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Abstract. The recently introduced Hybrid Automata Stochastic Logic
(HASL) [8] establishes a powerful framework for the analysis of a broad
class of stochastic processes, namely Discrete Event Stochastic Processes
(DESPs). Here we demonstrate the potential of HASL based verification
in the context of genetic circuits. To this aim we consider the analysis
of a model of gene expression with delayed stochastic dynamics, a class
of systems whose dynamics includes both Markovian and non-Markovian
events. We identify a number of relevant properties related to this model,
formally express them in HASL terms and, assess them with COSMOS, a
statistical model checker for HASL model checking. We demonstrate that
this allows assessing the “performances” of a biological system beyond
the capability of other stochastic logics.

Keywords: Statistical model checking, genetic networks, stochastic dy-
namics, stochastic petri nets

1 Introduction

Biological systems are regulated by complex information processing mechanisms
which are at the basis of their survival and adaptation to environmental changes.
Despite the continuous advancements in experimental methods many of those
mechanisms remain little understood. The end goal of computational systems bi-
ology [26] is to help filling in such knowledge gap by developing formal methods
for rigorously representing and effectively analysing biological systems. Under-
standing what cells actually compute, how they perform computations and, even-
tually, how such computations can be modified/engineered are essential tasks
which computational modelling aims to. In this context, the ability to “interro-
gate” a model by posing relevant “questions”, referred to as model checking, is
critical. Model checking approaches have proved effective means to the analysis
of biological systems, both in the framework of non-probabilistic models [19, 12]
and in that of stochastic models [28, 23].
Our contribution. We consider the application of a recently introduced stochas-
tic logic, namely the Hybrid Automata Stochastic Logic (HASL), to the veri-
fication of biological systems. Our contribution is twofold. In the first part we
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demonstrate the effectiveness of HASL verification by developing a full case
study of gene expression, a relevant biological mechanism represented by means
of non-Markovian models, and which, therefore, cannot be analysed by means
of classical (Markovian) stochastic model checking. In the second part we in-
troduce preliminary results illustrating the effectiveness of HASL verification in
dealing with a rather relevant aspect of many biological mechanisms, namely:
the analysis of oscillatory trends in stochastic models of biological systems.

Paper organization. In Section 2 we provide some backgrounds which put into
context the proposed approach. In Section 3 we introduce the gene expression
mechanism with stochastic delays we refer to in the remainder of the paper. In
Section 4 we recall the basics of the HASL formalism. In Section 5 we present
the formal analysis (by means of HASL) of the previously introduced single-gene
model. In section 6 we illustrate the application of HASL to measurements of
oscillations. Conclusive remarks are given in Section 7.

2 Background

Model Checking and Systems Biology. Model checking is a technique ad-
dressing the formal verification of discrete-event systems. Its success is mainly
due to the following points: (1) the ability to express specific properties by for-
mulas of an appropriate logic, (2) the firm mathematical foundations based on
automata theory and (3) the simplicity of the verification algorithms which has
led to the development of numerous tools. Initially [17] targeted to the verifi-
cation of functional qualitative properties of non-probabilistic models by means
of “classical” temporal logics (i.e. LTL, CTL), model checking has progressively
been extended toward the performance and dependability analysis realm (i.e.
quantitative verification) by adaptation of classical temporal logics to express
properties of Markov chains [21],[6]. In systems biology [26] two modelling al-
ternatives are typical: (1) the continuous-deterministic framework, whereby dy-
namics of biological agents are expressed in terms of (a system of) differential
equations (e.g. ODE, PLDE) and (2) the discrete-stochastic framework, whereby
dynamics are expressed in terms of a stochastic process (most often a continuous-
time Markov chain). The application of model checking to systems biology has
targeted both modeling frameworks. BIOCHAM [18], GNA [15], BioDIVINE [10]
are examples of tools providing LTL/CTL model-checking functionalities for the
verification of qualitative properties of biological models represented by means
of differential equations. Conversely, PRISM[31], MARCIE [35] are examples of
tools featuring Continuos Stochastic Logic (CSL) [6] model-checking for the ver-
ification of quantitative properties of continuous-time Markov chains (CTMC)
models of biological systems. Recently linear-time reasoning (as opposed to CSL
branching-time reasoning) has been extended to the probabilistic framework as
well. Examples are: the addition of LTL properties specifications in PRISM; the
introduction of the bounded LTL, i.e. BLTL [24].
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3 Genetic Networks with Delayed Stochastic Dynamics

Gene expression is the process by which proteins are synthesized from a sequence
in the DNA. It consists of two main phases: transcription and translation. Tran-
scription is the copying of a sequence in the DNA strand by an RNA polymerase
(RNAp) into an RNA molecule. This process takes place in three main stages:
initiation, elongation and termination. Initiation consists of the binding of the
RNAp to a promoter (Pro) region, unwinding the DNA and promoter escape.
Afterwards, elongation takes place, during which the RNA sequence is formed,
following the DNA code. Once the termination sequence is reached, both the
RNAp and the RNA are released. In prokaryotes, translation, the process by
which proteins are synthesized from the (transcribed) RNA sequence, can start
as soon as the Ribosome Binding Site (RBS) region of the RNA is formed.

The rate of expression of a gene is usually regulated at the stage of tran-
scription, by activator/repressor molecules that can bind to the operator sites
(generally located at the promoter region of the gene) and then promote/inhibit
transcription initiation. Evidence suggests that this is a highly stochastic process
(see, e.g. [4]), since usually, the number of molecules involved, e.g. transcription
factors and promoter regions, is very small, ranging from one to a few at a given
moment [37]. Due to that, stochastic modeling approaches were found to be more
appropriate than other strategies (e.g. ODE models or Boolean logic).

Stochastic models of gene expression with delayed dynamics. The first
stochastic models of gene expression assumed that the process of gene expres-
sion, once initialized, is instantaneous [4]. Namely, each step was modeled as a
uni- or bi-molecular reaction and its kinetics was driven by the stochastic sim-
ulation algorithm (SSA) [20]. These models do not account for one important
aspect of the kinetics of gene expression. Namely, that it consists, as mentioned,
of a sequential process whose intermediate steps take considerable time to be
completed once initiated (see e.g. [25]). This feature can be accounted for by
introducing ’time delays’ in the appearance of the products modeling the pro-
cess [13, 34, 32].
Biochemical reaction with stochastic delays can be generally denoted as:

X
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k
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where Ri, Pnd
j and P d

k denote, respectively, the i-th reactant, the j-th non-
delayed product and the k-th delayed product (ni, mj and m0

k being the stoi-
chiometric coefficients) and distk denotes the distribution for the delayed intro-

duction of k-th delayed product. For example, reaction A + B
k

−! A + C(δ(τ))
represents a reaction between molecules A and B, that produces molecule C from
B by a process that takes τ seconds to occur once initiated (i.e. δ(t) denotes a
delta dirac distribution centred in t). When this reaction occurs, the number
of molecules A is kept constant, a molecule B is immediately removed from the
system and a molecule C is introduced in the system τ seconds after the reaction
takes place.
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To deal with delayed reactions different adaptations of Gillespie’s SSA algorithm
(referred to as “delayed SSA”) have been introduced. Initially two methods [13,
11] were proposed for implementing reactions with delays. Then [34] introduced,
a generalization of the method proposed in [13], in that it allows multiple time de-
lays in a single reacting event. This algorithm allows implementing a generalized
modeling strategy of gene networks [32] and is the one which the SGNSim [33]
tool is based on.

3.1 Single gene expression model

We consider a model of single gene expression that follows the approach proposed
in [32]. Our model differs in that transcription is modeled as a 2-step process so
as to accurately account for the open complex formation and promoter escape
[25]. Each of these processes duration follows an exponential distribution. The
gene expression system we refer to consists of the following reactions3:

R1 : Pro + ∗RNAp
kt−→ Prox (1)

R2 : Prox
λ1−→ Pro + RBS + R(Γ (Glen, 0.09)) (2)

R3 : ∗Rib + RBS
ktr−→ RBS(δ(τ1)) + Rib(Γ (Glen, 0.06)) + P (Γ (τ5sh , τ5sc)) (3)

R4 : RBS
rbsd
−→ ∅ (4)

R5 : Pro + Rep
kr−→ ProRep (5)

R6 : ProRep
kunr−→ Pro + Rep (6)

Reactions (1) and (2) model transcription. In (1), an RNAp binds to a pro-
moter (Pro), which remains unavailable for more reactions until reaction (2)
occurs. Following reaction (2), which models the promoter escape, both the pro-
moter and the RBS become available for reactions. Also from reaction (2), once
transcription is completed, at Γ (Glen, 0.09), a complete RNA (represented by
R) is released in the system. R will not be substrate to any reaction, and is
only modeled as a means to count the number of RNA molecules produced over
a certain period of time. In our model, according to the SSA, the time neces-
sary for any reaction to occur follows an exponential distribution whose mean is
determined by the product between the rate constant of the reaction with the
number of each of the reacting molecules present in the system at that moment.
For simplicity, we assume that the number of RNAPs is constant. In the case
of reactions (1) and (2), both kt and λ1 are set to 1/400 s [25], following mea-
surements for the lar promoter. Meanwhile, Glen is determined by the length of

3 note that symbol ∗ prefixing a species name in the above reactions means that the
reactant is not consumed in the reaction. This is applied for simplicity to those
reactants such as ribosomes, which exists in large amounts, and thus fluctuations in
their numbers wont be significant in the propensity of reactions.
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the gene, here set to 1000 nucleotides, and the time spent by the RNAp at each
nucleotide, which follows an exponential distribution with a mean of 0.09 s [29].

In Prokaryotes, translation can begin as soon as the ribosome binding site
(RBS) region of the RNA is completed. In reaction (3), a ribosome (Rib) binds to
the RBS and translates the RNA. The RBS becomes available for more reactions
after τ1 s. The ribosome is released after Γ (Glen, 0.06) seconds. The initiation
rate, ktr is set to 0.00042 s−1 [38]. Following measurements from E. coli, we have
set τ3 = 2 s, and Γ (Glen, 0.06) to follow a gamma distribution dependent on the
gene’s length, where each codon is added following an exponential distribution
with a mean of 0.06 s [29]. Finally, Γ (τ5sh

, τ5sc
) is such that it accounts for the

time that translation elongation takes, as well as the time it takes for a protein
to fold and become active. In this case, we used the parameter values measured
from GFP mutants commonly used to measure gene expression in E. coli [30].
Finally we consider also three additional reactions representing, respectively:
RBS decay (equation 4) and promoter repression (equation (5)). Initially, the
system has 1 promoter and 100 ribosomes. In the remainder of the paper we
illustrate a thorough formal analysis of the above described single gene model
by means of HASL model checking.

4 HASL model checking

The Hybrid Automata Stochastic Logic (HASL) [8] is a novel formalism widening
the family of model checking approaches for stochastic models. Its main charac-
teristics are as follows: first the class of models it addresses are the so-called Dis-
crete Event Stochastic Processes (DESPs), a broad class of stochastic processes
which includes, but (unlike most stochastic logics) is not limited to, CTMCs.
Second the HASL logic turns out to be a powerful language through which tem-
poral reasoning is naturally blended with elaborate reward-based analysis. In
that respect HASL unifies the expressiveness of CSL[6] and its action-based [5],
timed-automata [16, 14] and reward-based [22] extensions, in a single powerful
formalism. Third HASL model checking belongs to the family of statistical model
checking approaches (i.e. those that employ stochastic simulation as a means to
estimate a model’s property). More specifically HASL statistical model checking
employs confidence-interval methods to estimate the expected value of random
variables which may represent either a measure of probability or a generic real-
valued measure. In the following we recall the basics of the HASL formalism
i.e. the characterization of DESP and of HASL formula. We also quickly outline
COSMOS [7] the HASL model checker we employed for analysing the models con-
sidered in this paper. For a comprehensive and more formal treatment of HASL
we refer the reader to [8].

4.1 DESP

A DESP is a stochastic process consisting of a (possibly infinite) set S of states
and whose dynamic is triggered by a (finite) set E of (time-consuming) discrete
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events. No restrictions are considered on the nature of the delay distribution
associated with events, thus any distribution with non-negative support may be
considered. For the sake of space in this paper we omit the formal definition
of DESP and give an informal description of Generalised Stochastic Petri Nets
(GSPNs) [2] the high-level language adopted to characterise DESP in the context
of HASL model checking.

DESP in terms of Generalised Stochastic Petri Nets. Accordind to its
definition the characterization of a DESP is a rather unpractical one, requiring
an explicit listing of all of its elements (i.e. states, transitions, delay distributions,
probability distribution governing concurrent events). However several high-level
formalisms commonly used for representing Markov chain models (e.g. Stochastic
Petri Nets, Stochastic Process Algebras), can straightforwardly be adapted to
represent DESPs. In the context of HASL model checking we consider GSPNs
as high level formalism for representing DESPs. The choice of GSPNs is due to
two factors: (1) they allow a flexible modeling w.r.t. the policies defining the
process (choice, service and memory) and (2) allow for efficient path generation
(due the simplicity of the firing rule which drives their dynamics). We quickly
recall the basics about GSPN models pointing out the correspondence with the
various parts of a DESP. A GSPN model (e.g. Figure 1) is a bi-partite graph
consisting of two classes of nodes, places (represented by circles) and transitions
(represented by bars). Places may contain tokens (e.g. representing the number
of molecules of a given species) while transitions (i.e. representing to the events)
indicate how tokens “flow” within the net. The state of a GSPN consists of a
marking indicating the distribution of tokens throughout the places. A transition
is enabled whenever all of its input places contains a number of tokens greater
than or equal to the multiplicity of the corresponding (input) arc. An enabled
transition may fire consuming tokens (in a number indicated by the multiplicity
of the corresponding input arcs) from all of its input places and producing tokens
(in a number indicated by the multiplicity of the corresponding output arcs) in
all of its output places. Transitions can be either timed (denoted by empty
bars, if exponential, or gray bars if non-exponential) or immediate (denoted by
black filled-in bars). Generally speaking transitions are characterized by: (1) a
distribution which randomly determines the delay before firing it (corresponding
to the DESP delay() function); (2) a priority which deterministically selects
among the transitions scheduled the soonest, the one to be fired; (3) a weight,
that is used in the random choice between transitions scheduled the soonest with
the same highest priority (corresponding to the DESP choice() function). With
the GSPN formalism [2] the delay of timed transitions is assumed exponentially
distributed, whereas with GSPN-DESP it can be given by any distribution. Thus
whether a GSPN timed-transition is characterized simply by its weight t⌘w (w2
R

+ indicating an Exp(w) distributed delay), a GSPN-DESP timed-transition is
characterized by a triple: t⌘ (Dist-t,Dist-p, w), where Dist-t indicates the type
of distribution (e.g. Unif), dist-p indicates the parameters of the distribution
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(e.g [↵, β]) and w 2 R+ is used to probabilistically choose between transitions
occurring with equal delay4

Pro

RNAp RNA

ProxExp(0.25)

!(1000,0.09)

init

termin

Exp(1/400)

RBS

transc

_RNA

Fig. 1. Example of GSPN-DESP: model of reaction R1 and R2 of single-gene system

Example. The GSPN in Figure 1 encodes the transcription phase of the single-
gene model (i.e. reaction R1 and R2 in Section 3.1). The net has: a place for
each species involved in reactions R1 and R2 (i.e. Pro, RNAp, Prox, RBS, RNA)
plus an extra place (i.e. RNA) for capturing the intermediate delayed phase of
RNA formation; three timed-transition corresponding to the delayed phases of
reactions R1 and R2. Transitions init and transc are Exponentially distributed
with rate kt = 0.25, respectively λ1 = 1/400. Transition termin is Gamma dis-
tributed (with parameters, shape = 1000 and scale = 0.09 as from experimental
data) and represent the delayed termination of RNA formation as per R2. In
the initial marking M0 = (1, 2, 0, 0, 0, 0) we assume a molecule of Pro and two
molecules of RNAp are available. Thus in state M1 init is the only reaction
enabled, and when it fires it will remove one token from both Pro and RNAp
and add a token in each of its output places (i.e. RNAp and Prox), moving the
state of the system in marking M1 = (0, 2, 1, 0, 0, 0) whereby the only enabled
transition is transc, and so on.

4.2 Hybrid Automata Stochastic Logic

HASL is a logic designed to analyse properties of a DESP D. A HASL formula
is a pair (A, Z) where A is Linear Hybrid Automaton (i.e. a restriction of hybrid
automata [3]) and Z is an expression involving data variables of A. The goal of
HASL model checking is to estimate the value of Z by synchronisation of the
process D with the automaton A. This is achieved through stochastic simulation
of the synchronised process (D ⇥ A), a procedure by means of which, infinite
timed executions of process D are selected through automaton A until some
final state is reached or the synchronisation fails. During such synchronisation,
data variables evolve and the values they assume condition the evolution of the
synchronisation. The synchronisation stops as soon as either: a final location of
A is reached (in which case the values of the variables are considered in the
estimate of Z), or the considered trace of D is rejected by A (in which case
variables’ values are discarded).

4 a possible condition in case of non-continuous distributions
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Synchronised Linear Hybrid Automata The first component of an HASL
formula is an LHA, which is formally defined as follows:

Definition 1. A synch. LHA is a tuple A = hE,L, ⇤, Init ,Final , X,flow,!i
where:

– E, a finite alphabet of events;
– L, a finite set of locations;
– ⇤ : L ! Prop, a location labelling function;
– Init , a subset of L called the initial locations;
– Final , a subset of L called the final locations;
– X = (x1, ...xn) a n-tuple of data variables;
– flow : L 7! Indn a n-tuple of indicators representing the rate of evolution

of each data variable in a location.
– !✓ L ⇥

(

(Const ⇥ 2E) ] (lConst ⇥ {]})
)

⇥ Up ⇥ L, a set of edges

where an edge (l, γ, E0, U, l0) 2! (also denoted l
γ,E0,U
−−−−! l0), consists of: a con-

straint γ (i.e. a boolean combination of inequalities of the form
P

1in ↵ixi+c ≺
0 where ↵i, c2Ind are DESP indicators, ≺2{=, <,>,,≥} and xi2X; we de-
note Const the set of such constraints and lConst ⇢ Const the set of left closed
constraints, i.e. constraints giving rise to left-closed enabling intervals); a set
E0 of labels of synchronising events (including the extra label ] denoting au-
tonomous edges); a set U of updates (i.e. an n-tuple of functions u1, ..., un where
each uk is of the form xk =

P

1in ↵ixi + c where the ↵i, c 2 Ind are DESP
indicators; we denote Up the set of updates). by means of which new values are
assigned to variables of X on traversing of the edge).

Edges labelled with a set of events in 2E are called synchronized whereas
those labelled with ] are called autonomous. Furthermore we impose the fol-
lowing (informally described5) constraints for an automaton A: (c1) only one
initial location can be enabled; (c2) the same event cannot lead to different
simultaneous synchronisations; (c3) two autonomous transition cannot be fire-
able simultaneously (c4) infinite loops without synchronisation are not possible.
Informally the synchronisation between (D and A) works as follows: a synchro-
nised transition of the product process (D⇥A) is triggered by the occurrence of
a corresponding (time-consuming) event of the DESP, whereas an autonomous
transition occurs (without synchronisation with a DESP event) as soon as the
corresponding constraint is enabled (i.e. the variables of the LHA assume values
fulfilling the constraint). Note that autonomous transitions may not consume
time.
Example: Figure 2 depicts two variants of a simple two locations LHA defining
measures of the gene-transcription toy model of Figure 1. Location l0 is the initial
location while l1 the final location. The automaton employs two data-variables: t
registering the simulation-time (hence with flow ṫ = 1 in every location) and n1,
an event counter (hence with flow ṅ1 = 0 in every location), counting the occur-
rences of transition transcr. The automaton has two synchronising edges (the

5 for the formal characterisation see [8]
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self-loops on l0) and one autonomous edge (from l0 to l1). The top synchronising
edge allows to increment the counter n1 each time a transition transcr occurs

l0

ṫ:1

ṅ1:0

l1

{transc},(t<T ),{n1++}

E\{transc},(t<T ),∅

],(t=T ),∅

(a) time-bounded measures

l0

ṫ:1

ṅ1:0

l1

{transc},(n1<N),{n1++}

E\{transc},(n1<N),∅

],(n1=N),∅

(b) event-bounded measures

Fig. 2. Example of LHA for simple properties of the GSPN-DESP model of Figure 1

whereas the bottom synchronising edge, simply reads in all other transitions oc-
currence without performing any update. The autonomous edge instead leads to
acceptance location as soon as its constraint is fulfilled. The LHA in Figure 2(a)
represents time-bounded measures as the constraints on the edges (and notably
on the edge leading to the acceptance location) refers to the simulation time t,
thus: as soon as t = T the read in path is accepted. On the other hand the LHA
in Figure 2(b) represents event-bounded measures accepting paths as soon as
transition transc have occurred n1 = N times. In the following we provide few
simple examples of relevant measures referred to the LHA in Figure 2 in terms
HASL expressions.

HASL expressions The second component of an HASL formula is an expres-
sion, denoted Z and defined by the grammar:

Z ::= E(Y ) | Z + Z | Z ⇥ Z

Y ::= c | Y + Y | Y ⇥ Y | Y/Y | last(y) | min(y) | max(y) | int(y) | avg(y)

y ::= c | x | y + y | y ⇥ y | y/y

(7)

y is an arithmetic expression built on top of LHA data variables (x) and con-
stants (c). Y is a path dependent expression built on top of basic path ran-
dom variables such as last(y) (i.e. the last value of y along a synchronizing
path), min(y)(max(y)) the minimum (maximum), value of y along a synchro-
nizing path), int(y) (i.e. the integral over time along a path) and avg(y) (the
average value of y along a path). Finally Z, the target measure of an HASL
experiment, is an arithmetic expression built on top of the first moment of Y
(E[Y ]), and thus allowing to consider more complex measures including, e.g.
V ar(Y )⌘E[Y 2] − E[Y ]2, Covar(Y1, Y2)⌘E[Y1 ·Y2] − E[Y1] · E[Y2].

The COSMOS tool Assessment of HASL formulae against a DESP model
is performed by means of the COSMOS [1, 7] model checker. COSMOS employs
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a confidence interval method to estimate the target expression Z. The desired
accuracy of the target estimation is then set by the end user in terms of confidence
level and interval width.

5 Analysis of SGN models through HASL

We illustrate the application of HASL model checking to the analysis of a model
of gene expression with stochastic delayed dynamics. We (1) present the GSPN-
DESP codification of the considered model; (2) introduce a number of relevant
properties/measures of a model first describing them informally and then pro-
viding their encoding in HASL terms; (3) discuss results obtained by evaluation
of the presented properties/measures by means of the COSMOS model checker.

i_ribi_rep

Rep

ProRep

Rib

_RBS

_P

_Rib

P

Exp(kt)

Exp(kr)

Exp(ku)

!(glen,0.06)

!("5sh,"5sc)

i_rna

Pro

RNAp RNAProx _RNA !(1000,0.09)Exp(0.25)

init termintransc

Exp(1/400)

RBS

rep

unrep

transl
Exp(rbsd)

decRBS

#("3)

clearRBS

transl

relRib

R1 R2

R3

R4

R5

R6

Fig. 3. GSPN model of Single Gene system with delayed stochastic dynamics

5.1 Single Gene model

The single-gene model described by equations (1) to (6) (Section 3.1) is encoded
in GSPN-DESP terms by the net depicted in Figure 3. The net includes a place
for each species of the model (i.e. Pro, RNAp, Prox, RNA, RBS, Rib P, Rep
and ProRep) plus a number of auxiliary places representing intermediate stages
of delayed reactions (i.e. RNA, RBS, P, relRib). Initial marking of the net is
set by means of parameters i rep, i rnap, i rib, which correspond to the chosen
initial population of the model (note that the promoter place, Pro, is initialized
with one token, as each gene has one promoter region).

Reactions {R1, . . . , R6} of the single gene model correspond to subnets (en-
closed in red-dashed rectangles) in Figure 3. Each such subnet contains ei-
ther a single exponentially-distributed transition (in case of reactions with non-
delayed products i.e. R1, R4, R5, R6) or a combination of exponential and
non-exponential transitions (in case of reactions with delayed products, i.e. R1
and R2). For example subnet R3 in Figure 3 represents the encoding of the
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translation reaction. It consists of: the translation-start event (i.e. exponentially
distributed transition labeled s transl ; the RBS release event (i.e. determinis-
tically distributed transition clearRBS ); the ribosome releasing event (gamma
distributed transition relRib); the protein production event (i.e. gamma dis-
tributed transition prodP). Observe that the effect of repressed gene-expression
can be promptly analysed by setting of the repressor initial population (pa-
rameter i rep= lr): unrepressed configurations corresponds to lr = 0, whereas
lr > 0 settings correspond to repressed model where the level of repression is
proportional to lr > 0.

performance of TRANSCRIPTION and TRANSLATION mechanisms

ID description

φ1a average num. of completed-transcriptions (within T )
φ1b

average num. of completed-translations (within T )
φ2a prob. density of the number of completed-transcriptions (within T )
φ2b

prob. density of the number of completed-translations (within T )

φ3a cumulative prob. of the number of completed-transcriptions (within T )
φ3b

cumulative prob. of the number of completed-translations (within T )

efficiency of TRANSLATION wrt TRANSCRIPTION

ID description

φ4 avg. num. of completed translations between two consecutive transcriptions
φ5 prob. of at least N completed translations between two consecutive transcriptions

REPRESSION related measures

φ6 percentage of time gene is repressed
φ7 how long does it take for translation to stop once a repression starts

(i.e. sustainment of translation under repression)

Table 1. Properties of the Single Gene model

Properties of single gene model Table 1 depicts an excerpt of (informally
stated) relevant measures of the single-gene model. They are grouped according
to different aspects of gene-expression performance. The corresponding HASL
encoding is given in Table 2. We briefly illustrate the automata of Table 2 and
the associated HASL expressions:

A1: it is designed for measures concerning the occurrences of transc and transl
events. It accepts all paths of duration T and uses variables, n1 and n2 to main-
tain the number of transc and transl transitions occurred along a path. Dif-
ferent measures can be assessed through different HASL expressions referred
to A1 including: φ1a = (A1, E[last(n1)]); φ1b

= (A1, E[last(n2)]) and φ4 =
(A1, E[last(n2)/last(n1)]) (see Table 1).

A2: it measures the probability that the number of transcriptions is n1 = C
(within time T ). On acceptance (i.e. duration t = T ), it distinguishes between
paths such that n1 = C (in which case the bernoulli variable OK is set to 1),
and paths such that n1 6= C (i.e. OK is set to 0). The probability density
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of n1 is assessed by re-iterated evaluations of formula φ2a = (A2, last(OK))
corresponding to different values of C6.

A3: for measures concerning the amount of time gene is repressed. Apart from
the usual global clock t it uses a timer tr registering the time gene is repressed,
hence it grows (ṫr = 1) only in location l1 (i.e. repression is ON, corresponding to
a marking of place ProRep > 0), while it is unchanged (ṫr = 0) in location l0 (i.e.
marking of place ProRep = 0). Also note that both l0 and l1 are initial locations,
which is perfectly legal as their constraints make them mutually exclusive (this
way A3 can be used to analyse both repressed and unrepressed configurations
of the model).

A4: it measures “how likely it is that within a transcription interval (i.e. the
interval between two occurrences of the transc event) at least N translations have
been completed”. It uses variables n1 and n2 (as above) and n3 to count how many
transcription intervals (along a path) contain n2 ≥ N translations. The result
is stored in p1 = n3/n1 on acceptance. Note that, in this case, we consider an
event-bounded observation window consisting of n1 = N1 transcription events.
Measure φ5 (Table 1) in HASL terms is φ5 = (A4, last(p1)).

A5: it is designed for measures of sustainment of translation activity under re-
pression (i.e. φ7 in Table 1). It uses the following variables: no counting the
number of repression intervals (interval between two repression events) in which
translation arrested; to: measuring the translation time-to-arrest in a repression
interval (given that translation arrested); To timer measuring the cumulated to.
Note that translation arrest corresponds to the absence of tokens in all transla-
tion related places of the GSPN model (Figure 3), corresponding to condition:
(RBS =0^ RBS =0^ P =0^ Rib=0). Locations l0, l1 and l2 are then associated
to the following state conditions of the model: repression is off (l0), repression
is on and translation off (l1) and repression is on and translation ongoing (l2).
All paths of duration t=T are accepted and the target measure7 is be obtained
through expression Z = E[last(To)/Last(no)].

Remark. A formal assessment of HASL expressiveness is beyond the scope of
this paper however we make some considerations in that respect. The peculiar-
ity of HASL based reasoning is that any combination of state and/or transition
and/or reward conditions may be employed to characterise the paths of interests.
This is the main difference with other stochastic logics, ranging from those lim-
ited to state-based reasoning (e.g. CSL, BLTL), to those featuring state/action
based reasoning but not supporting rewards (e.g. asCSL [5]), up to the timed-
automata ones which mix state/action-based reasoning with (multiple) time-
bounding [16, 14]. So far reward-based analysis has been added to logics fea-

6 note that simple variants of A2 can be used to assess the PDF of translations and
the CDFs of both transcription and translation.

7 note that with a time-bounded measurement, as with A5, measuring may stop in any
instant (not necessarily at the end) of a repression interval: this is not a problem as To

and no are updated only when translation arrests, thus if bound T is reached before
translation arrests, measure To/no will correctly refer to the duration of translation
sustainment over all completed repression cycles
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legend of used variables:

t:total time n1:completed transcriptions n2:completed translations

tr:repressed time n3:] of transcr-intervals such that n2 >N OK:bernoulli variable

to:sustain time no:] repress-intervals with died off transl

(inter-repression) p1:% of transcr-intervals such that n2 >N

To:total sustain time

Expected completed transcriptions within T PDF of completed transcriptions within T

A1

l0
ṫ:1

ṅ1:0
ṅ2:0

l1

{transc},(t<T ),{n1++}
{transl},(t<T ),{n2++}

E\{transc,transl},(t<T ),;

],(t=T ),;
A2

l0
ṫ:1

ṅ1:0
˙OK:0

l1

l2

{transc},(t<T ),{n1++}

E\{transc},(t<T ),;

],(t=T^n1=C),

{OK:=1}

],[t=T (̂n1<C_n1>C)],{OK:=0}

φ1 ⌘ (A1, E[last(n1)]) φ2a ⌘ (A2, E[last(OK)])

proportion of repressed time within T prob. of at least N translations between

2 consecutive transcriptions for first N1 transcriptions

A3

l0
ṫ:1
˙tr :0ProRep=0

l1
ṫ:1
˙tr :1ProRep>0

l2

E,(t<T ),;

E,(t<T ),;

E
,(

t<
T

),;

],(t=T ),;

E
,(

t<
T

)
,;

],(t=
T ),;

A4

l0
ṅ1:0
ṅ2:0
ṅ3:0
ṗ1:0

l1

{transc},(n1<N1,n2≥N),{n1++,n3++,n2=0}

{transl},(n1<N1),{n2++}

E\{transc,transl},(n1<N1),;
{transc},(n1<N1,n2<N),{n1++,n2=0}

],(n1=N1),
{p1=n3/n1}

φ6 ⌘ (A3, E[(100/T ) ⇤ last(tr))]) φ5 ⌘ (A4, E[last(p1)])

sustainment of translation under repression

A5

l0
ṫ:1
˙to:0

Ṫo:0
ṅo:0

ProRep=0

l1
ṫ:1
˙to:0

Ṫo:0
ṅo:0

ProRep>0^
RBS=0^
RBS=0^
P=0^
Rib=0

l2
ṫ:1
˙to:1

Ṫo:0
ṅo:0

ProRep>0^
(RBS>0_
RBS>0_
P>0_
Rib>0)

l3

E,(t<T ),;

E,(t<T ),; E,(t<T ),;

E,(t<T ),;

E,(t<T ),;

],(
t=

T
),;

E,(t<T ),;

E,(t<T ),{to:=0}

],(t=
T
),;

],
(t
=
T
),
;

E,(t<T ),;

E,(t<T ),{To+=to,to:=0,n0++}

φ7 ⌘ (A6, E[last(To)/last(no)])

Table 2. LHA for various measures of the Single Gene model
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turing state-based reasoning. For example the rewards enriched version of CSL
supported by PRISM [27] allows for considering multiple (state and transition)
reward structures and to assess reward measures wrt paths of a given CTMC
model. However, even with the addition of rewards, CSL remains a language
limited to state-based temporal reasoning, thus, differently from HASL, reward
values do not play an active role in characterising relevant paths. As a conse-
quence several measures that can easily be expressed with HASL, do not always
have an equivalent in CSL terms (or if they do they require hard wiring of extra
information in the original CTMC). For example, measuring the PDF (and CDF)
of an event occurrences, is easily done with HASL (e.g. LHA A2, of Table 2),
whereas cannot be naturally achieved with CSL, unless states of the original
CTMC are enriched with variables counting the occurrences of relevant events.
Similarly, more complex measures involving combination of elaborate conditions
on rewards values (i.e. LHA variables) as the factors characterising the selected
paths (e.g. those corresponding to automata A4 and A5, in Table 2) seem not
to be expressible through CSL rewards.

Experiments. We assessed the previously described HASL measures through
experiments executed with the COSMOS model checker. For time-bounded mea-
sures we have considered (following [33]) T =2·105 as time horizon which roughly
corresponds to 60 cell cycles, considering an average a cell cycle period of about
55 minutes (i.e. 3300s) in the case of E. coli. All experiments have been run with
the following setting concerning confidence interval estimation: confidence-level:
99.99%; interval-width: 0.01.
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Fig. 4. PDF and CDF of completed transcriptions within T

Experiment 1. Figure 4 compares plots of the PDF (Figure 4(a)) and CDF (Fig-
ure 4(b)) of random variable n1: num. of completed transcription within T (query
φ2 and φ3) of unrepressed vs repressed configurations (i.e. rep(1), correspond-
ing to initial marking i rep = 1 and rep(2), corresponding to initial marking
i rep = 2). The effect of repression is evident as the bell-shaped probability
density of n1 is shifted toward lower values for increasing level of repression.
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Experiment 2. Figure 5(a) compares the expected number of completed transcrip-
tions vs. translations within T in function of time for unrepressed and repressed
(rep(1)) configurations. Observe that the throughput of translation is roughly
twice as much as that of transcriptions, (both in unrepressed condition, as well
as, in presence of repression). This is due to the rates of RNA degradation and
translation initiation.
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Fig. 5. Exp. transcriptions and translations and percentage of repressed time

Experiment 3. Figure 5(b), plots two measures of timing: the percentage of time
gene is repressed (A3) and the percentage of time no translation activity is going
on (variant of A3) when system is observed for duration T and in function of
the level of repression (num. of repressor molecules on the x-axis). To observe
also the trend of transcription and translation activity in function of repression
level Figure 5(b) also includes two curves referred to the expected number of
transcriptions, respectively translations, within T . Observe that the presence of
a single repressor is sufficient for the gene to remain repressed for 83% of the
time and, likewise, for translation to be non-existing for 85% of the observation
time (whereas in absence of repressor, translation activity is only non-existing
for about 4% of the time).

Experiment 4. Figure 6(a) compares the PDFs of random variable n2: num. of
completed transcription within a transcription interval (i.e. within two consecu-
tive transcription completions) (query φ4 : (A4, Last(p1)). This is computed for
the unrepressed model and for two configurations of the repressed model (rep(1)
and (rep(2)). Outcomes indicate that in presence of repression the probability
density is more “distributed”, than the bell shaped one corresponding to the un-
repressed configuration. Furthermore increasing the level of repression seems to
have no effect on the probability density (plots rep(1) and (rep(2) are essentially
identical).



16 Paolo Ballarini, Jarno Mäkelä, and Andre S. Ribeiro
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Experiment 5. Figure 6(b) refers to measurement of the translation sustainment
within a repression-interval (query φ5 : (A5, Last(noff )/Last(nrep)) in function
of the RBS decay rate (rbsd). We varied rbsd in the interval [0.001, 4] which
includes rbsd = 0.01 i.e. the value complying with experimental evidence used
in the“standard” model’s configuration. Obtained results indicate, quite sen-
sibly, that translation sustainment is inversely proportional to RBS decay. It
should be noted that with rbsd < 0.004 the translation sustainment is actually
increasing with rbsd (not very evident in plot of Figure 6(b)). This is because,
by definition, query φ5 : (A5, Last(noff )/Last(nrep)) measures the sustainment
of translation on condition that sustainment lasts lesser than repression. With
rbsd < 0.004, however, decay is so slow that with high probability sustainment
lasts longer than repression, while with low probability it lasts less. In this case
(rbsd < 0.004) it is sensible that the average value of (low-likely) translation
sustainment not exceeding repression duration increases with rbsd.

6 Measuring oscillations with HASL

Oscillatory trends are fundamental aspects of the dynamics of many biological
mechanisms, therefore the ability to detect/measure oscillations in biological
models is crucial. CSL-based characterisation of oscillations in CTMC models
of biochemical reactions have been considered in [9], with limited success, and
more comprehensively in [36]. Here we show preliminary results concerning the
application of HASL to the analysis of oscillations. Let σ be a (infinitely long)
simulation trace of an n-dimensional DESP model whose states’ form is s =
(s1, . . . sn)2N

n , with si being the value along the ith dimension (e.g the number
of molecules of species i). Let σi(t) denote the i-projection of σ(t) the state σ is
at time t. Following the characterisation given in [36] σi can either be: convergent
(i.e. tending to a finite value), divergent (i.e. tending to infinity) or oscillating
(i.e. the lack of the previous two). Furthermore σi is periodic with period δ iff
8t, σi(t) = σi(t + δ). Thus σ is periodic oscillatory along the i-th dimension iff
σi is both oscillating and periodic. Here, instead, we focus on a less restrictive
characterisation of oscillatory trends namely that of noisy periodicity [36]. Given
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an upper and a lower bound bh, bl 2 N (bh > bl), inducing intervals low =
(−1, bl], mid = (bl, bh) and high = [bh − 1) (i.e. l,m and h), trace σi is said
noisy periodic iff it perpetually switches from low to high (passing through mid)
and returning to low.Note that such trends corresponds to the following regular
expression: enp = l(l)⇤m(ll⇤m)⇤h(mm⇤h)⇤m(mh⇤m)⇤l.

We illustrate preliminary results about application of HASL to oscillations
analysis by means of a simple example. Reactions (8) represent, the so called,
3-way doped oscillator, a systems consisting of three species A, B and C which
oscillate perpetually. Note that A, B and C form a loop of of dependency whereby
A is converted into B, which, in turns, is converted into C, which, in turns, is
converted into A. DA, DB and DC , are auxiliary species representing doping
substances which guarantees the liveness of the conversion loop. It can be easily
shown, (e.g. by application of stochastic simulation), that species A, B and C
oscillate (Figure 7(a)) with amplitude, period and “noisiness” dependent on the
initial population (a0, b0, c0) (by default we assume the population of doping
species to be 1).

A + B
rA
−→ 2B B + C

rB
−→ 2C C + A

rC
−→ 2A

DA + C
rC
−→ A + DA DB + A

rA
−→ B + DB DC + B

rB
−→ C + DC

(8)
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Fig. 7. Number of periods in a simulated trace of the 3-ways doped oscillator (left)
and corresponding average number of noisy periods calculated (in function of time)
through the HASL query φnp = (Anp, E(last(n)) (right) with bounds set to bl = 180
and bh = 300.

An LHA to measure noisy periodic traces: the LHA Anp in Figure 8 is
designed to measure the number of noisy periods of amplitude a ≥ (bh − bl),
where bl and bh are the bounds inducing the low, mid and high (as above).
It consists of three locations l0, l1 and l2, associated to the low (i.e. A  bl),
respectively the mid (i.e. bl <A<bh) and the high (i.e. A≥bh) interval.
It uses three variables: t (total time), n to count the completed noisy periods (i.e.
corresponding to regular expression enp = l(l)⇤m(ll⇤m)⇤h(mm⇤h)⇤m(mh⇤m)⇤l),
and top, a boolean flag used to condition the increase of n on completion of a
noisy period (i.e. top is set to 1 entering the high interval and n is incremented
on entering the low interval only if top = 1, in which case top is reset). The
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Anp
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ṫ:1

ṅ:0
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l1
ṫ:1

ṅ:0
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l2
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ṅ:0
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high

l2

E,(t<T ),∅

E,(t<T ),∅ E,(t<T ),∅
E,(t<T∧top=0),∅

E,(t<T∧top=1),
{n=n+1,top;=0}

E,(t<T ),{top:=1}

],(
t=

T
),∅

E,(t<T ),∅

E,(t<T ),∅

],(t=T ),∅ ],(t=
T ),∅

Fig. 8. An LHA for measuring the number of periods of a periodic noisy oscillatory
trace of the 3-way oscillator

average number of completed noisy periods with time T can be assessed by
means of HASL formula φnp = (Anp, E(last(n)). Figure 7(b) depicts the outcome
of assessment of φnp in function of time bound T . Such results are in good
agreement with simulated traces, a sample of which is shown in Figure 7(a).

7 Conclusion

We presented some insights on the application of HASL statistical model check-
ing to the analysis of (non-necessarily Markovian) stochastic models of biological
systems. The most important feature of HASL model checking lays in its expres-
sive power: by employing LHA as machinery to characterise relevant trajectories
of a model it is possible to identify/assess elaborate measures which may not
be naturally accounted for with more popular stochastic logic, i.e. those fea-
turing state-based temporal reasoning, such as, for example, CSL and BLTL.
We demonstrated (part of) the potential of the HASL language by developing
and assessing a number of properties of a model of single-gene network with de-
layed non-Markovian dynamic. Although such model is a rather simple, it served
well to our aim, which was to show the potential of HASL based analysis. Fur-
thermore we presented preliminary insights on the application of HASL to the
analysis of oscillatory trends. Future developments include: 1) the application of
HASL approach to more complex systems, such as, for example a model of the
P53-Mdm2 feedback loop with stochastic dynamics previously analysed with the
GNSim simulator but not yet formally model checked. 2) further development of
HASL based oscillation analysis (i.e. measurements of frequency, amplitude of
oscillatory trends). The main difficulty of the HASL approach is the technicality
of the formalism itself. In particular, specifying an HASL property boils down
to specifying an automata, something which may be far from intuitive for non-
expert users. Thus, a further direction of development regards working on the
definition of a more intuitive property specification language with an associated
translator to LHA specifications.
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20. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry, 81(25):2340–2361, 1977.

21. H. A. Hansson and B. Jonsson. A framework for reasoning about time and relia-
bility. In Proc. 10th IEEE Real -Time Systems Symposium, pages 102–111, Santa
Monica, Ca., 1989. IEEE Computer Society Press.

22. B.R. Haverkort, L. Cloth, H. Hermanns, J-P. Katoen, and C. Baier. Model checking
performability properties. In Proc. DSN’02, 2002.

23. J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Prob-
abilistic model checking of complex biological pathways. Theoretical Computer
Science, 319(3):239–257, 2008.

24. S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and P. Zuliani.
A bayesian approach to model checking biological systems. In Proc. of the 7th
Int. Conference on Computational Methods in Systems Biology, pages 218–234.
Springer-Verlag, 2009.

25. M Kandhavelu, A Hakkinen, O Yli-Harja, and A S Ribeiro. Single-molecule dy-
namics of transcription of the lar promoter. Phys Biol, 9(2), 2012.

26. H. Kitano. Foundations of Systems Biology. MIT Press, 2002.
27. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In For-

mal Methods for the Design of Computer, Communication and Software Systems:
Performance Evaluation, volume 4486 of LNCS, pages 220–270. Springer, 2007.

28. M. Lakin, D. Parker, L. Cardelli, M. Kwiatkowska, and A. Phillips. Design and
analysis of DNA strand displacement devices using probabilistic model checking.
Journal of the Royal Society Interface, 2011. To appear.

29. J. Makela, J. Lloyd-Price, O. Yli-Harja, and A.S. Ribeiro. Stochastic sequence-level
model of coupled transcription and translation in prokaryotes. BMC Bioinformat-
ics, 12(1):121, 2011.

30. J.A. Megerle, G. Fritz, U Gerland, K. Jung, and J.O. Rädler. Timing and Dynamics
of Single Cell Gene Expression in the Arabinose Utilization System. Biophysical
Journal, 95:2103–2115, 2008.

31. Prism home page. http://www.prismmodelchecker.org.
32. A. Ribeiro, R. Zhu, and S. A. Kauffman. A general modeling strategy for gene

regulatory networks with stochastic dynamics. Journal of computational biology : a
journal of computational molecular cell biology, 13(9):1630–1639, November 2006.

33. Andre S. Ribeiro and Jason Lloyd-Price. SGN Sim, a stochastic genetic networks
simulator. Bioinformatics (Oxford, England), 23(6):777–779, March 2007.

34. Marc R Roussel and Rui Zhu. Validation of an algorithm for delay stochastic
simulation of transcription and translation in prokaryotic gene expression. Physical
Biology, 3(4):274–284, 2006.

35. M Schwarick, C Rohr, and M Heiner. Marcie - model checking and reachability
analysis done efficiently. In Proc. 8th International Conference on Quantitative
Evaluation of SysTems (QEST 2011), pages 91–100. IEEE CS Press, 2011.

36. D. Spieler. Model checking of oscillatory and noisy periodic behavior in markovian
population models. Master’s thesis, Saarland University, 2009.

37. Y. Taniguchi, P. J. Choi, G-W Li, H. Chen, M. Babu, J. Hearn, A. Emili, and
X.S. Xie. Quantifying E. coli Proteome and Transcriptome with Single-Molecule
Sensitivity in Single Cells. Science, 329(5991):533–538, July 2010.

38. R. Zhu, A.S. Ribeiro, D. Salahub, and S.A. Kauffman. Studying genetic regulatory
networks at the molecular level: Delayed reaction stochastic models. Journal of
Theoretical Biology, 246(4):725–745, 2007.


