon
email: christine.solnon@liris.cnrs.fr

Polynomial Algorithms for Open Plane Graph and Subgraph Isomorphisms $

Keywords: Open plane graphs, equivalence and isomorphism, subgraphs and patterns, polynomial and N P-complete problems

Graphs are used as models in a variety of situations. In some cases, e.g. to model images or maps, the graphs will be drawn in the plane, and this feature can be used to obtain new algorithmic results. In this work, we introduce a special class of graphs, called open plane graphs, which can be used to represent images or maps for robots: they are planar graphs embedded in the plane, in which certain faces can be removed, are absent or unreachable. We give a normal form for such graphs and prove that one can check in polynomial time if two normalised graphs are isomorphic, or if two open plane graphs are equivalent (their normal forms are isomorphic). Then we consider a new kind of subgraphs, built from subsets of faces and called patterns. We show that searching for a pattern in an open plane graph is tractable if and only if the faces are contiguous, that is, we prove that the problem is N P-complete otherwise.

Introduction

Graphs are widely used to represent data and knowledge in a variety of application domains, including electrical, logistical and civil engineering, computer and social networks, linguistics, etc. The key point is that graphs are rich enough to describe the data in a relevant way (e.g. by including notions such as adjacency or topology), while allowing -under some assumptions-an efficient exploitation. Thereby, graphs databases dedicated to the development of algorithms have been created, either in an artificial way [START_REF] Santo | A large database of graphs and its use for benchmarking graph isomorphism algorithms[END_REF], or from real data such as handwritten characters, fingerprints or web pages [START_REF] Riesen | Iam graph database repository for graph based pattern recognition and machine learning[END_REF].

The attention has also turned to modelling images by the mean of graphs for pattern recognition tasks [START_REF] Conte | How and why pattern recognition and computer vision applications use graphs[END_REF][START_REF] Samuel | Extracting plane graphs from images[END_REF]. In consequence, many graph similarity measures have been investigated [START_REF] Conte | Thirty years of graph matching in pattern recognition[END_REF]. These measures often rely on (sub)graph isomorphism -which checks for equivalence or inclusion-or graph edit distances and alignments -which evaluate the cost of transforming a graph into another graph. If there exist rather efficient heuristics for solving the graph isomorphism problem1 [START_REF] Mckay | Practical graph isomorphism[END_REF][START_REF] Zampelli | Filtering for subgraph isomorphism[END_REF][START_REF] Sorlin | A parametric filtering algorithm for the graph isomorphism problem[END_REF], this is not the case for the other measures which are often computationally intractable (N P-hard), and therefore practically unsolvable for large scale graphs. In particular, the best performing approaches for subgraph isomorphism are limited to graphs with up to a few thousands of nodes [START_REF] Cordella | An improved algorithm for matching large graphs[END_REF][START_REF] Zampelli | Filtering for subgraph isomorphism[END_REF].

However, when measuring graph similarity, it is overwhelmingly forgotten that graphs actually model images and, therefore, have special features that could be exploited to obtain both more relevant measures and more efficient algorithms. Indeed, these graphs are planar, i.e., they may be drawn in the plane, but even more specifically just one of the possible planar embeddings is relevant as it actually models the topology, that is, the order in which faces are encountered when turning around a node.

In the case where just one planar embedding is considered, graphs are called plane graphs [START_REF] Fusy | Combinatoire des graphes planaires et applications algorithmiques[END_REF]. It is known since the mid-70's that the isomorphism problem is solvable in polynomial time for plane graphs [START_REF] Cori | Un code pour les graphes planaires et ses applications[END_REF][START_REF] Cori | Computation of the Automorphism Group of a Topological Graph embedding[END_REF]. However, it has also been noted that the subisomorphism problem is still N P-complete, in particular because the Hamiltonian cycle problem is N P-complete for planar graphs. This result has been refined using parameterized complexity: it can be shown that the subisomorphism problem is linear with respect to the mother graph [START_REF] Dorn | Planar subgraph isomorphism revisited[END_REF][START_REF] Eppstein | Subgraph isomorphism in planar graphs and related problems[END_REF], the problem thus being tractable in practice for small subgraphs. Also many subclasses of planar graphs have been considered with respect to the subisomorphism problem, e.g., the trees, or the outerplanar graphs [START_REF] Jones | Linear algorithms for isomorphism of maximal outerplanar graphs[END_REF]. As far as we know, the isomorphism problem is generally solvable in polynomial time for all such graphs, but the subisomorphism is N P-complete.

In [START_REF] Damiand | A polynomial algorithm for submap isomorphism: Application to searching patterns in images[END_REF], we have adopted another strategy. In the framework of plane graphs, we have considered a restricted class of subgraphs built from sets of contiguous faces, and called compact plane submaps: such submaps were considered more meaningful than general submaps. In this case, we have shown that the isomorphism and subisomorphism problems were solvable in polynomial time. Besides, we have shown in [START_REF] Damiand | Polynomial algorithms for subisomorphism of nd open combinatorial maps[END_REF] that these results could be extended to higherdimension maps, yielding the possibility to work with shapes in 3D-spaces for instance. Note that similar approaches have been followed by Jiang and Bunke in [START_REF] Jiang | Marked subgraph isomorphism of ordered graphs[END_REF][START_REF] Jiang | Optimal quadratic-time isomorphism of ordered graphs[END_REF]. These authors introduce so-called ordered graphs to deal with graphs extracted from images: the edges are ordered at each vertex, and this construction allows to consider objects similar to plane maps. They have shown that the subgraph isomorphism was also efficiently solvable for constrained types of subgraphs (called marked subgraphs); nevertheless, these subgraphs have no relationships with ours (since they are not based on the faces).

In this article, we extend the results presented in [START_REF] Damiand | A polynomial algorithm for submap isomorphism: Application to searching patterns in images[END_REF] in order to be able to represent situations where part of what is being modelled is unknown, blurred or unimportant. We introduce open plane graphs, which correspond to plane graphs whose faces can be either visible or invisible. This, for instance, may enable us to model and search for a mug with a handle, independently of the background (see Figure 1). More precisely, the background of the mug, that is visible through the handle, must not be integrated to the modelling graph, since otherwise, the mug is dependent of the background and cannot be searched in another scene. Using open plane graphs, we simply need to declare invisible all the faces that correspond to the background, and the mug can be retrieved efficiently in other images. Another situation for which open plane graphs are adapted is the model of an environment in which a robot would evolve. E.g., think to famous "intelligent" vacuum-cleaner of Russell and Norvig's book [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. The robot needs to have in mind a representation of its world, which contains informations such as the rooms shapes and their topology, as well as the opportunity to go directly from one room to an adjacent one or not, using doors, and avoiding forbidden rooms. If intelligent enough, the robot may have to learn this model by itself. In this case, the faces of the plane graph represent the rooms, the vertices being the corners. Two rooms are connected by a door if they share a common edge in the graph, and the forbidden rooms are tagged invisible (see Figure 2).

Hence, in this paper, we introduce open plane graphs and study the isomophism and subisomorphism problems for this class of graphs. In particular, we prove that depending on the assumptions, some subgraphs called patterns can be efficiently searched, whereas others, called piecewise patterns, cannot. As the latters are obtained by slightly relaxing the definition of the formers, our result are optimal, that is, inextendable to significantly larger classes of subgraphs built from the faces.

Outline of the Paper. The formal definition of open plane graphs is given in Section 2. After a short presentation of plane graphs, mainly based on the Eric Fusy's thesis [START_REF] Fusy | Combinatoire des graphes planaires et applications algorithmiques[END_REF], we propose a formal system to describe any plane graph through its faces, some of them being visible, and the other invisible. Note that we could have used another formal system, called partial maps [START_REF] Damiand | Polynomial algorithms for subisomorphism of nd open combinatorial maps[END_REF][START_REF] Poudret | Cartes Combinatoires Ouvertes, Research Notes 2007-1[END_REF]. Nevertheless, the corner stone of maps is the so-called darts, which correspond to directed edges, whereas the corner stone of open plane graphs is the faces directly. So, since our results mainly concern patterns, which are subgraphs induced sets of faces, the latter was more appropriate than the former in this paper, for clarity reasons.

In Section 3, we discuss possible definitions of open plane graph isomorphism: one of them, called equivalence, corresponds to isomorphism over the visible faces only. We show that every open plane graph can be reduced to a unique normal form, in a way such that two open plane graphs are equivalent if and only if their normal forms are isomorphic. This reduction is crucial to define our main class of subgraphs, the patterns.

The definition of such patterns is given in Section 4, where we also state the problem of searching for patterns in open plane graph. We show that this problem is solvable in polynomial time. As a side effect, we also establish the tractability of equivalence and isomorphism of open plane graphs.

In Section 5, we aim at relaxing the conditions on the patterns that can efficiently be retrieved in an open plane graph. We consider the case of piecewise patterns, that is patterns whose faces are not contiguous. We show that in this case, searching for patterns is N P-complete.

We conclude and give further research directions in Section 6.

Open Plane Graphs

In this section, we recall standard notions about plane graphs, that is, planar graphs embedded in the plane. In order to have operational definitions, i.e. that can be algorithmically manipulated and allow to study data structures and computational issues, we introduce a new formalism, called plane graph systems, which enables us to fully describe any connected plane graph through its faces. An open plane graph will then be defined as a plane graph system in which only some faces are visible.

Plane Graphs

A detailed introduction to plane graphs can be found in Eric Fusy's Thesis [START_REF] Fusy | Combinatoire des graphes planaires et applications algorithmiques[END_REF]. We mainly use his notations below. Note that planar graph drawing is a research topic per se (see e.g. [START_REF] Nishizeki | Planar graph drawing[END_REF]).

Let G = X, E be a simple graph, with X the set of vertices and E ⊆ {e = {x, y} : x, y ∈ X} the set of undirected edges. An embedding (or drawing) η of graph G in the plane is defined by 1. an injective mapping η X from the vertices of G to points in the plane, and 2. a mapping η E from the edges of G to smooth curves in the plane such that the extremities of any edge e are mapped by η X to the extremities of curve η E (e).

An embedding is planar if for all distinct edges e, e ′ ∈ E, curves η E (e) and η E (e ′) do not meet except at common extremities. A graph that admits a planar embedding is called a planar graph.

In fact, a planar graph admits infinitely many planar embeddings: one only has to slightly move a vertex to get a new planar embedding. However, a graph has only finitely many planar embeddings if the embeddings are considered up to isotopy, that is, two planar embeddings η 1 and η 2 are isotopic if η 2 can be obtained from η 1 by moving the vertices in such a way that no edge is crossed. This property is illustrated in Figures 3 and4. Thus, in the following, a plane graph will stand for an isotopy class of planar embeddings for a given planar graph. In other words, a plane graph is a planar graph that is embedded in the plane without edge-crossing and up to continuous deformations. A theorem by Fáry states that given any planar embedding of a planar graph, it is always possible to move the vertices, within the same isotopy class, so that the edges are drawn with straight-line segments [START_REF] Fàry | On straight-line representation of planar graphs[END_REF]. We shall use such straight-line drawings in the following.

Any plane graph has faces, each face corresponding to a piece of the plane split by the embedding. We denote by F the set of faces. One face, denoted by o ∈ F , is unbounded and called the outer or external face. The number of faces of a plane graph is an invariant of the underlying planar graph. Indeed, whichever the embedding chosen for planar graph G, one has:

|X| -|E| + |F | = 1 + c
by Euler's formula, where c denotes the number of connected components.

What is not invariant, however, is the co-degree of each face in two nonisotopic planar embeddings (see Figure 5). By the co-degree of some face, we mean the number of edges one meets when walking along the border of the face, keeping the border on the right-hand side. Pendant edges are met twice, thus count twice.

Connectivity Issues

In the following, we shall only consider connected plane graphs.

Definition 1 (Connected graph). Any graph G = X, E is connected if for all vertices x, x ′ ∈ X, there is a sequence x = x 0 , x 1 , . . . x n = x ′ such that for all i ∈ {0, 1, . . . n -1}, {x i , x i+1 } ∈ E.

A stronger notion of connectivity will also be needed, based on the faces. Indeed, consider again the example of the robot that visits the rooms of a flat, some of them being closed or forbidden. If we wish the robot to map legal rooms, moving from faces to faces and traversing the edges (seen as doors), then the legal faces must also be "connected" through the edges of the graph: Definition 2 (Set of contiguous faces). Consider a plane graph G = X, E having F as set of faces.

• Two faces f, f ′ ∈ F are adjacent is they share a common edge e ∈ E.

• We say that the faces of a subset K ⊆ F are contiguous if for all faces f, f ′ ∈ K, there is a sequence f = f 0 , f 1 , . . . f n = f ′ of faces in K such that for all i ∈ {0, 1, . . . n -1}, f i and f i+1 are adjacent.

For instance, consider the plane graph of Figure 6;

K = {f 1 , f 4 , f 5 } is a set of contiguous faces, whereas K ′ = {f 1 , f 2 , f 6 } is not (since face f 6 is adjacent neither to f 1 nor to f 2 . f 1 f 2 f 3 f 4 f 5 f 6 Figure 6: K = {f 1 , f 4 , f 5 } is a set of contiguous faces, whereas K ′ = {f 1 , f 2 , f 6 } is not.

Plane Graph Systems

We have defined the plane graphs using the notion of embeddings, i.e., functions that map vertices to points, and edges to curves. However, this mathematical approach is quite unsuitable for designing algorithms. The set of faces being the corner stone for describing plane graphs, we introduce plane graph systems, allowing us to syntactically define a whole isotopy class of planar embeddings.

We first need some notations. Let X be a finite nonempty set of symbols. A string over X is a concatenation of symbols. The set of all strings is denoted by X * and the empty string is denoted by ǫ. A circular string is intuitively a string in which the last symbol is followed by the first; that is, there is no first symbol but just a function associating to each symbol the next one. We denote a circular string by [u], with the convention that if u and v are two strings, then [uv] = [vu]. The set of all circular strings over X is denoted by X ⊤ . For sake of clarity, we shall use a, b, . . . as names for symbols in X, and u, v, w, . . . as names for strings in X * , and Greek letters α, β, . . . as names for circular strings in X ⊤ . Now consider the plane graph of Figure 7. The outer face is f 1 and bounded (internal) faces are f 2 and f 3 . Each face has only one boundary since the graph is connected. Such a boundary can be described by a circular string of vertices in which two consecutive vertices, and the last and the first are linked by an edge. Conventionally, we follow a boundary by leaving it to the right. In other words, the bounded face is on the left of the walk. Therefore, the boundary of face f 3 is [ecfcd], or equivalently [fcdec], by circular permutation. Definition 3 (Plane Graph System). A plane graph system is a tuple S = X, E, F, o, D such that:

• X, E is a planar graph,

• F is a finite nonempty set of symbols called faces,

• o ∈ F is a distinguished symbol called the outer face and

• D : F → X ⊤ is a function, called the boundary descriptor, that maps any face to its boundary.

For the sake of simplicity, we shall denote by f the value of D(f). With such a convention, we shall keep implicit the boundary descriptor D, thus denote by X, E, F, o the plane graph system S.

For instance, consider the plane graph of Figure 7 again. The corresponding plane graph system is S = X, E, F, o with X = {a, b, c, d, e, f },

E = {{a, b}, {a, c}, {b, d}, {c, d}, {c, e}, {c, f }, {d, e}}, F = {f 1 , f 2 , f 3 }, o = f 1 and f 1 = [acedb], f 2 = [abdc], f 3 = [cdecf].
Note that there exist few redundancies in the definition of a plane graph system: both the vertices and the edges could be recovered from the boundaries of the faces. Nevertheless, our choices will ease several proofs and algorithms.

Open Plane Graphs

If we consider plane graphs extracted from images or modelling maps, specific parts of the image may be hidden or part of the background, and specific rooms may be closed or forbidden. In order to take into account these notions we introduce plane graphs in which some faces may be visible and others not.

Definition 4 (Open Plane Graph

). An open plane graph is a tuple G = X, E, F, V, o such that:

1. X, E, F, o is a plane graph system (see Definition 3), and 2. V ⊆ F is a set of contiguous faces, called the visible faces.

Every face in (F \ V) will be said invisible. These are also called the holes.

An open plane graph may have several "holes", and the outer face can be visible or not. See Figure 8 for an example. Note that the invisible faces will generally not be contiguous.

Further Notations

Let G = X, E, F, V, o be an open plane graph. Given a vertex x ∈ X, we define the neighbourhood Γ(x) as the circular string of vertices adjacent to x as read in a counter clockwise order. Length |Γ(x)| is known as the degree of x and denoted by deg(x). For instance, in Figure 7, we have Γ(d) = [cbe] and deg(d) = 3. Now with respect to the edges, we denote by faces(e) the set of faces incident to edge e. Set faces(e) can contain either 1 or 2 faces. In order to distinguish them, we shall use xy -→ to denote the face f that stands on the left of edge {x, y} when "walking" from vertex x to vertex y. From a mathematical standpoint, f is the face such that f = [xyu] for some string u ∈ X * . In consequence, we have that faces({x, y}) = {xy -→ , yx -→ }. For instance, in Figure 7, we have dc

-→ = f 2 and cd -→ = f 3 , thus faces({c, d}) = {f 2 , f 3 }. We also have faces({c, f }) = {f 3 }.

Open Plane Graphs Isomorphisms and Equivalence

In pattern recognition tasks where graphs are extracted from images, the goal is often to compare the extracted graphs in order to develop similarity measures between the images [START_REF] Conte | Thirty years of graph matching in pattern recognition[END_REF]. In this paper, we aim at comparing the planar embeddings of the graphs, noticing that two isotopic planar embeddings are more likely to represent similar images than non-isotopic embeddings.

It is important to make a distinction between isomorphisms, which concern graphs as mathematical objects, and isotopies, which concern embeddings (drawings) of these graphs. For instance, the notion of isotopy makes sense as soon as the supporting surface for the drawings of the graphs is fixed; this surface is not necessarily a plane, but could be a sphere or a torus. Conversely, comparing embeddings situated on different surfaces is meaningless. Now concerning the notion of isomorphism, it does not take the embeddings into account. Thus, two graphs may be isomorphic while their embeddings are non-isotopic or simply not drawn on the same sort of surface, thus incomparable in terms of embeddings.

Which Notion of Isomorphism?

Two graphs G 1 = X 1 , E 1 and G 2 = X 2 , E 2 are usually said to be isomorphic if there exists a one-to-one mapping φ :

X 1 → X 2 that preserves the edges: {x, y} ∈ E 1 ⇔ {φ(x), φ(y)} ∈ E 2 .
However, this traditional notion of isomorphism does not fit our picture, as the only thing that is checked is whether the edges are preserved. Indeed, consider both graphs of Figure 9 for instance. They are isomorphic (as shown by the labels of the vertices), but the faces are different (since one of them is bounded by 4 edges in the right-hand graph, while no such face exists in the left-hand graph). In the case of plane graphs, preserving the faces is much more important, and this is the reason why we add the new constraints hereafter:

Definition 5 (Sphere-Isomorphism). Let G 1 = X 1 , E 1 , F 1 , V 1 , o 1 and G 2 = X 2 , E 2 , F 2 , V 2 , o 2 be two open plane graphs. We say that G 1 and G 2 are sphere-isomorphic, denoted G 1 ≡ s G 2 , if
1. there exists a one-to-one mapping χ : X 1 → X 2 over the vertices; 2. there exists a one-to-one mapping ξ : F 1 → F 2 over the faces whose boundaries are preserved:

∀f 1 ∈ F 1 , ∀f 2 ∈ F 2 , if ξ(f 1) = f 2 and f 1 = [x 1 x 2 . . . x p], then f 2 = [χ(x 1)χ(x 2) . . . χ(x p)];
3. the visible faces are mapped together:

ξ(V 1) = V 2 (and thus ξ(F 1 \ V 1) = F 2 \ V 2).
Figure 10 shows three open plane graphs that are pairwise sphere-isomorphic (as shown by the labels of the vertices; the visible faces are in grey). As we did not specify any constraints concerning the preservation of the outer faces, the outer face of a plane graph can be mapped to an internal face of another graph. In other words, all the faces play the same role, as if we had drawn them on a sphere rather than on the plane. This is what was done in Figure 11; one just has to roll the sphere and then project the drawing on the plane to get one of the plane graphs of Figure 10. This phenomenon justifies why these plane graphs are said sphere-isomorphic. Although sphere-isomorphism is not exactly the notion which we would like to test over the open plane graphs, we will need this notion to establish theoretical results. Moreover, it is interesting to note that the isomorphism notion proposed by Cori in [START_REF] Cori | Un code pour les graphes planaires et ses applications[END_REF][START_REF] Cori | Computation of the Automorphism Group of a Topological Graph embedding[END_REF] and Lienhardt in [START_REF] Lienhardt | N-dimensional generalized combinatorial maps and cellular quasi-manifolds[END_REF] for combinatorial maps actually corresponds to sphere-isomorphism for open plane graphs.

Finally, the most relevant notion of isomorphism that we aim at testing is the one that preserves all the faces and also the outer face:

Definition 6 (Plane-Isomorphism). Let G 1 = X 1 , E 1 , F 1 , V 1 , o 1 and G 2 = X 2 , E 2 , F 2 , V 2 , o 2 be two open plane graphs. We say that G 1 and G 2 are plane- isomorphic, denoted G 1 ≡ p G 2 , if
1. G 1 and G 2 are sphere-isomorphic with respect to mappings χ : X 1 → X 2 and ξ : F 1 → F 2 ; 2. the outer faces are mapped together: ξ(o 1) = o 2 . An example is given in Figure 12. Clearly, plane-isomorphism preserves the vertices, the edges, the faces, the visible faces and the outer faces of open plane graphs. The job seems done . . . however, plane-isomorphism is still not satisfying, as we are going to explain in next paragraph.

An Equivalence rather than an Isomorphism?

In a pattern recognition task, the visible faces of an open plane graph will correspond to a pattern that was searched and found. In consequence, the visible faces and their relative positions must be taken into account, but the invisible faces must not play any role. In other words, we actually need to compare the open plane graphs over their visible faces only.

To clarify this point, consider the case of a robot that would explore an open plane graph, going from visible faces to visible faces. Two adjacent visible faces would be materialised by a line on the floor, whereas if either of the faces is invisible, a wall would separate them. Posts (or poles) would be placed to join the walls where the vertices are. Then the robot would be able to map out the visible faces, while it would have no idea about the invisible area. Thus a robot that would visit the visible faces of two open plane graphs could decide that these graphs are equivalent up to visible faces.

We formalise open plane graph equivalence as follows:

Definition 7 (Open Plane Graph Equivalence). Two open plane graphs

G 1 = X 1 , E 1 , F 1 , V 1 , o 1 and G 2 = X 2 , E 2 , F 2 , V 2 , o 2 are equivalent, denoted G 1 ∼ = G 2 , if there exists a pair φ, (ψ f) f ∈V1 such that: 1. φ : V 1 → V 2 is a one-to-one mapping over the visible faces; 2. (ψ f) f ∈V1 is an indexed family of mappings such that if φ(f 1) = f 2 for some f 1 ∈ V 1 , f 2 ∈ V 2 , then: (a) ψ f1 : vertices(f 1) → vertices(f 2
) is a one-to-one mapping from the vertices of f 1 to the vertices of f 2 , and

(b) if f 1 = [x 1 x 2 . . . x p] then f 2 = [ψ f1 (x 1)ψ f1 (x 2) . . . ψ f1 (x p)]. 3. If two visible faces of G 1 share a common edge their images also share a corresponding common edge in G 2 . That is, if {x, y} ∈ E 1 is an edge and faces({x, y}) = {f 1 , f 2 }, with f 1 ∈ V 1 , then • either f 2 ∈ V 1 and ψ f1 (x) = ψ f2 (x) and ψ f1 (y) = ψ f2 (y), thus faces({ψ f1 (x), ψ f1 (y)}) = faces({ψ f2 (x), ψ f2 (y)}) = {φ(f 1), φ(f 2)}, • or f 2 ∈ V 1 and faces({ψ f1 (x), ψ f1 (y)}) = {φ(f 1), g} with g / ∈ V 2 .
4. The outer faces are preserved:

• if o 1 ∈ V 1 , then o 2 ∈ V 2 and φ(o 1) = o 2 ; • if o 1 ∈ V 1 , then o 2 ∈ V 2 .
By Definition 7, two open plane graphs G and G ′ are equivalent if a robot that would visit the visible faces of both graphs would not be able to distinguish one from the other. Each ψ f gives the vision the robot would have when looking from face f . See Figures 13 and15 for two equivalent open plane graphs and Figure 14 for two non equivalent open plane graphs. Proof. Reflexivity and transitivity are straightforward. Concerning symmetry, assume that graph G = X, E, F, V, o is mapped to graph G ′ = X ′ , E ′ , F ′ , V ′ , o ′ using pair φ, (ψ f) f ∈V . We define a pair φ ′ , (ψ g) g∈V ′ in order to prove that G ′ ∼ = G. As φ : V → V ′ is a one-to-one mapping over the visible faces, we fix φ ′ = φ -1 . We now consider any face g ∈ V ′ and define ψ g . Face g has a unique predecessor f by φ, and since ψ f is a one-to-one mapping from the vertices of f to the vertices of g, we fix ψ ′ g = ψ -1 f . Clearly, ψ ′ g is a one-to-one mapping from the vertices of g to the vertices of f that preserves the boundaries of g. Now consider an edge e ′ = {x, y} ∈ E ′ and let {g, g ′ } = faces(e ′) with g ∈ V ′ . Then {ψ ′ g (x), ψ ′ g (y)} denotes some edge e ∈ E (since g is a visible face whose boundary is preserved by ψ ′ g). Moreover, we have faces(e) = {φ ′ (g), f ′ }, and

g ′ ∈ V ′ if and only if f ′ ∈ V . Finally, if f ′ ∈ V then ψ f (ψ ′ g (x)) = ψ f ′ (ψ ′ g (x)), that is, x = ψ f ′ (ψ ′ g (x)), thus ψ ′ g ′ (x) = ψ ′ g (x)
. And for the same reason, ψ ′ g ′ (y) = ψ ′ g (y).

3.3. On Bridges, Branches, Hinges. . . In the paragraphs above, we have introduced several definitions of isomorphisms and a further notion of equivalence, which is a form of isomorphism over the visible faces only. In fact, we are going to show that these notions coincide for plane graphs whose invisible area are "empty", that is, do not contain any edge nor vertex. The elimination of such objects will be achieved thanks to a procedure that we call an open plane graph normalisation. In this section, we identify all the situations the normalisation procedure will be faced with.

On the one hand, the invisible area of an open plane graph may contain edges that should disappear. This elimination nevertheless depends on the nature of these edges. An example is given in Figure 16. Some of the edges may be pendant : Definition 8 (Pendant Edge). An edge e ∈ E is pendant in an open plane graph G = X, E, F, V, o if some of its endpoint has degree one.

The second type of edges to be considered are those that separates two invisible faces. We call them bridges and define them as follows: On the other hand, the invisible area may also contain vertices that require specific treatment. Indeed, let us consider the case of vertex x in Figure 17 and suppose that a robot is exploring the graph, going from visible faces to visible faces. The robot will meet vertex x at least 3 times when visiting the visible faces. However, it will be impossible for him to detect that all these occurrences correspond to the same vertex, since in order to decide this, he would need to turn around x and thus traverse forbidden invisible faces. Such a vertex is called a hinge. Remember that Γ(x) denotes the neighbourhood of vertex x, that is, the circular string of vertices adjacent to x as read in a counter clockwise order. Moreover, xy -→ denotes the face f such that f = [xyu] for some string u ∈ X * .

Definition 11 (Hinge). A vertex x in an open plane graph

G = X, E, F, V, o is a hinge if Γ(x) = [y 1 y 2 ...y n], and there exist 1 ≤ i < j < k < l ≤ n such that xy i -→ ∈ V , xy j -→ ∈ V , xy k -→ ∈ V , xy l -→ ∈ V .
Thus, in Figure 17, we have Γ

(x) = [y 1 y 2 . . . y 11], xy 1 -→ ∈ V , xy 2 -→ ∈ V , xy 4 -→ ∈ V and xy 7 -→ ∈ V , that is, vertex x is a hinge.
Hence, the normalisation procedure that we describe in next paragraph will have to eliminate pendant edges, bridges, branches and hinges. We shall prove (in Theorem 3) that two open plane graphs are equivalent if their normal forms are isomorphic.

Normalising an Open Plane Graph

First of all, we define: The aim of this section is to develop the algorithm which, given any open plane graph G, returns a unique equivalent irreducible open plane graph denoted G. The normalisation procedure is described in Algorithm 18 and consists in successively eliminating the hinges, then the bridges, then the pendant edges. The branches do not need any specific treatment. Let us explicit all subroutines before proving the properties of the entire normalisation process.

Eliminating the Hinges

Procedure eliminateHinge is given in Algorithm 19. The key idea of this algorithm is to replace the hinge by a new invisible face. This operation introduces many new bridges but no new hinge. New vertices are also created. An example ---→ and e = {x, y j+1 } for some j. Let us assume w.l.o.g. that f is visible, and suppose that vertex x in f is replaced by some x p to get f ′ . In this situation, edge {x, y j+1 } is transformed into edge {x p , y j+1 }. There are two cases. If g is also visible, then p is the largest index in {i 1 , i 2 , . . . i k } such that p ≤ j + 1, so x will also be replaced by x p in g. Thus we have ψ f (x) = x p = ψ g (x) and ψ f (y j+1) = y j+1 = ψ g (y j+1). On the other hand, if g is not visible, then {x p , y j+1 } is an edge of the new invisible face h that is added to the graph. So faces({x p , y j+1 }) = {φ(f), h} and h is invisible.

Input: An open plane graph G = X, E, F, V, o , a hinge x Output: Graph G modified let [y 1 y 2 . . . y n] = Γ(x) such that xy 1 -→ ∈ V and xy n --→ ∈ (F \ V); select largest substring [y i1 y i2 . . . y i k] of Γ(x) such that 1 = i 1 < i 2 < i 3 < . . . i k ≤ n and, ∀s ∈ {1, 2, . . . , k -1} either (xy is --→ ∈ V and xy is+1 ----→ ∈ (F \ V)) or (xy is --→ ∈ (F \ V) and xy is+1 ----→ ∈ V); // each

Eliminating the Bridges

In Algorithm 21 each individual bridge is removed. In doing so, two invisible faces will be merged into one, with a new boundary. This operation may create branches and pendant edges but no new bridge, nor new hinge. An example is given in Figure 22: the upper bridge in Figure 16 is eliminated, while the lower bridge is transformed into a branch.

Input: An open plane graph G = X, E, F, V, o , a bridge {x, y} Output: Graph G modified assume that faces({x, y}) = {f, f ′ } and Proof. Algorithm 21 does not modify the boundaries of visible faces. Indeed, no vertex is eliminated. Moreover the bridge is the only edge that disappears, and the bridge is adjacent to invisible faces only (by definition). Therefore, we choose φ and all ψ f to be Identity and get the equivalence of G and G ′ .

1 f = [xyu] and 2 f ′ = [yxv] for some u, v ∈ X * ; 3 f ← [xvyu]; 4 F ← F \ {f ′ }; 5 if outer face o was face f ′ then o ← f ; 6 E ← E \ {{x, y}};

Eliminating Pendant Edges in Invisible Faces

The last procedure described in Algorithm 23 allows us to remove the pendant edges. Basically, this operation does not reintroduce any new bridge nor hinge. Note nevertheless that it transforms branches into pendant edges. In other words, the number of pendant edges does not necessarily decrease at each call of this procedure, but the total number of edges (and vertices) does. This will ensure the termination of the normalisation process.

Input: An open plane graph G = X, E, F, V, o , a pendant edge {x, y} in an invisible face f , with deg Proof. Straightforward since the algorithm does not modify the visible faces.

(x) = 1 Output: Graph G modified assume that f = [uyxy] with u ∈ V * ; 1 f ← [uy]; 2 X ← X \ {x}; 3 E ← E \ {{x, y}};

Conclusion and Main Result

Concerning Algorithm 18, we finally get: Proof. Each step of the normalisation process preserves the equivalence. Moreover, the elimination of the hinges introduces many bridges but no hinge. Then the elimination of the bridges may introduce branches and pendant edges but no hinge nor bridge. Finally the elimination of the pendant edge eliminates the branches, and decreases the number of edges, and does not re-introduce any hinge nor bridge. So normaliseGraph(G) converges towards irreducible open plane graph G in polynomial time.

Furthermore, we are now able to precisely describe the relationship between equivalence relation and isomorphism relation: • When the outer faces of G 1 and G 2 are invisible, G 1 and G 2 are equivalent if and only if their normal forms are sphere-isomorphic:

G 1 ∼ = G 2 iff G 1 ≡ s G 2 .
• When the outer faces of G 1 and G 2 are visible, G 1 and G 2 are equivalent if and only if their normal forms are plane-isomorphic:

G 1 ∼ = G 2 iff G 1 ≡ p G 2 .
• If the outer face of G 1 is visible and the one of G 2 is not, or vice-versa, then G 1 and G 2 are not equivalent.

Proof. First of all, note that if

G 1 ≡ s G 2 (or G 1 ≡ p G 2), then G 1 ∼ = G 2 . Moreover G 1 ∼ = G 1 and G 2 ∼ = G 2 , by Theorem 2. So we deduce that G 1 ∼ = G 2 ,
by transitivity (Theorem 1).

Conversely, let us suppose that G 1 ∼ = G 2 , and the outer face of G 1 and G 2 are invisible. We need few notations: For each j ∈ {1, 2}, we assume that G j = X j , E j , F j , V j , o j and denote G j = X j , E j , F j , V j , o j their normal forms. We know that

G 1 ∼ = G 1 , so let φ ′ 1 , (ψ ′ 1f) f ∈ c
V1 be the pair of mappings that satisfy the conditions of Definition 7. As G 1 ∼ = G 2 and G 2 ∼ = G 2 , there also exist pairs φ, (ψ g) g∈V1 and φ 2 , (ψ 2h) h∈V2 . As we aim at showing that G 1 ≡ G 2 , we need to define a pair ξ, χ that satisfies the conditions of Definition 5. The construction is illustrated in Figure 24.

c G1 G1 c G2 G2 φ, (ψg)g∈V 1 ξ, χ φ2, (ψ 2h) h∈V 2 φ ′ 1 , (ψ ′ 1f) f ∈ c V 1
Figure 24: Notations for the proof of Theorem 3.

Concerning mapping χ :

X 1 → X 2 , let x ∈ X 1 . As G 1 is irreducible, x is adjacent to at least one visible face f ∈ V 1 . Let g = φ ′ 1 (f) and h = φ(g); we fix χ(x) = ψ 2h • ψ g • ψ ′ 1f (x)
. We claim that this definition does not depend on chosen (visible) face f . Indeed, consider the neighbourhood Γ(x) = [y 1 y 2 . . . y n] in G 1 . As G 1 is irreducible, at most one adjacent face to x is invisible, say xy n --→

. Then for all i ∈ {1, 2 . . . n -2}, faces

f i = xy i -→ and f i+1 = xy i+1 ---→ are
visible and share edge {x, y i+1 }. So by Condition 3 of Definition 7, we get

ψ ′ 1,fi (x) = ψ ′ 1,fi+1 (x).
As adjacent visible faces are also preserved by φ and φ 2 , the same argument can be repeated, that yields a unique value for χ(x). Also note that χ is a one-to-one mapping over the vertices: this property is inherited from mappings (ψ ′ 1f) f ∈ c V1 , (ψ g) g∈V1 and (ψ 2h) h∈V2 . Now let us define mapping ξ : F 1 → F 2 . For any visible face f , we fix

ξ(f) = (φ 2 • φ • φ ′ 1) (f). As φ ′ 1 , φ and
f of G 1 . Suppose that f = [v 0 v 1 . . . v n]. We claim that [χ(v 0)χ(v 1) . . . χ(v n)]
is the boundary of a unique invisible face of G 2 that we denote ξ(f). Indeed, consider the edges e 0 = {v 0 , v 1 } and e 1 = {v 1 , v 2 }. Edge e 0 separates the invisible face f and a visible face g 0 , since G 1 has no bridge. So by Condition 3 in Definition 7, {χ(v 0), χ(v 1)} is an edge of G 2 that separates an invisible face h 0 and the visible face ξ(g 0). For the same reason, edge e 1 separates the invisible face f and an visible face g 1 , and {χ(v 1), χ(v 2)} separates an invisible face h 1 and the visible face ξ(g 1). Graph G 2 is irreducible, so vertex χ(v 1) is not an hinge. As there is at most one invisible face adjacent to χ(v 1) in G 2 , we conclude that h 0 = h 1 . In consequence, χ(v 0), χ(v 1) and then χ(v 2), . . . χ(v n) surround an invisible area which corresponds to some face h in G 2 . So we fix ξ(f

) = h.
With this definition, ξ is a one-to-one mapping over the visible and invisible faces, and χ preserves their boundaries by construction. Note that if the outer faces are invisible, then they are not necessarily mapped together, that is, G 1 and G 2 are sphere-isomorphic. Conversely, if the outer faces are visible, then they are mapped together by Condition 4 of Definition 7, so G 1 and G 2 are plane-isomorphic.

Searching for Patterns

Subgraphs and Patterns

In the framework of standard graph theory, we say that graph

G 1 = X 1 , E 1 is a subgraph of G 2 = X 2 , E 2 if X 1 ⊆ X 2 and E 1 ⊆ X 2 .
That is, G 1 is obtained from G 2 by erasing vertices and edges. Nevertheless, the most interesting component of a plane graph is not its vertices nor its edges, but its faces. Indeed, when used to model images, the faces of the plane graph may represent homogeneous regions computed by segmentation. In this case, searching for a pattern in an image consists in detecting the presence of a subset of the faces in corresponding plane graph. Now, in terms of open plane graphs, the distinction between visible and invisible faces allows us to construct such "face-based subgraphs" quite easily, by transforming visible faces into invisible ones. The remaining set of visible faces will have to be contiguous. Moreover, the subgraph that we get is generally not irreducible, that is, it may contain bridges, hinges, etc. As these junks are meaningless in a pattern recognition task, we eliminate them by normalisation: Definition 13 (Pattern). Let P be an irreducible open plane graph, and G = X, E, F, V, o an open plane graph. We say that P is a pattern of G if there exists an open plane graph G ′ = X, E, F, W, o such that:

1. G ′ has less visible faces than G : W ⊆ V ; 2. W is a set of contiguous faces; 3. P and the normal form of G ′ are plane-isomorphic:

P ≡ p G ′ .
An example of pattern is given in Figure 25. Note that in the left-hand plane graph, the boundary that surrounds the feet of the penguin, crosses twice one of the vertices. When the pattern was chosen, neither the face between the legs was selected, nor the ground. So this vertex has become a hinge which was divided into two vertices, by the normalisation procedure, in the right-hand pattern. Also note that a pattern could contain the outer face.

Finally, as a side effect of the normalisation, it is interesting to note that a pattern P can be larger (in the traditional sense: more vertices) than the original graph. This is a reason why the term pattern is preferable to the more standard term subgraph. We shall prove that:

Theorem 5. Problem Opgpi is in class P. More precisely, it is decidable in O (|E| • |E ′ |) time whether open plane graphs G = X, E, F, V, o and G ′ = X ′ , E ′ , F ′ , V ′ , o ′ are plane-isomorphic or not.
Finally, almost as corollaries, this will ensure the tractability of both the following problems: The remainder of this section is devoted to the proof of all these results.

Deciding Plane-Isomorphism in Polynomial Time

The proof of Theorem 5 is similar to the one which can be found in [START_REF] Damiand | Polynomial algorithms for subisomorphism of nd open combinatorial maps[END_REF] concerning the tractability of the isomorphism problem for combinatorial maps. The idea is to use the arcs (called darts in [START_REF] Damiand | Polynomial algorithms for subisomorphism of nd open combinatorial maps[END_REF], half-edges in [START_REF] Fusy | Combinatoire des graphes planaires et applications algorithmiques[END_REF]) in order visit both graphs G and G ′ in parallel.

More precisely, suppose that the faces of a plane graph has to be described using a plane graph system. Then each edge e = {x, y} is used twice, once when "walking" from vertex x to vertex y, and once from y to x. In other words, we implicitly consider that an edge is composed of two arcs, xy and yx, with opposite direction (see Figure 26). Given an open plane graph G = X, E, F, V, o , we shall denote by A the set of arcs, that is, We now introduce two low-level operations over the set of arcs, called next : A → A and opp : A → A (following the terminology of [START_REF] Fusy | Combinatoire des graphes planaires et applications algorithmiques[END_REF]), that will be used to traverse graph G:

A = {xy ∈ X 2 : ∃f ∈ F, ∃u ∈ X * , f = [xyu]}.
• Given an arc xy ∈ A, we denote by opp(xy) the counter-arc (or opposite arc) yx;

• Let xy ∈ A and suppose that [xyu] = f for some f ∈ F, u ∈ X * . Then function next(xy) returns either yx if u = ǫ, or yz if u = zu ′ for some z ∈ X, u ′ ∈ X * .
For example, in Figure 27 We now reformulate the plane-isomorphism property in terms of arcs:

Lemma 4. Let G = X, E, F, V, o and G ′ = X ′ , E ′ , F ′ , V ′ , o ′ be
(a -→ ∈ V iff ρ(a) --→ ∈ V ′) and (a -→ = o iff ρ(a) --→ = o ′).
Proof. (⇒) Suppose that G ≡ p G ′ using functions ξ, χ with χ : X → X ′ (see Definition 6). For all arcs a = xy, we define ρ(h) = χ(x)χ(y) and the conditions hold. (⇐) As graph G is connected, every vertex x ∈ X is the extremity of an edge {x, y} for some y ∈ X, thus of an arc xy. Assuming that ρ(xy) = x ′ y ′ , we fix χ(x) = x ′ . As for any face

f = xy -→ , we fix ξ(f) = χ(x)χ(y) ------→ . Then the conditions of Definition 6 immediately hold, thus G ≡ p G ′ .
We are ready to tackle the proof of Theorem 5. Consider Algorithms 28 and 29. The former first fixes an arc a 0 ∈ A lying on the boundary of the outer face of G. Then, for every arc a ′ 0 ∈ A ′ of the outer face of G ′ , we call Algorithm 29 to build a candidate matching function f : A → A ′ , and finally checks whether f satisfies the conditions of Lemma 4. Algorithm 29 performs a traversal of graph G, starting from arc a 0 , and using functions next and opp to discover new darts from discovered darts. Initially, f [a 0] is set to a ′ 0 whereas f [a] is set to nil for all the other arcs. Each time an arc a ′ ∈ A is discovered from another arc a ∈ A using function next (resp. opp), f [a ′] is set to arc next(f [a]) (resp. opp(f [a])).

Input: two open plane graphs G = X, E, F, V, o and

G ′ = X ′ , E ′ , F ′ , V ′ , o ′ having A and A ′ as sets of arcs Output: True if G ≡ p G ′ , False otherwise choose a 0 ∈ A such that a 0 -→ = o ; foreach a ′ 0 ∈ A ′ such that a ′ 0 -→ = o ′ do f ← traverseAndBuildMatching(G, G ′ , a 0 , a ′ 0);
if f satisfies the conditions of Lemma 4 then return True return False Input: two open plane graphs G = X, E, F, V, o and

G ′ = X ′ , E ′ , F ′ , V ′ , o ′ and two arcs a 0 ∈ A and a ′ 0 ∈ A ′ Output: returns an array f : A → A ′ foreach arc a ∈ A do f [a] ← nil; f [a 0] ← a ′ 0 ;
let S be an empty stack; push a 0 in S; Proof of Theorem 5. Essentially the same as that of [START_REF] Damiand | Polynomial algorithms for subisomorphism of nd open combinatorial maps[END_REF].

If procedure checkPlaneIsomorphism(G, G ′) returns True, then there exists f : A → A ′ that fulfils the conditions of Lemma 4, thus G ≡ p G ′ . Conversely, assume that G ≡ p G ′ . Then there exists a function ρ : A → A ′ that satisfies the conditions of Lemma 4. Let a 0 ∈ A be the arc chosen at line 1 of Algorithm 28 (such that a 0 -→ = o). As the loop (lines 2-5) iterates on every arc a ′ 0 ∈ A ′ that lies on the outer face of G ′ , there is an iteration for which a ′ 0 = ρ(a 0). We claim that for this iteration, traverseAndBuildMatching(G, G ′ , a 0 , a ′ 0) returns f such that for all a ∈ A, f [a] = ρ(a). Indeed, we have the two following properties:

1. When pushing an arc a in S, f [a] = ρ(a). This is true for the push of line 4 as f [a 0] is set to a ′ 0 = ρ(a 0) at line 2. This is also true for the push of line 9 as f [next(a)] is set to next(f [a]) at line 8, and f [a] = ρ(a) (by induction hypothesis), and (ρ(a) = a ′ ⇒ ρ(next(a)) = next(a ′)) (by Lemma 4). And the same for function opp. 2. Each arc a ∈ A is pushed once and only once in S. Indeed, G is connected.

So there exists at least one sequence a 0 , . . . , a n such that a n = a and, for all k ∈ {1, 2, . . . n}, either a k = next(a k-1), or a k = opp(a k-1). Therefore, each time an arc a i of this sequence is popped from S (line 6), a i+1 is pushed in S (lines 9 and 12) if it had not been pushed before through another path (lines 7 and 10).

In consequence, checkPlaneIsomorphism(G, G ′) will return True.

Finally, concerning complexity issues, Algorithm 29 is in O(|A|) time. Indeed, the while loop is iterated |A| times as (1) exactly one arc a is removed from stack S at each iteration, and (2) each arc a ∈ A is pushed in S at most once. In Algorithm 28, the test of line 4 can be performed in O(|A|) time. Hence, the overall time complexity of Algorithm 28 is

O(|A| • |A ′ |), that is, O(|E| • |E ′ |).

Deciding Sphere-Isomorphism and Equivalence in Polynomial Time

The tractability of sphere-isomophism (claimed in Theorem 6) follows from what we have just done for plane-isomorphism. Indeed, Lemma 4, without the condition concerning the outer faces, holds for sphere-isomorphism. So, one just has to use algorithm checkPlaneIsomorphism(G, G ′), leaving out the verification of the preservation of the outer faces at line 4, and gets an algorithm that solves problem Opgsi in polynomial time.

Concerning the equivalence problem, let us describe the procedure, based on Theorem 3. The first step consists in testing the outer faces: if one is visible and the other is not, then both graphs are not equivalent. Otherwise, we need to normalise, in polynomial time, the graphs by using Algorithm 18 and get their normal forms. Then, there are two cases. If the outer faces are both invisible, then the graphs are equivalent if and only if their normal forms are sphere-isomorphic, which can be decided in polynomial time. And if the outer faces are visible, then the graphs are equivalent if and only if their irreducible forms are plane-isomorphic, which can also be checked in polynomial time by Theorem 5. So Problem Opge is solvable in polynomial time.

The Tractability of the Subisomorphism Problem

The proof of Theorem 4 rests on two procedures that allow one to check whether an irreducible open plane graph is a pattern of another graph (see Algorithm 30 and 31). Procedure checkPattern(P, G)

1. maps all the visible faces of P with faces of G (that may be visible or not, at this point), 2. checks that the selected faces in G forms a contiguous set of visible faces, 3. normalises the graph built from G using the selected faces and 4. checks that both the latter graph and pattern P are plane-isomorphic.

Concerning Steps 2 to 4, we simply follow the definition of a pattern and reuse Procedure checkPlaneIsomorphism (see Algorithm 28). As for Step 1, we use a variant of Procedure traverseVisibleFacesAndBuildMatching (see Algorithm 31) where we restrict the traversal of the pattern to its visible faces only (that is, we modify line 10 only).

This algorithm is only designed to establish the polynomiality of Problem Popg, thus is not optimized.

Input: an irreducible open plane graphs P = X, E, F, V, o and an open plane graph G = X ′ , E ′ , F ′ , V ′ , o ′ , respectively having A and A ′ as sets of arcs Output:

True if P is a pattern of G, False otherwise choose a 0 ∈ A such that a 0 -→ ∈ V ; 1 foreach a ′ 0 ∈ A ′ such that a ′ 0 -→ ∈ V ′ do 2 f ← traverseVisibleFacesAndBuildMatching(P, G, a 0 , a ′ 0); 3 W ← ∅; 4 foreach a ∈ A such that a -→ ∈ V do 5 W ← W ∪ {f [a] --→ } 6 if W ⊆ V ′ and W is a set of contiguous faces in G then 7 G ′′ ← X ′ , E ′ , F ′ , W, o ′ ; 8 G ′′ ← normaliseGraph(G ′′);

Searching for Piecewise Patterns

Open plane graphs are defined by declaring that some faces are visible, and the others invisible. This distinction is essential to define the patterns and the subisomorphism problem. However, the tractability of the latter was based on an important property: the visible faces must be contiguous. In this section, we study the case of patterns whose visible faces are non-contiguous. We call them piecewise patterns.

Input: two open plane graphs G = X, E, F, V, o and

G ′ = X ′ , E ′ , F ′ , V ′ , o ′ and two arcs a 0 ∈ A and a ′ 0 ∈ A ′ such that a 0 -→ ∈ V and a ′ 0 -→ ∈ V ′ Output: an array f : A → A ′ foreach a ∈ A do f [a] ← nil; 1 f [a 0] ← a ′ 0 ;
2 let S be an empty stack; 1) selecting a subset of contiguous visible faces and (2) normalising, in order to "empty" the invisible area. However, this construction is not extensible to piecewise patterns, in particular because the normalisation procedure is undefined for a plane graph whose visible faces are not contiguous.

Indeed, consider the plane graph of Figure 32(a). The elimination of the bridges yields the plane graphs of Figure 32(b) which is disconnected. In consequence, some of its faces are compound, that is, they need several boundaries to be completely specified. Thus, they cannot be described with a plane graph system, which is nevertheless what our normalisation procedure returns.

Besides, allowing non-contiguity introduces several new problems that are outside the scope of this paper. To illustrate one of these, consider the plane graph of Figure 32(c); this graph is equivalent to that of Figure 32(a) since we can pair together the visible faces with a one-to-one mapping, while preserving the boundaries. However, once normalised, the bridges are eliminated in both graphs, but the normal forms are not plane-isomorphic. Indeed, the invisible faces now play a role; however, both invisible faces of the former graph will have two boundaries after normalisation, while those of the latter graph will have either one or three boundaries.

Piecewise Patterns

Piecewise patterns are sets of disconnected plane graphs whose internal faces are all visible and outer face is shared and invisible (see Figure 33 • An open plane graph G = X, E, F, V, o is compact if all its faces but the outer face are visible: V = F \ {o}.

• A piecewise-compact plane graph is a finite set

P = {G 1 , G 2 , . . . G k } with k ≥ 2 such that 1. Each component G i = X i , E i , F i , V i , o i is a compact open plane graph. 2.
The components are pairwise independent: X i ∩X j = ∅ and V i ∩V j = ∅ for all 1 ≤ i < j ≤ k. 3. The components share their outer face:

o i = o j for all 1 ≤ i < j ≤ k.
Given a piecewise-compact plane graph P = {G 1 , G 2 , . . . G k }, we denote by Now searching for a piecewise-compact plane graph in an open plane graph will consist in finding all its components independently. That is, two components do not share any vertex nor edge, so their images must have the same property. This yields the following definition: Definition 15 (Piecewise pattern). Let P be a piecewise-compact plane graph and G = X, E, F, V, o an open plane graph. We say that P is a piecewise pattern of G if:

X P = ∪ k i=1 X i the set of vertices, E P = ∪ k i=1 E i the set of edges, F P = ∪ k i=1 F i the set of faces, V P = ∪ k i=1 V i the
1. there exists an injection χ : X P → X over the vertices; 2. there exists an injection ξ : V P → V over the visible faces whose boundaries are preserved:

∀f 1 ∈ V P , ∀f 2 ∈ V, if ξ(f 1) = f 2 and f 1 = [x 1 x 2 . . . x p], then f 2 = [χ(x 1)χ(x 2) . . . χ(x p)]; 3. the outer face of G is not matched: ξ -1 (o) = ∅.
An example is given in Figure 33: the piecewise-compact plane graph 33(a) is a piecewise pattern of only the open plane graph 33(d); indeed, in the other cases, vertices a and b from Figure 33(a) should be merged, which is forbidden by Definition 15.

In this section, we are finally going to show that searching for a piecewise pattern is intractable. Formally, we consider the following problem: in only one clause c j of F (those whose degree is equal to 1 in the formulagraph), set x i to the truth value which satisfies c j , and eliminate c j from F , until either X and F become empty (thus showing that the intial instance is trivially consistent), or all variables in X occur in 2, 3, or 4 clauses of F .

Let us now show how to build a piecewise-compact plane graph P and an open plane graph G by combining building blocks (which are open plane graphs). Table 1 displays the building blocks (gadgets) associated with the variables and the clauses:

• For each variable x i ∈ X such that the degree of x i in the formula-graph G X,F is equal to k (with 2 ≤ k ≤ 4), we build two variable patterns V k and V ′ k which will respectively occur in G and P . These variable patterns look like flowers which have 2k petals in G and k petals in P , where each petal is a 6-edge face. The core of the flower is composed of two adjacent 5-edge faces.

• For each clause, we build two clause patterns C and C ′ which will respectively occur in G and P . In G, the clause pattern is composed of a 3-edge central face which has 3 adjacent 4-edge faces whereas in P it is composed of a 3-edge face which has 1 adjacent 4-edge face.

Variable patterns

Clause patterns in G:

V 2 : V 3 : Variable and clause patterns in G are plugged together by merging some edges, called connecting edges, to form an open plane graph. These connecting edges are displayed in bold in Table 1: For each petal in each variable pattern V k , the edge opposite to the core of the flower is a connecting edge and, for each 4-edge face in the clause pattern C, the edge opposite to the 3-edge face is also a connecting edge. matched with petals of variable patterns of P gives the truth assignment for the corresponding variable. For each clause pattern C, the label of the 4-edge face of C which is matched with a 4-edge face of C ′ corresponds to a litteral which satisfies the clause associated with C. As the images in G of the components of P by ξ cannot share edges, we ensure that when a 4-edge face is matched, then the adjacent petal is not matched, i.e., when a clause is satisfied by a litteral l, then no other clause can be satisfied by the negation of this litteral so that the truth assignment deduced from the flower matching actually satisfies all clauses of F .

V 4 : C : in P : V ′ 2 : V ′ 3 : V ′ 4 : C ′ :
For example, the truth assignment corresponding to the solution displayed in Figure 36 is {¬x, y, ¬z, u, w}.

(⇐). Let us assume that there exists a truth assignment of X which satisfies F and let us show that there exist two injections χ and ξ which satisfy the conditions of Definition 15. For each variable pattern V ′ k in P associated with a variable x i , we match the two core 5-edge faces with the two core 5-edge faces of the variable pattern associated with x i in G and we match the k 6-edge petals of V ′ k with the k 6-edge petals which are labeled with the negation of the truth value of x i . For each clause pattern C ′ in P associated with a clause c j , we match the 3-edge face of C ′ with the 3-edge face of the clause pattern associated with c j in G and we match the 4-edge face of C ′ with one of the three 4-edge faces: We choose a 4-edge face which is labeled with a literal which is satisfied by the truth assignment (this 4-edge face cannot be adjacent to a matched 6-edge petal). From the face matching ξ, we can easily deduce a vertex matching χ.

Conclusion

Open plane graphs have been introduced in order to define embedded planar graphs in which faces can be visible or invisible. Invisible faces define holes, obtained by removing faces, or stating that certain faces are unreachable. This induces a special equivalence relation over open plane graphs for which a normal form exists and can be computed.

Beyond, open plane graphs allowed us to investigate a new class of subgraphs, called patterns, by declaring that some faces of a plane graph are invisible. We have shown that searching for patterns was tractable in polynomial time as soon as the selected faces are contiguous. This result is quite strong since we have also established that the search of piecewise patterns, a slight generalization of patterns, was a N P-complete problem.

A certain number of questions remain open and are of interest:

• When introducing open plane graph systems, the hypothesis was that the system is built from the graph, once drawn. But the converse question remains to be explored: given an open graph system respecting syntaxically Definition 3, can a graph always be drawn, and how?

• For practical reasons approximate isomorphisms would be of interest: this is related to having a definition of an edit distance. Both definitions would need to take into account normalisation.

• In many graph mining applications, the important question is that of extracting maximal common subgraphs of various graphs. The status of the problem, for the definitions introduced in this paper, is left open.

• When introducing piecewise patterns in Section 5, it was shown (see Figure 32) that several notions introduced earlier had to be updated in the case of non connected graphs. There are a number of complex issues related with this question.

• If open plane graphs are to be used to model images, alternative problems appear: a first one is to find, given two open plane graphs, the largest common pattern. The largest common piecewise pattern is also of interest.

Figure 1 :

 1 Figure 1: Modelling an image by an open plane graph (on the right). Interest points have been extracted, and the graph is the result of the Delaunay triangulation. The visible faces are in grey, whereas the invisible ones are in white.

Figure 2 :

 2 Figure 2: Modelling the environment for a robot. The rooms are on the left (a special symbol indicates which rooms are forbidden), and the corresponding open plane graph is on the right. The visible faces are in grey, whereas the invisible ones are in white.

Figure 3 :

 3 Figure 3: Two isotopic planar embeddings of a planar graph.

Figure 4 :

 4 Figure 4: A planar graph with 3 non-isotopic planar embeddings.

Figure 5 :

 5 Figure 5: Two non-isotopic embeddings of the same planar graph with 4 faces. On the left, faces have co-degrees 5, 5, 5 and 3 respectively. On the right, faces have co-degrees 9, 3, 3 and 3 respectively.

3 Figure 7 :

 37 Figure 7: A plane graph with 3 faces.

Figure 8 :

 8 Figure 8: An open plane graph with 12 faces, 6 of them being visible (in grey). The outer face is invisible.

Figure 9 :

 9 Figure 9: Two standard-isomorphic graphs.

Figure 10 :

 10 Figure 10: Three sphere-isomorphic open plane graphs.

Figure 11 :

 11 Figure 11: A "sphere-graph" with three faces. Declaring any face as an outer face yields one plane graph among those of Figure 10.

Figure 12 :

 12 Figure 12: Two plane-isomorphic open plane graphs.

Figure 13 :

 13 Figure 13: Two equivalent open plane graphs. We finally have the following property: Theorem 1. Relation ∼ = is an equivalence relation over the open plane graphs.

Figure 14 :

 14 Figure 14: Two non equivalent open plane graphs.

Figure 15 :

 15 Figure 15: Two equivalent open plane graphs.

Definition 9 (2 Figure 16 :

 9216 Figure 16: An open plane graph with 2 pendant edges {e, f } and {n, o}, 2 bridges {b, n} and {n, i} and 1 branch {d, e}.

7 Figure 17 :

 717 Figure 17: Vertex x is a hinge.

Input: 9 return modified open plane graph G 10 Figure 18 :Lemma 1 .

 910181 Figure 18: normaliseGraph(G)

Figure 20 :

 20 Figure 20: Elimination of the hinge of Figure 17.

7 return modified open plane graph G 8 Figure 21 : 1 Figure 22 :

 7821122 Figure 21: eliminateBridge(G, {x, y})

4 return modified open plane graph G 5 Figure 23 :

 4523 Figure 23: eliminatePendantEdge(G, {x, y})

Theorem 2 .

 2 Let G be an open plane graph. Procedure normaliseGraph(G) converges in polynomial time towards an irreducible open plane graph that is equivalent to G. This open plane graph is called the normal form of graph G, and denoted by G.

Theorem 3 .

 3 Let G 1 and G 2 two open plane graphs.

φ 2

 2 are one-to-one mappings over the visible faces, ξ is a one-to-one mapping from the visible faces of G 1 to the visible faces of G 2 . Let us now define ξ(f) for an invisible face

Figure 25 :

 25 Figure 25: An open plane graph (on the left) and a pattern (on the right).

4. 2 .Theorem 4 .

 24 Searching for Patterns is Tractable In many pattern recognition tasks, one aims at deciding in polynomial time whether an open plane graph P is a pattern of an open plane graph G. So we consider the following problem: Problem: Pattern of an Open Plane Graph (Popg) Instance: two open plane graphs P and G Question: is P a pattern of G? We shall show that: Problem Popg is in class P. Besides, as the definition of a pattern tests whether two open plane graph are plane-isomorphic or not, we will first need to solve: Problem: Open Plane Graphs Plane-Isomorphism (Opgpi) Instance: two open plane graphs G and G ′ Question: are G and G ′ plane-isomorphic?

Problem:

 Open Plane Graphs Sphere-Isomorphism (Opgsi) Instance: two open plane graphs G and G ′ Question: are G and G ′ sphere-isomorphic? Problem: Open Plane Graphs Equivalence (Opge) Instance: two open plane graphs G and G ′ Question: are G and G ′ equivalent? Theorem 6. Both problems Opge and Opgsi are in class P.

Figure 26 :

 26 Figure 26: Any edge is met twice, thus composed of two arcs (represented with different line styles), when used to describe the faces of a plane graph.

 Figure 27:

 two open plane graphs having A and A ′ as sets of arcs respectively. If G and G ′ are not reduced to isolated vertices, then G and G ′ are plane-isomorphic if and only if there exists a one-to-one mapping ρ : A → A ′ such that 1. function ρ commutes with functions next and opp: ∀a ∈ A, ρ(next(a)) = next(ρ(a)) and ρ(opp(a)) = opp(ρ(a)); 2. function ρ preserves both the visible faces and the outer faces: ∀a ∈ A,

Figure 28 :

 28 Figure 28: checkPlaneIsomorphism(G, G ′)

 Figure 29: traverseAndBuildMatching(G, G ′ , a 0 , a ′ 0)

9 ifFalse 11 Figure 30 :

 91130 Figure 30: checkPattern(P, G)

3 push a 0 in S; 4 while S is not empty do 5 pop an arc a from S; 6 if 7 ff 13 Figure 31 : 5 . 1 .

 34567133151 Figure 31: traverseVisibleFacesAndBuildMatching(G, G ′ , a 0 , a ′ 0)

 (a) An example of (connected) plane graph with a set of non-contiguous visible faces. (b) The plane graph 32(a) once normalised: Eliminating the bridges disconnects the graph. Such a plane graph cannot be described with a plane graph system. (c) Another plane graph with a set of non-contiguous visible faces. This graph is equivalent to that of Figure 32(a). However, once the bridges are eliminated, we get a disconnected plane graph which is not planeisomorphic to the plane graph of Figure 32(b).

Figure 32 :

 32 Figure 32: About contiguity

 (a)): Definition 14 (Piecewise-compact plane graph).

 set of visible faces and o P the (invisible) outer face (with o P = o i for any 1 ≤ i ≤ k).

Problem:Figure 33 :

 33 Figure 33: Piecewise-compact plane graph 33(a) is not a piecewise pattern of open plane graphs 33(b) and 33(c), because vertices a and b would have to be merged together. On the other hand, it is a piecewise pattern of plane graph 33(d).

 edge {x, y is } separates a visible and an invisible face X ← X \ {x} ∪ {x i1 , x i2 , . . . x i

	Figure 19: eliminateHinge(G, x)
		y 8
	y 9 y 11 y 1 y 10	y 6 y 5 y 4 y 7 x 4 y 3 x 7 x 1 x 2 y 2 x 9 x 8

k }; foreach face f = xy j -→ with j ∈ 1, 2 . . . n do let p be the largest index in {i 1 , i 2 , . . . i k } such that p ≤ j; replace all occurrences of x by x p in f h ← [y i1 x i1 y i2 x i2 . . . y i k x i k]; F ← F ∪ {h}; // h is an invisible face update E; return modified open plane graph G

Table 1 :

 1 Variable and clause patterns used as building blocks to define G and P . Connecting edges in G are displayed in bold.

The theoretical complexity of graph isomorphism is an open question: If it clearly belongs to N P, it has not been proved to be N P-complete.

Piecewise-compact plane graph P : If the SAT instance has n variables and c clauses, then P is composed of n + c different components: a component V ′ k is associated with every variable x i ∈ X, where k is the degree of x i in the formula-graph G X,F ; a component C ′ is associated with every

Acknowledgments

The authors would like to thank Daniel Gonçalves (University of Montpellier) for his pointer to problem Planar-3SAT, and fruitful remarks.

$ The authors acknowledge the support of an Anr grant Blanc 07-1 184534: this work was done in the context of project Sattic. This work was partially supported by the IST Programme of the European Community, under the Pascal 2 Network of Excellence, Ist-2006-216886.

and we get: Theorem 7. Problem Ppopg is N P-complete.

Proof of intractability

Problem Ppopg belongs to class N P since one can check in polynomial time whether two given injections χ and ξ satisfy the conditions of Definition 15. In order to prove that problem Ppopg is N P-complete, we show that problem Planar-4 3-SAT can be reduced to it.

Planar-4 3-SAT is a special case of the SAT problem, which involves deciding if there exists a truth assignment for a set X of variables such that a boolean formula F over X is satisfied. We assume that F is in Conjunctive Normal Form (CNF), i.e., it is a conjunction of clauses such that each clause is a disjunction of litterals which are either variables of X or negations of variables of X. The formula-graph associated with a CNF formula F over a set of variables X is the bipartite graph G X,F = (V, E) such that V associates a vertex with every variable x i ∈ X and every clause c j of F , and E associates an edge (x i , c j) with every variable/clause couple such that variable x i occurs in clause c j . See Figure 34 for an instance of Planar-4 3-SAT and its associated formula-graph. Problem Planar-4 3-SAT is formally defined as follows:

Problem: Planar-4 3-SAT Instance: A CNF formula F over a set of variables X such that (1) every clause of F is a disjunction of 3 litterals, (2) the formulagraph G X,F is planar, and (3) the degree of every vertex of G X,F is bounded by 4 (i.e., each variable occurs in at most 4 different clauses) Question: Does there exist a truth assignment for X which satisfies F ?

Planar-4 3-SAT has been shown to be N P-complete in [START_REF] Jansen | The minimum broadcast time problem for several processor networks[END_REF]. To reduce an instance (X, F) of Planar-4 3-SAT to an instance (P, G) of Ppopg, we first perform a preprocessing to eliminate variables which occur in only one clause of F : We iteratively eliminate from (X, F) every variable x i ∈ X which occurs Given these building blocks, we define G and P as follows:

Open plane graph G: For each variable x i ∈ X such that the degree of x i in the formula-graph G X,F is equal to k, G contains an occurrence of the variable pattern V k . Each petal of this occurrence of V k is alternatively labeled with x i and ¬x i . For each clause c j of F , G contains an occurrence of the clause pattern C. Each 4-edge face of this occurrence of C is labeled with a different literal of c j . Variable and clause patterns are connected to define an open plane graph by merging every connecting edge of each clause pattern with a different connecting edge of a variable pattern such that the two faces which become adjacent by this merge are labeled with the same litteral. We can easily check that this open plane graph can always be built as the formula-graph G X,F is planar. Figure 35 displays the open plane graph associated with the formula displayed in Figure 34. Note that new faces have been created when merging connecting edges of variable patterns with connecting edges of clause patterns. These new faces have at least 8 edges (see Figure 35). Let us show that P is a piecewise pattern of G iff there exists a truth assignment of X which satisfies F . (⇒). Let us assume that there exist two injections χ and ξ which satisfy the conditions of Definition 15, and let us show that there exists a truth assignment of X which satisfies F . ξ matches every visible face of P to a different visible face of G so that the images of the components of P do not share any vertex nor edge. Figure 36 displays an example of such a solution for the instance (P, G) of Ppopg associated with the instance (X, F) of Planar-4 3-SAT displayed in Figure 34. P contains c occurrences of C ′ , where c is the number of clauses of F . Each occurrence of C ′ has a 3-edge face adjacent to a 4-edge face. These faces can only be matched to faces which belong to occurrences of C in G as all other faces in G have a different number of edges (5 for the cores of the flowers, 6 for the petals of the flowers, and 8 or more for the new faces which are created when merging variable and clause patterns). As there are c occurrences of C in G, each occurrence of C ′ in P is matched with a different occurrence of C in G. For the same reasons, each occurrence of a variable pattern V ′ k in P is matched with a different occurence of a variable pattern V k in G: Petal and core faces in P can only be matched with petal and core faces in G, and an occurrence of V ′ i cannot be matched with faces of an occurrence of V j if i = j.

For each variable pattern V k , the label of the petals of V k which are not