N

N

ParadisEO-MO: From Fitness Landscape Analysis to
Efficient Local Search Algorithms
Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel

» To cite this version:

Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel. ParadisEO-MO: From Fitness
Landscape Analysis to Efficient Local Search Algorithms. Journal of Heuristics, 2013, 19 (6), pp.881-
915. 10.1007/s10732-013-9228-8 . hal-00832029

HAL Id: hal-00832029
https://hal.science/hal-00832029
Submitted on 2 Mar 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00832029
https://hal.archives-ouvertes.fr

Journal of Heuristics manuscript No.
(will be inserted by the editor)

ParadisEO-MO: From Fitness Landscape Analysis to Efficient
Local Search Algorithms

J. Humeau - A. Liefooghe - E-G. Talbi - S. Verel

Received: 31-01-2012 / Revised: 04-06-2013 / Accepted: dat

Abstract This paper presents a general-purpose software frameveaticated to the de-
sign, the analysis and the implementation of local searctameeristics: ParadisEO-MO.
A substantial number of single solution-based local seanetaheuristics has been pro-
posed so far, and an attempt of unifying existing approaehhsre presented. Based on a
fine-grained decomposition, a conceptual model is propaseds validated by regarding
a number of state-of-the-art methodologies as simple niariaf the same structure. This
model is then incorporated into the ParadisEO-MO softweaméwork. This framework
has proven its efficiency and high flexibility by enabling tlesolution of many academic
and real-world optimization problems from science and stdu

Keywords Local search Metaheuristic Fitness landscapesConceptual unified model
Algorithm design, analysis and implementatidBoftware framework

J. Humeau A. Liefooghe- E-G. Talbi- S. Verel
Inria Lille-Nord Europe, DOLPHIN research team
Parc Scientifique de la Haute Borne, 40 avenue Halley, 59@&h¥uve d’Ascq, France

J. Humeau

Ecole des Mines de Douai, département IA

941 rue Charles Bourseul, BP 10838, 59508 Douai, France
E-mail: jeremie.humeau@mines-douai.fr

A. Liefooghe

Université Lille 1, Laboratoire LIFL, UMR CNRS 8022

Cité scientifique, Bat. M3, 59655 Villeneuve d’Ascq cedErance
E-mail: arnaud.liefooghe@univ-lille1.fr

E.-G. Talbi

Université Lille 1, Laboratoire LIFL, UMR CNRS 8022

Cité scientifique, Bat. M3, 59655 Villeneuve d’'Ascq cedErance
E-mail: talbi@lifl.fr

S. Verel

Université Nice Sophia Antipolis, Laboratoire 13S, UMR 88 6070
2000 route des Lucioles, BP 121, 06903 Sophia Antipolis xxeéeance
E-mail: verel@i3s.unice.fr

1 Introduction

The need of software frameworks is essential in the desighimplementation of local
search metaheuristics. Those frameworks enable the applicof different search algo-
rithms (e.g.hill-climbing, tabu search, simulated annealing, iteddtecal search) in a uni-
fied way to solve a large variety of optimization problemsgée-objective/multi-objective,
continuous/discrete) as well supporting the extensionaataptation of the metaheuristics
for continually evolving optimization problems. A framexkois different from a solver,
since it does not implement a universal optimal resoluti@thodology but rather provides
tools allowing a better development in terms of cost andreffdence, the user only has to
focus on high-level design aspects. Indeed, a metaheuigstot a heuristic. It requires a
number of problem-specific components in order to be apptiedparticular solving task.
A metaheuristic is rather an upper-level general methapotbat can be used as a guiding
strategy in designing underlying heuristics to solve deoptimization problems.

In general, the efficient solving of a given optimization lgeam requires to experiment
many solving methods, tuning the parameters of each matatieuetc. The metaheuristic
domain in terms of new algorithms is also evolving. More araterincreasingly complex
local search algorithms are developed. Moreover, it allihvesiesign of complex hybrid and
parallel models which can be implemented in a transparentareon a variety of architec-
tures (shared-memory such as multi-cores and GPUs, ditdbmemory such as clusters,
and large-scale distributed architecture such as GridsCimgids). Hence, there is a clear
need to provide a ready-to-use implementation of such reat@itics. It is important for
application engineers to choose, implement and apply-sfatee-art algorithms without
in-depth programming knowledge and expertise in optinopatFor optimization experts
and developers, it is useful for them to evaluate and comfzarly different algorithms,
to transform ready-to-use algorithms, to design new aligas, as well as to combine and
parallelize algorithms. Frameworks may provide defaufilementation of classes. The user
has to replace the defaults that is appropriate for hisfhgliGtion. Indeed, software frame-
works are not supposed to be universal implemented apipliatbut rather adaptable tools
allowing a better implementation in terms of cost and effort

ParadisEO is a software framework allowing the reusablégdesf metaheuristics. It
is available at the following URLhttp://paradiseo.gforge.inria.fr. Unlike black-
box solvers, It is based on a conceptual separation betweesetarch algorithm and the
problem to be solved. ParadisEO is a free open-source Wwhitesbject-oriented software
framework implemented in C++. This project has been dowdddamore than 20000 times
and more than 250 active users are registered in the mdigindt contains four intercon-
nected modules: EO (Keijzer et al, 2001) for populationeldametaheuristics, MO for single
solution-based metaheuristics, MOEO (Liefooghe et al;12@dr multi-objective optimiza-
tion and PEO (Cahon et al, 2004) for parallel and distribuedaheuristics. In addition, the
whole framework allows the implementation of hybrid aptoes.

ParadisEO-MO (Moving Objects) is the module dedicatedealtsign of single solution-
based metaheuristicg€. local search). An important aspect in ParadisEO-MO is that t
common search concepts of local search metaheuristicacoedd. All search components
are defined as templates (generic classes). ParadisEOeld bashe object-oriented pro-
gramming and design paradigm in order to make those searchamisms adaptable. The
user designs and implements a local search algorithm byidgthe available templates that
provide the functionality of different search componemiblem-specific templateg.g.
representation, objective function) and problem-indeleet templatese(g. neighborhood
exploration, cooling schedule, stopping criteria, etddreover, some available components

allow to trace statistics on local search execution deswithe landscape of the problem.
This paper presents the design, analysis and implememtaitibie ParadisEO-MO module,
allowing to tackle an optimization problem as a whole, frasfitness landscape analysis to
its resolution by means of local search metaheuristics.

The paper is organized as follows. In Section 2, a unified vwéwocal search algo-
rithms is presented. This section details the common seawstponents for local search
metaheuristics. It introduces, in an incremental way, te#-tnown local search algorithm
and outlines the landscape analysis of optimization problérhen, Section 3 discusses the
design and implementation of the ParadisEO-MO framewookné&design and implemen-
tations of popular local search algorithms such as hithblng, simulated annealing, tabu
search and iterated local search are illustrated. Fin@élgtion 4 outlines the main conclu-
sions and perspectives of this work.

2 A Conceptual Model for Local Search
2.1 Local Search General Template

While solving optimization problems, single solution-bdsnetaheuristics (or local search
metaheuristics) improve a single solution. They could feeveid as “walks” through neigh-
borhoods or search trajectories through the search spattee gfroblem at hand (Talbi,
2009). The walks (or trajectories) are performed by iteeapirocedures that move from the
current solution to another one in the search space. Loeatisenetaheuristics show their
efficiency in tackling various optimization problems infdilent domains.

Local search metaheuristics iteratively apply the ger@ratnd replacement procedures
from the current single solution (Fig. 1). In the generafbiase, a set of candidate solutions
are generated from the current solut®m his setC(s) is generally obtained by local trans-
formations of the solution. A candidate solution is oftemegghboring solutionand so, the
setC(s) is a subset of thaeighborhoodf solutions. In the replacement phase (also named
transition rule, pivoting rule and selection strategy)ekestion is performed from the can-
didate solution seE(s) to replace the current solutiong. a solutions' € C(s) is selected
to be the new solution. Whesi is selected, it replaces the current solution accordingnto a
acceptance criterion. This process iterates until a gitepping criteria is satisfied. The
generation and the replacement phases maydmaorylesdn this case, the two procedures
are based only on the current solution. Otherwise, somerkiistf the search stored in a
memory can be used in the generation of the candidate listlofisns and the selection of
the new solution. Popular examples of such local searchheetsstics are hill-climbing,
simulated annealing and tabu search. Algorithm 1 illusg&te high-level template of local
search metaheuristics.

2.2 Common Issues

The common search concepts fdl local search metaheuristics are the definition of the
representatiorof solutions, theevaluation functionthe neighborhoodstructure, thencre-
mental evaluatiorof neighbors, and the determination of thdial solution.

Neighborhood

Generate

candidates
/ OCandidate
fo) O Solutions

:

Fig. 1 Template for local search metaheuristicy generate candidate solutions from the neighborhood,
(i) select a neighboriji() decide to replace the current solution by the selectechbeig

Algorithm 1 High-level template of local search metaheuristics.

Input: Initial solutions.
repeat
Select one solutiod in the neighborhood of
if acceptance criterion is truben
s«—¢
end if
until Stopping criteria satisfied
Output: Best solution found.

2.2.1 Representation

Designing any metaheuristic needs a representation whichdes the solutions of the
search spac§ according to the target optimization problem. It is a fundatal design
guestion in the development of metaheuristics. The reptasen plays a major role in the
efficiency and effectiveness of any metaheuristic and tlwstd¢utes an essential step in
designing a metaheuristic. The representation must baldeiand relevant to the tackled
optimization problem. Moreover, the efficiency of a reprgagon is also related to the
search operators applied on solutions (Rothlauf, 2006adty when defining a representa-
tion, one has to bear in mind how the solution will be evaldated how the search operators
which defines the neighborhood will operate.

Many straightforward representations may be applied fonestraditional families of
optimization problems. Indeed, there exist some class@alesentations that are com-
monly used to solve a large variety of optimization probleifisose representations may
be combined or underly new representations. According & ttructure, there are two
main classes of representations: linear and non-lineaedrirepresentations may be viewed
as strings of symbols of a given alphabeig(binary, permutations, continuous, discrete).
Non-linear representations are in general more complextstres. They are mostly based
on graph structures. Among the traditional non-linear @sentations, trees are the most
often used.

2.2.2 Evaluation

The objective functiorf, also defined as the fitness function, cost function, eviaudtinc-
tion or utility function, formulates the goal to achieveaksociates to each solution of the
search space a real value which describes the quality otties$iof the solutionf : S— R.

Then, it represents an absolute value and allows a complééging of solutions from the
search space.

The objective function is an important element in desigm@imgetaheuristic. It will guide
the search towards “good” solutions of the search spadee lbbjective function is improp-
erly defined, it can lead to non-acceptable solutions wieatethich metaheuristic is used.

2.2.3 Neighborhood

The definition of the neighborhood is a required common sbeptfe design of any local

search metaheuristic. The neighborhood structure playscéatrole in the performance of
a local search metaheuristic. If the neighborhood stredtunot adequate to the problem,
any local search will fail to solve the problem.

Definition 1 A neighborhood functiom is a mappingN : S— 25 which assigns to each
solutions of Sa set of solution®N(s) C S

A solutions’ € N(S) in the neighborhood dSis called aneighborof s. In general, a neigh-
bor is generated by the application ofrveoperator which performs a small perturbation
to the solutions. The main property that must characterize a neighborhotataity. Lo-
cality is the effect on the quality (fithess) when performthg move (perturbation) on the
solution (Sendhoff et al, 1997). When small changes are rimatie solution, the quality
must reveal small changes. In this case, the neighborhosaidsto have a strong locality.
Hence, local search will perform a meaningful search inainel$cape of the problem. Weak
locality is characterized by a large effect on the qualityewla small change is made in the
solution. In the extreme case of weak locality, the searohgss tends to a random search.

The neighborhood definition depends strongly on the reptatien associated to the
problem at hand. Some usual neighborhoods are associateatlittonal representations
(e.g.continuous, binary, discrete, permutations). Let us edtiat for a given optimization
problem, a local optimum for a neighborhobld may not be a local optimum for a differ-
ent neighborhoodN,. In designing a local search algorithm, there is often a comgse
between the size (or diameter) and the quality of the neidfdmal to use and the computa-
tional complexity to explore it. Designing large neighbmolds may improve the quality of
the obtained solutions since more neighbors are consideregch iteration. However, this
requires an additional computational time to generate aatlate such a large neighbor-
hood.

2.2.4 Incremental Evaluation

Often, the evaluation of the objective function is the mogtemsive part of any local search
metaheuristic. A naive exploration of the neighborhood sbltions is acompletesvalua-
tion of the objective function for every candidate neighSasf N(s).

A more efficient way to evaluate the set of candidates isetr@uationA (s, m) of the
objective function, where is the current solution anch is the applied move. This is an
important issue in terms of efficiency that must be taken agoount in the design of a
local search algorithm. It consists in evaluating only tiaasformatiom (s, m) applied to a
solutionsrather than the complete evaluation of the neighbor saiut{g’) = f (s&m). The
definition of such an incremental evaluation and its coniptetepends on the neighborhood
used over the target optimization problem. It is a stramfthrd task for some problems
and neighborhoods(g. TSP with 2-opt neighborhood) but it may be very difficult faher
problems and/or neighborhood structureg(VRP with the node exchange operator).

2.2.5 Initial Solution

The initial solution of a local search algorithm has a higlpatt on the final results. Two
main strategies are used to generate the initial soluticmneomor a greedyapproach.
There is always a trade-off between the use of random andgisgial solutions in terms
of the quality of solutions and the computational time reegiito generate the solution. The
best answer to this trade-off will depend mainly on the efficy and effectiveness of the
random and greedy algorithms at hand, and the local seaopepies (Burke and Newall,
2002). For instance, the larger the neighborhood, the krssits/e the initial solution to the
performance of the local search.

Generating a random initial solution is a quick operation the local search meta-
heuristic may take a much larger number of iterations to eaye. In order to speedup the
search, a greedy heuristic may be used. Indeed, in most, aggsesly algorithms have a
reduced polynomial-time complexity. Using greedy heigssbften leads to better quality
local optima. Hence, the local search algorithm will reguir general less iterations to con-
verge towards a local optimum. Some approximation greegtyrihms may also be used to
obtain a bound guarantee for the final solution. Howevemésdnot mean that using better
solutions as initial solutions will always lead to betterdboptima (Hoos and Stiitzle, 2004).

2.3 Fitness Landscapes Analysis
2.3.1 Parameter Setting

Generally speaking, additional information to the locarsé is called algorithm param-
eters, or simplyparameters The problem to choose efficient parameters for performing a
particular task iparameter settingParameter setting has been extensively studied, and still
one of the most critical issue in the design efficient locarsk algorithms. According to the
taxonomy of Eiben et al (2007), there exists two types of patar setting: the first one is
off-line, before the actual run, often callpdrameter tuningand the second one @®-ling
during the run, calleparameter controlUsually, parameter tuning is done by testing a sets
of parameters, and selecting the combination of param#iatyive a good performance
with respect to a number of executions. In order to limit thenber of executions, some
parameter tuning methods have been developed. They indnaeng others, racing tech-
niques (Birattari et al, 2002), CALIBRA (Adenso-Diaz andduna, 2006), REVAC (Nan-
nen and Eiben, 2007), and ParamILS (Hutter et al, 2009). @disly, such approach still
may be time consuming. Another strategy consists in stggihie fitness landscape of the
problem under study, by computing a number of statisticalsuees. From those, designers
may deduce the main properties of the problem under studydierdo correctly tune the
parameters.

2.3.2 Local Search Design using Fitness Landscape

The performance of local search algorithms is stronglyteel#o the structure of the search
space, such as the number and the distribution of local eptine number and the size of
plateaus, etc. The fitness landscape is the main model tgzantle structure of the search
space. Different goals can be achieved by means of fithedsdapes analysis (Hoos and
Stitzle, 2004; Verel, 2009). First, an analysis can allowdmpare the difficulty between
different search spaces representations, local searchtopg etc. Then a proper choice of

the “right” search space can be made for a large class of &&aaich algorithms, without
an expensive experimental tests campaign. Second, the afttice global geometry of the
landscape helps to decide the most appropriate algoritimefample, if there is a lot
of plateaus, and according to their features, we can deoidisé a very explorative local
search algorithm. Third, an off-line tuning of the parametghich define the local search
algorithm can be guided by the fitness landscapes propékiasmion et al, 2011a). For
example, such parameters include the number of moves torf@med before a restart
strategy. At last, the on-line control of parameters is thastnthallenging goal of fitness
landscapes analysis. During the search process, the lecalejry of fitness landscape can
be used to control the search parameters, such as the maxiomatyer of visited solutions
in the neighborhood, or more generally the parameters wduoakrol the selection pressure.
To summarize, learning about the problem structure usiots thiom fitness landscapes
analysis leads to design better local search algorithms.

2.3.3 Definition

The definition of fitness landscapes follows the common sfuethe design of local search
algorithms. It provides a substantial number of tools ineortd analyze the background of
local search algorithms independently of the heuristiodpeised.

A fitness landscape (Stadler, 2002; Jones, 1995) is a t(iflét N) whereSis a set
of potential solutiongalso called search spac®),; S— 25, aneighborhoodoperator (see
Definition 1), andf : S— R is a fitness function that can be pictured as the “heighthef
corresponding potential solutions. Often a topologicalaapt ofdistance dcan be associ-
ated to a neighborhoadd. A distanced : Sx S+— R is a function that associates with any
two configurations irs a non-negative real number that satisfies well-known ptegser~or
instance, for a binary-coded local search metaheurisiicfitness landscas constituted
by the boolean hypercul= {0,1}' consisting of the 2solutions for strings of length
and the associated fitness values. The neighborhood oftiosdior the one-bit flip operator
is the set of pointy € B that are reachable fromby flipping one bit. A natural definition
of distance for this landscape is the well-knottammingdistance.

Based on the neighborhood notion, one can ddtinal optimaas being configurations
x for which (in the case of maximizatiorjy € N(x), f (y) < f(x). Global optima are defined
as being the absolute maxima (or minima) in the whole segrabeS. Other features of a
landscape such as basins, barriers, or neutrality can beeddikewise (Stadler, 2002).

Let us define the notion afalk on a landscape. A walk from sto s is a sequence
I = (s0,S1,--.,5n) of solutions belonging t& wheresy =s, sy =5 andVi € {1,...,m},

S is a neighbor ofs_1. The walk can be random, for instance solutions can be chosen
with uniform probability from the neighborhood, as in ramdsampling, or according to
other weighted non-uniform distributions, as in Metropeflasting sampling. It can also be
obtained through the repeated application of a “move” dperaither stochastic or deter-
ministic, defined on the landscape.

2.3.4 Density of States

Rosé et al (1996) developed tlensity of stateapproach (DOS) by plotting the number of
sampled solutions in the search space with the same fitnkess faowledge of this density
allows to evaluate the performance of random search or ranitialization of local search
metaheuristics. DOS gives the probability of having a gifiress value when a solution is

randomly chosen. The tail of the distribution at optimaldi&n value gives a measure of the
difficulty of an optimization problem: the faster the deddwg harder the problem.

2.3.5 Fitness Distance Correlation

Fitness distance correlation was first proposed by Jon&5)Mith the aim of measuring
the difficulty of problems with a single number. Jones’ apto states that what makes a
problem hard is the relationship between fitness and distafithe solutions from the op-
timum. This relationship can be summarized by calculatirgfitness-distance correlation
coefficien{FDC), which is the correlation coefficient between the 8gand the distance to
the nearest global optimum for all solutions from the seagzte. It can be estimated based
on a sample of the search space: given a sampte sflutions{s;, s, ..., Sm}, the FDC is

computed by:
EDC — coV f(s)d(s))
Vvar(f(s))var(d(s))

whered gives the distance function to the nearest global optimemw(f (s)d(s)) is the
covariance off andd, andvar(f(s)) andvar(d(s))) are respectively the variance bfand

d over the sample ahsolutions. Thus, by definition, FDE[—1, 1]. As we hope that fithess
increases as distance to a global optimum decreases (famimaiion problems), we expect
that, with an ideal fitness function, FDC will assume the gabfi—1. According to Jones
(1995), search problems can be classified into three cladspending on the value of the
FDC coefficient:

— Misleading(FDC > 0.15), in which fitness increases with distance.

— Difficult (—0.15 < FDC < 0.15) in which there is virtually no correlation between fit-
ness and distance.

— Straightforward(FDC < —0.15) in which fitness increases as the global optimum ap-
proaches.

The second class corresponds to problems for which the FBfiident does not bring any
information. The threshold interv&+0.15,0.15] has been empirically determined by Jones.
When FDC does not give a clear indicatioe, in the interval[—0.15,0.15], examining the
scatterplot of fitness versus distance can be useful.

The FDC has been criticized on the grounds that countereeangan be constructed
for which the measure gives wrong results (Altenberg, 1€9xck et al, 1998; Clergue and
Collard, 2002). Another drawback of FDC is the fact that itd$ apredictivemeasure since
it requires knowledge of the optima. Despite its shortca@sjrwe consider FDC here as
another way of characterizing problem difficulty when we Wrgome optima and we can
predict whether it is easy to reach those local optima or not.

2.3.6 Autocorrelation Length and Autocorrelation Funaso

Weinberger (1990, 1991) introduced tatocorrelation functiorand thecorrelation length

of random walks to measure the correlation structure ofdgri@ndscapes. Given a random
walk (s,s+1,. . .), the autocorrelation function of a fitness functiorf is the autocorrelation
function of time serie$f (), f(s+1),...) :

E[f(s) f ()] — E[f(s)]E[f (st)]

ol = var(f ()

whereE[f(s)] andvar(f(s)) are the expected value and the variancd). Estimates
r(k) of autocorrelation coefficienig(k) can be calculated with a time serigs, s, ...,S.)
of lengthL :
(i = 2t~ D(F(59 -)
Sialf(s) —)2

wheref = %z]-Lzl f(sj), andL >> 0. A random walk is representative of the entire land-
scape when the landscape is statistically isotropic. bxdase, whatever the starting point of
random walks and the selected neighbors during the walkmages ofr (n) must be nearly
the same. The estimation error diminishes with the walktleng

The correlation lengtit measures how the autocorrelation function decreases and it
summarizes the ruggedness of the landscape: the largeoriiedation length, the smoother
the landscape. Weinberger’s definitios- fﬁ makes the assumption that the autocor-

i)] o
relation function decreases exponentially.

2.3.7 Sampling Local Optima by Adaptive Walks

Escaping from local optima is one of the main issue for loearsh algorithms. So, the
number of local optima, the size of basins of attraction o&lmptima, and the network of
local optima (Ochoa et al, 2008) should be estimated to stated the dynamics of local
search and to design efficient search algorithms.

An adaptive walkis a walk(so, s1,...,Sm) Where the fitness values increase during the
walk: Vi <m, f(s) < f(sit1). An adaptive walk stops on a local optimum. Then, the sam-
pling of the search space with adaptive walk can be used itoast the fitness distribution
of local optima, even if its estimation is biased by the siZgasins. The number of local op-
tima, the diameter, and then, the basin of attraction siazede estimated with the length of
the adaptive walks. When the length of adaptive walks islattye number of local optima
is low, and the diameter of basins is large.

2.3.8 Neutrality

Neutrality is a particularly important issue in real-worgtimization such as flow-shop
scheduling (Marmion et al, 2011b), minimum linear arranget(Rodriguez-Tello et al,
2008), etc. The notion of neutrality has been suggested imukd (1983) in his study of the
evolution of molecular species. According to this view, tmosves are neutral (their effect
on fitness is small) or lethal.

A fitness landscapes is said to beutral when many neighboring solutions have the
same fitness value (Reidys and Stadler, 2001). The pictustidi fitness landscapes is
dominated by a lot of plateaus, also calleelitral networksMore precisely, a neutral net-
work is a graph where the nodes are the solutions with a giteess value, and the edges
are given by the neighborhood relation between those sokitiTo study the neutrality of
fitness landscapes, we should be able to measure and desdabeproperties of neutral
networks. The number of neutral networks, #iee and thediameterof neutral networks
are basic information on the neutrality, but due to the sfze@search space and of neutral
networks, it is not always possible to measure informatarréal-world problems.

The neutral degreef a solution is the number of neighboring solutions with siagne
fitness value. The neutral degree shows the importance ¢fatiguin the landscapes. For

10

example, theneutral degree distributioinf solutionsi.e. the degree distribution of the ver-
tices in a neutral network, gives information which playsokerin the dynamics of local
search metaheuristics (Van Nimwegen et al, 1999; Wilke1200

Another way to describe a neutral network is given byabtcorrelation of neutral de-
greealong a neutral random walk (Bastolla et al, 2003),a walk over a neutral network.
From neutral degree collected along this neutral walk,uteeorrelation can be computed
(see section 2.3.6). The autocorrelation measures thelaton structure of a neutral net-
work. If the correlation is low, the variation of neutral deg is low ; and so, there is some
areas in the neutral network of solutions which have neaewyral degrees.

The percolation measure of neutral networks in the landss;ape evolvability of solu-
tions can be used. The evolvability of a solution is the abtlh have better solutions in its
neighborhood. From a solution with high evolvability, adbsearch can find a better solu-
tion in its neighborhood. The evolvability of solutions afieutral network gives information
on the surrounding of the neutral network. For instanceatleage, minimal and maximal
fitness value in the neighborhood of a solution can be used agavability measure.

2.3.9 Fitness Cloud

In this section, we present thigness cloudFC) standpoint, first introduced by Verel et al
(2003). The fitness cloud relative to the local search operp is the conditional bivari-
ate probability density,p(Y = § | X = ¢) of reaching a solution of fitness valdefrom

a solution of fitness valug applying the operatoop. To visualize the fitness cloud in
two dimensions, we plot the scatterpldtf (s), f(S)) | s€ Sands' € N(s)} whereN is the
neighborhood based on the operatqr Different statistics can be computed to describe
this scatter plot such as: for fitness vali(s) = ¢, the average, the standard deviation, the
minimum and the maximum fitness value in the neighborhood.

In general, the size of the search space does not allow tddesrall possible solu-
tions, when trying to draw a fitness cloud. Instead, we neagséosamples to estimate it.
Two mains ways are used to sample the search space: themmémdom sampling, or
the Metropolis-Hasting sampling (Madras, 2002) which giu@re importance to the most
interesting solutions of the search space.

2.4 Local Search Algorithms

This section describes the main local search metaheuristic

2.4.1 Hill-Climbing Algorithm

The hill-climbing (HC) algorithm, also referred as descemt iterative improvement, is
likely the oldest and simplest local search metaheurigtéots and Lenstra, 1997; Papadim-
itriou and Steiglitz, 1982). A pseudo-code is given in Aigfum 2 and follows the template
of Algorithm 1. It starts with a given initial solution. At eh iteration, the heuristic replaces
the current solution by a neighbor that improves the objedtinction. The search process
stops when all candidate neighbors are worse than the ¢wsolution, meaning a local
optimum is reached. For large neighborhoods, candidatgiset may be a subset of the
neighborhood. The main objective of this restricted netghbod strategy is to speed-up
the search. Variants of hill-climbing may be distinguistaadording to the order in which

11

the neighboring solutions are generated (determinishicisstic), and the selection strategy
(selection of the neighboring solution).

Algorithm 2 Template of Hill-Climbing (HC) algorithm.

Input: Initial solutions.
repeat
Select one solutiod in the neighborhood of
if f(s') is better tharf (s) then
s«—¢
end if
until sis not a local optimum
Output: solutions

In addition to the definition of the initial solution and theighborhood, designing a
basic hill-climbing algorithm has to address the selecttategy of the neighbor which
will determine the next current solution. Many strategias be applied in the selection of a
better neighbor:

— Best improvement(steepest descent): in this strategy, the best neighieothe neigh-
bor that improves the most the cost function) is selecte@. igighborhood is evalu-
ated in a fully and deterministic manner. Hence, the exgilamaof the neighborhood
is exhaustiveall possibles moves are tried for a solution to select tls beighboring
solution. This type of exploration may be time-consumingléoge neighborhoods.

— First improvement: this strategy consists in choosing the first improving hbag that
is better than the current solution. Then, an improving Inledg is immediately selected
to replace the current solution. This strategy involves rigdavaluation of the neigh-
borhood. In acyclic exploration, the neighborhood is evaluated in a deterriinigay
following a given order for generating the neighbors. ha@domexploration, the neigh-
borhood is evaluated in a random order, and then a randoroiimgr neighbor is se-
lected. In the worst casé€. when no improvement is found), a complete evaluation of
the neighborhood is performed.

A compromise in terms of quality of solutions and search tmay consist in using the first
improvement strategy when the initial solution is randoggyerated, and the best improve-
ment strategy when the initial solution is generated usiggeady procedure. In practice,
on many applications, it has been observed that the firstowipy strategy leads to a same
quality of solutions as the best improving strategy whilegs smaller computational time.
Moreover, the probability of premature convergence to alloptimum is less important in
the first improvement strategy.

Another important point is the acceptance criterion usetéfme if a solution is “better”
or not. The solution is better when the fitness is strictiyhkig(in a maximization problem):
f(s) < f(9). In this case, a local optimum is defined as follows: € N(s), f(s) < f(s),
and the stopping condition is well-defined. For problemswiaiteaus (neutral problems),
one can define that a solution is better when the fitness vahiglier or equalf (s) < f(s).
The search process can then continue the exploration &gplatto find an exit solution. In
that case, plateaus are local optima, and then the stoppiegian can be based on the
computational resources available.

12

2.4.2 Escaping from Local Optima

In general, hill-climbing is a very easy method to design angdlement and gives fairly
good solutions very quickly. This is why it is a widely usediopzation method in practice.
One of the main disadvantages of hill-climbing is that it wenges towards local optima.
Moreover, the algorithm can be very sensitive to the ingiglution,i.e. a large variability
of the quality of solutions may be obtained for some problefiidast, there is no mean to
estimate the relative error from the global optimum and timalper of iterations performed
may not be known in advance. Even if the complexity in practecacceptable, the worst
case complexity of hill-climbing is exponential. Hill-ohbing works well if there is not too
many local optima in the search space or the quality of tHerifit local optima is more
or less similar. If the objective function is highly multiedal, which is the case for the
majority of optimization problems, hill-climbing is uslyhot an effective method to use.

As the main disadvantage of hill-climbing algorithms is tteavergence towards local
optima, many alternatives algorithms have been proposeddm becoming stuck at lo-
cal optima. Those algorithms became popular from the 19&®@ar different families of
approaches can be used to escape from local optima (Fig. 2):

— lterating from different initial solutions: this strategy is applied in multi-start local
search (MLS), iterated local search (ILS), GRASP, and st for

— Accepting non-improving neighbors:those approaches enable moves that degrade the

current solution. Then, it becomes possible to move out ésintof attraction of a given
local optimum. Simulated annealing and tabu search arel@ompresentatives of this
class of algorithms. Simulated annealing was the first élyoraddressing explicitly
the question “why should we consider only downhill moves?”

— Changing the neighborhood:this class of approaches consists in changing the neigh-

borhood structure during the search process. For insténisegpproach is used in vari-
able neighborhood search strategies.

— Changing the objective function or the input data of the prdlem: in this class,
the problem is transformed by perturbing the input data efgtoblem, the objective
function or the constraints, in the hope to solve more efiityethe original problem.
This approach has been implemented in the guided locallsghecsmoothing strategies
and noising methods. The two last approaches may be viewappasaches changing
the fitness landscape of the problem to solve.

2.4.3 Simulated Annealing

Simulated annealing (SA) applied to optimization problemeerges from the work of Kirk-
patrick et al (1983) and Cerny (1985). In those pioneeringke/0SA has been applied to
graph partitioning and VLSI design. In the 1980’s, SA had gomanpact on the field of
heuristic search for its simplicity and efficiency for selgicombinatorial optimization prob-
lems. Then, it has been extended to deal with continuousnggation problems (Dekkers
and Aarts, 1991; Ozdamar and Demirhan, 2000; LocatelliQ200

SA is a stochastic algorithm which enables, under some tiondj the degradation of
a solution. The goal is to escape from local optima, and sataydthe convergence. SA
is a memoryless algorithm in the sense that the algorithns em¢ use any information
gathered during the search. From an initial solution, SAceedls in several iterations. At
each iteration, a random neighbor is generated. Moves tt@aoive the cost function are
always accepted. Otherwise, the neighbor is selected witrea probability which depends

13

Strategies for improving local search

Iterate with different Change landscape Accept non improving
solutions of the problem neighbors
Multi-start Iterative local Simulated Tabu
local search search, GRASP annealing search
Change the objective function Use different
or the data input neighborhoods
Guided local Noisy method Smoothing Variable neighborhood
search method search

Fig. 2 Local search family of algorithms for the improvement of-blimbing and escaping from local op-
tima.

on the current temperature and the amount of degradatioof the objective functionAE
represents the difference in the objective value (energiyéen the current solution and the
generated neighbor solution. As the algorithm progregsbkesprobability that such moves
are accepted decreases. In general, this probabilityaslthe Boltzmann distribution:

AE
P(AE,T)=e T

It uses a control parameter, called temperature, to deterihie probability of accepting
non-improving solutions. At a particular level of temperat many trials are explored. Once
an equilibrium state is reached, the temperature is grpddetreased according to a cool-
ing schedule such that few non-improving solutions are gteckat the end of the search.
Algorithm 3 gives the template of the SA algorithm for maxaation problems.

In addition to the common design issues for hill-climbingaithms such as the defi-
nition of the neighborhood and the generation of the ing@ution, the main design issues
which are specific to SA are:

— The acceptance probability functioit:is the main element of SA which enables non-
improving neighbors to be selected.

— The cooling schedulehe cooling schedule defines the temperature at each stép of t
algorithm. It has an essential role in the efficiency and ffeztveness of the algorithm.

Other similar methods to simulated annealing have beenogeabin the literature such
as threshold accepting, great deluge algorithm, recorddord travel and demon algo-
rithms (Talbi, 2009). The main objective in the design ofsi@A-inspired algorithms is
to speedup the search of the SA algorithm without sacrifitiiegguality of solutions.

14

Algorithm 3 Template of Simulated Annealing (SA) algorithm.

Input: Initial solutions.
Set the temperaturE to the initial value
repeat
Select one random solutiaghin the neighborhood of
AE «+— f(s)— f(9)
if f(s) < () ormd(0,1) < e~ then
s«—¢
end if
Update temperatur€ according to the cooling schudele
until Stopping criteria satisfied
Output: Best solution found

2.4.4 Tabu Search

Glover (1986) points out the controlled randomization in t8Aescape from local optima,
and proposed a deterministic algorithm. In a parallel warkimilar approach named “steep-
est ascent/mildest descent” has been proposed by Hanse®).(18 the 1990’s, the tabu
search algorithm became very popular in solving optimarapiroblems in an approximate
manner. Nowadays, it is one of the most widespread locatBeaetaheuristic. The use of
memory, which stores information related to the searchgm®crepresents the particular
feature of tabu search. A comprehensive book on tabu sea(@iaver and Laguna, 1997).

TS behaves like a steepest LS algorithm but it accepts npmeiwing solutions in order
to escape from local optima when all the neighbors are ngéawming solutions. Usually,
the whole neighborhood is explored in a deterministic mgnwaereas in SA a random
neighbor is selected. As in hill-climbing, when a betterghdior is found, it replaces the
current solution. When a local optimum is reached, the $eeatries on by selecting a
candidate worse than the current solution. The best salinithe neighborhood is selected
as the new current solution even if it is not improving therent solution. Tabu search
may be viewed as a dynamic transformation of the neighbathbis policy may generate
cycles,i.e. previous visited solutions could be selected again.

To avoid cycles, TS discards the neighbors that have beeiopsly visited. It memo-
rizes the recent search trajectory. Tabu search managesargnef the solutions or moves
recently applied, which is called thiabu list This tabu list constitutes the short-term mem-
ory. At each iteration of TS, the short-term memory is updag&toring all visited solutions
is time and space consuming. Indeed, we have to check at &eaatian if a generated so-
lution does not belong to the list of all visited solution$i€h, the tabu list often contains a
constant number of tabu moves. Usually, the attributes eitbves are stored in the tabu
list.

By introducing the concept of solution features or movesuies in the tabu list, one
may lose some information about the search memory. Thenaweeject solutions which
have not yet been generated. If a move is “good”, but it is talouwe still reject it? The
tabu list may be too restrictive; a non-generated solutiay fve forbidden. Yet, for some
conditions, calledspiration criterig tabu solutions may be accepted. Then, the admissible
neighbor solutions are those which are non-tabu or holdspeation criteria.

In addition to the common design issues for local search meetéstics such as the
definition of the neighborhood and the generation of theahgolution, the main design
issues which are specific to a simple TS are:

15

— Tabu list: the goal of using the short-term memory is to prevent thecefaom revisit-
ing previously visited solutions. As mentioned, storing list of all visited solutions is
not practical for efficiency issues.

— Aspiration criterion: a commonly used aspiration criteria consists in selectitefoa
move if it generates a solution that is better than the besidsolution. Another aspira-
tion criteria may be a tabu move that yields a better solwimong the set of solutions
possessing a given attribute.

Furthermore, some advanced mechanisms are commonly ucddn tabu search to deal
with the intensification and the diversification of the sarc

— Intensification (medium-term memory): the medium-term memory stores the elite
(e.g.best) solutions found during the search. Then, the idea gvoa priority to at-
tributes of the set of elite solutions, usually based on glted probability. The search
is biased by those attributes.

— Diversification (long-term memory): the long-term memory stores informations on
the visited solutions along the search. Then, it exploresitivisited areas of the search
space. For instance, it will discourage the attributes ité sbolutions in the generated
solutions in order to diversify the search to other areab®fearch space.

Algorithm 4 describes the template of the TS algorithm. ldlitdn to the search com-
ponents of hill-climbing such as representation, neighbod, initial solution, we have to
define the following concepts which compose the search meofdrS: the tabu list (short-
term memory), the intensification (medium-term memory)] &me diversification (long-
term memory), as detailed in Table 1.

Algorithm 4 Template of Tabu Search (TS) algorithm.

Input: Initial solutions.
Initialize the tabu list
Initialize the medium- and long-term memories of the intécetion and the diversification procedures
repeat

Perform intensification procedure sn

Perform diversification procedure an

Selects either, the best non-tabu solution in the neighborhoos of the best solution if it verifies the

aspiration criterium

if one solutiors’ is selectedhen

s«—¢

end if

Update the tabu list

Update the medium- and long-term memories of the intensificand the diversification procedures
until Stopping criteria satisfied
Output: Best solution found

2.4.5 Iterated Local Search

The quality of the local optima obtained by a hill-climbingethod depends of the initial
solution. As we can generate local optima with high varigbilterated local search (ILS),
also known as iterated descent, large-step Markov chaischained local optimization,
may be used to improve the quality of successive local opfitha kind of strategy has been

16

Table 1 The different search memories of tabu search.

| Search memory | Role | Popular representation |
Tabu list Prevent cycling | Visited solutions, moves attributes
Solutions attributes
Medium-term memory| Intensification Recency memory
Long-term memory Diversification Frequency memory

applied first by Martin et al (1991), and then generalized iyt (1999) and Lourenco
et al (2002).

In multi-start local searchthe initial solution is always chosen randomly, and then is
unrelated to the generated local optima. ILS improves thssital multi-start local search
by perturbing the local optima and reconsidering them dgirgolutions.

ILS is based on a simple principle which has been used in maewific heuristics such
as the iterated Lin-Kernighan heuristic for the traveliaesman problem (Johnson, 1990),
and the adaptive tabu search for the quadratic assignmeliepn (Talbi et al, 1998). First
a local search is applied to an initial solution (a hill-ctimg algorithm or any other local
search metaheuristic). Then, at each iteratigmeraurbationof the obtained local optima is
carried out. A local search is then applied on the perturibédion. The generated solution
is accepted as the new current solution under some conslitidiis process iterates until a
given stopping criterion. Algorithm 5 describes the ILSalthm.

Algorithm 5 Template of the Iterated Local Search (ILS) algorithm.

Input: Initial solutions.
Initialize perturbation
repeat
Perform perturbation os
Apply local search ors
if acceptance criterium is verifigaden
s«—¢
end if
Update perturbation
until Stopping criteria satisfied
Output: Best solution found

Three basic elements compose an ILS:

— Local search:any local search metaheuristic (deterministic or stoit)asan be used
within the ILS framework such as a simple hill-climbing atgom, a tabu search or
simulated annealing. The search procedure is treated asle-bbx (Fig. 3). In the lit-
erature, population-based metaheuristics are excludee tandidate in the search pro-
cedure as they manipulate populations. However, some giigouibased metaheuristics
integrate the concept of perturbation of the (sub)poputatd encourage the search di-
versification.

— Perturbation methodthe perturbation operator may be seen as a large random rfiove o

the current solution. The perturbation method should keepesparts of the solution
and perturb strongly another part of the solution to movesfd}y to another basin of
attraction.

17

Search component:
S- metaheuristic

Perturbation
method

nitial solution Local optim

Acceptance
criteria

Fig. 3 The search component is seen as a black-box for the ILS #iguori

— Acceptance criteriathe acceptance criterion defines the conditions the newdptiana
must satisfy to replace the current solution.

Once the local search metaheuristic involved in the ILS &awork is specified, the design
of ILS will depend mainly on the used perturbation method Hrelacceptance criterion.
Many different designs may be defined according to the varahoices for implementing
the perturbation method and the acceptance criterion.

2.4.6 Other Local Search Metaheuristics

Some existing local search algorithms use other stratégiescape from local optima. They
are briefly described below.

— Variable Neighborhood Search (VNS) (Mladenovic and Han$6A7). The basic idea
of VNS is to successively explore a set of predefined neiditdmds to provide a bet-
ter solution. It explores either at random or systematjcallset of neighborhoods to
get different local optima and to escape from local optimsl.Svexploits the facts that
using various neighborhoods in local search may generéferatit local optima and
that the global optimum is a local optimum for a given neigtilood. Indeed, different
neighborhoods generate different fitness landscapes.

— Guided Local Search (GLS) is a deterministic local searctaheuristic which has been
mainly applied to combinatorial optimization problemss #daptation to continuous
optimization problems is straightforward given that GL& sin top of a local search
algorithm (Voudouris, 1998). The basic principle of GLS hg tdynamic changing of
the objective function according to the already generatedlloptima (Voudouris and
Tsang, 1999). The features of the obtained local optimased to transform the objec-
tive function. It allows the modification of the fithess landpe structure to be explored
by a local search metaheuristic to escape from the obtagead dptima.

— Search space smoothing consists in modifying the landsuihe target optimization
problem (Glover and Millan, 1986; Gu and Huang, 1994). Thedatmng of the land-
scape associated to the problem reduces the number of Iptiadsoand the depth of
the basins of attraction without changing the locationaegif the global optimum of
the original optimization problem. The search space aasetio the landscape remains
unchanged; only the objective function is modified. Onceddnelscape is smoothed by
“hiding” some local optima, any local search metaheurigiiceven a population-based
metaheuristic) can be used in conjunction with the smogttechnique.

— The noisy method (NM) is another local search metaheunigiich is based on the land-
scape perturbation of the problem to solve (Charon and HU®93). Instead of taking
the original data into account directly, the NM considerat tthey are the outcomes of
a series of fluctuating data converging towards the originas. Some random noise is
added to the objective functioh At each iteration of the search, the noise is reduced.
For instance, the noise is initially randomly chosen intargerval [—r, +r]. The range

18

of the intervalr decreases during the search process until a value of O.r@&iffevays
may be used to decrease the noise rate

— The GRASP (Greedy Randomized Adaptive Search Procedurghmeistic is an it-
erative greedy heuristic to solve combinatorial optimaatproblems. It has been in-
troduced by Feo and Resende (1989). Each iteration of theSFRégorithm contains
two steps: construction and local search (Feo and ResefiéB).1n the construction
step, a feasible solution is built using a randomized gregggrithm, while in the next
step a local search heuristic is applied from the constdustdution. A similar idea,
known as thesemi-greedy heuristjevas presented by Hart and Shogan (1987), where a
multi-start greedy approach is proposed but without theofisgcal search. The greedy
algorithm must be randomized to be able to generate varimusians. Otherwise, the
local search procedure can be applied only once. This scieerepeated until a given
number of iterations and the best found solution is kept adittal result. We notice
that the iterations are completely independent, and se tlsaro search memory. This
approach is efficient if the constructive heuristic sampligerent promising regions
of the search space which makes the different local seagdresrating different local
optima of “good” quality.

2.5 Summary

In addition to the representation, the objective functiod aonstraint handling which are
common search concepts to all metaheuristics, the comnmarepts for local search meta-
heuristics are (Fig. 4):

— Initial solution: an initial solution may be specified randomly or by a givenrlstic.

— Neighborhood:the main concept of local search metaheuristics is the defimf the
neighborhood. The neighborhood has an important impachempérformances of this
class of metaheuristics. The interdependency betweeageptation and neighborhood
must not be neglected. The main design question in locatkaaetaheuristics is the
trade-off between the efficiency of the representatiogisirhood and its effectiveness
(e.g.small versus large neighborhoods).

— Incremental evaluation of the neighborhood:this is an important issue for the effi-
ciency aspect of a local search metaheuristic.

— Stopping criteria.

Hence, most of the search components will be reused by eliffdocal search algorithms
(Fig. 4). Moreover, an incremental design and implemeumttadi different local search meta-
heuristics can be carried out. In addition to the commoncseeaoncepts of local search
metaheuristics, the following main search components tabe defined for designing the
following local search metaheuristics:

— Hill-climbing: neighbor selection strategy.

— Simulated annealing, demon algorithms, threshold acogptireat deluge and record-
to-record travel:annealing schedule.

— Tabu searchtabu list, aspiration criteria, medium and long term meesri

— lterated local searchperturbation method, acceptance criteria.

— Variable Neighborhood searcimeighborhoods for shaking and neighborhoods for local
search.

— Guided local search, smoothing method, noisy methatttion changing the input data
or the objective.

19

Common concepts
for metaheuristics

Representation
Objective function

Constraint handling

v

Common concepts
for S-metaheuristics

Initial solution
Neighborhood
Incremental evaluation

Stopping criteria

Simulated annealing
Threshold accepting

Record-to-record travel
Locallsearch Tabu Search

Great deluge

Demon algorithms - Tabu list
Neighbor selection

- Aspiration criteria
- Medium term memory
- Long term memory

Annealing schedule

Iterated Local /Search

Guided local fsearch - Perturbation method
Smoothing method - Acceptance criteria
Noisy|method

Variable Neighborhood
Search

Data or objective Randomized greedy
change algorithm

- Neighborhoods for shaking
- Neighborhoods for local search

Fig. 4 Common concepts and relationships in local search metatiesr

— GRASPrandomized greedy heuristic.

Moreover, there is a high flexibility to transform a local sametaheuristic to another one
reusing most of the design and implementation work.

3 Design and Implementation of Local Search Algorithms undeParadisEO-MO

This sections gives a general presentation of ParadisEfD,amparticular interest on the
ParadisEO-MO module, dedicated to the design of local keaataheuristics and of fitness
landscape analysis components.

3.1 The ParadisEO Software Framework

ParadisEO Kttp://paradiseo.gforge.inria.fr) is a white-box object-oriented soft-
ware framework dedicated to the flexible design of metak&asifor optimization problems
of continuous and combinatorial nature. Based on EO (Engl@bjectshttp://eodev.
sourceforge.net) (Keijzer et al, 2001), this template-based C++ computatibrary is

20

hybrid, parallel and
distributed metaheuristics

f

ParadiseO-PEO

single solution-based ParadisEO-MO 4+ ParadisEQ-MOEO | . Metaheuristios for
metaheuristics multiobjective optimization

ParadiseO-EO

population-based
metaheuristics

Fig. 5 Interacting modules of the ParadisEO software framework.

portable across both Unix-like and Windows systems. THisveme is governed by the Ce-
CILL license under French law and abiding by the rules ofritigtion of free software
(http://www.cecill.info). ParadisEO tends to be used both by non-specialists and op-
timization experts. As illustrated in Fig. 5, it is composgfdour connected modules that
constitute a global framework. Each module is based on a cteaeptual separation of the
solution methods from the problems they are intended toesdltis separation confers a
maximum code and design reuse to the user. The first modulediBRO-EO (Keijzer et al,
2001), provides a broad range of classes for the developofgmbpulation-based meta-
heuristics, including evolutionary algorithms or pagigdwarm optimization techniques.
Second, ParadisEO-MO, which is of our interest in this papantains a set of tools for
single solution-based metaheuristics, hill-climbing, simulated annealing, tabu search
iterative local search, etc. Next, ParadisEO-MOEOQO (Ligfom et al, 2011) is specifically
dedicated to the reusable design of metaheuristics forioljictive optimization. Finally,
ParadisEO-PEO (Cahon et al, 2004) provides a powerful selaskes for the design of
parallel and distributed metaheuristics: at the algorithievel, the iteration-level and the
solution-level. In the frame of this paper, we exclusivedgus on the ParadisEO-MO mod-
ule.

3.1.1 Motivations

In practice, there exists a large diversity of optimizatwablems to be solved, engendering
wide possibilities in terms of models to handle in the franfiea anetaheuristic solution
method. Moreover, a growing number of general-purposechaaethods are proposed in
the literature, with evolving complex mechanisms. Fromagtioner point of view, there is
a popular demand to provide a set of ready-to-use metakielungplementations, allowing
a minimum programming effort. On the other hand, an experegaly wants to design new
algorithms, to integrate new elements into an existing westbhr even to combine different
search mechanisms. Moreover, such a tool is of large iriteresder to be able to evaluate
and to compare different algorithms fairly.

Hence, as pointed out by Cahon et al (2004) and Talbi (2088)etmajor approaches
exist for the development of metaheuristiem scratchor no reuse code reuse onland
both design and code reuskEirstly, programmers are tempted to develop and implement
their own code from scratch. However, it requires time anergy and the resulting code

21

is generally error-prone and difficult to maintain and egolVhe second approach consists
of reusing a third-party source code available on the weheeas individual programs or
as libraries. Individual programs often have applicatigpendent sections that are to be
extracted before a new application-dependent code is todeted. Similarly, modifying
these sections is often time-consuming and error-pronde @ause through libraries is ob-
viously better because they are often well tried, testedysh@nted, and thus more reliable.
However, libraries do not allow the reuse of the completauimnt part of the algorithms
related to the design. Therefore, the code effort remaip®itant. At last, both design and
code reuse allow to overcome this problem. As a consequencapproved approach for
the development of metaheuristics is the use of frameworks.

A metaheuristic software framework may be defined by a setiitdibg-blocks based
on a strong conceptual separation of the invariant parttagrioblem-specific part of meta-
heuristics. Thus, each time a new optimization problem iettackled, both code and design
can directly be reused in order to redo as little code as plesdilence, the implementation
effort is minimal with regards to the problem under investign. Generally speaking, the
constant part is encapsulated in generic or abstract skeléhat are implemented in the
framework. The variable part, which is problem-specifidjxed in the framework but must
be supplied by the user. These user-defined functions asetthibe called by the frame-
work. To do so, the design of the framework must be based osaa cbnceptual separation
between the resolution methods and the problem to be saMejgct-oriented design and
programming is generally recommended for such a purposeaBather way to perform
this separation is to provide a set of modules for each pad,ta make them cooperate
thought text files. However, this allows less flexibility ththe object-oriented approach,
and the execution is generally much more time consumingidBssnote that two types of
software frameworks can be distinguished: white-box fraorks and black-box solvers.

3.1.2 Main Characteristics

A framework is usually intended to be exploited by a large barof users. Its exploitation
could only be successful if a range of user criteria arefeadisTherefore, the main goals of
the ParadiseO software framework are the following onefi¢8at al, 2004; Talbi, 2009):

— Maximum design and code reusghe framework must provide a whole architecture
design for the metaheuristic approach to be used. Moretheprogrammer may redo
as little code as possible. This aim requires a clear andmabdonceptual separation
of the solution methods and the problem to be solved. The mgghnt only write the
minimal problem-specific code and the development proceghtrbe done in an in-
cremental way, so that it will considerably simplify the ilmentation and reduce the
development time and cost.

— Flexibility and adaptability.lt must be possible to easily add new features or to mod-
ify existing ones without involving other algorithmic elemts. Users must have access
to source code and use inheritance or specialization ctmacémbject-oriented pro-
gramming to derive new objects from base or abstract claEsethermore, as existing
problems evolve and new others arise, the framework musbiesaiently specialized
and adapted.

— Utility. The framework must cover a broad range of metaheuristichlgms, parallel
and distributed models, hybridization mechanisms, etcc@irse, advanced features
must not add any difficulty for users wanting to implemenssleal algorithms.

— Transparent and easy access to performance and robustAesie optimization ap-
plications are often time-consuming, the performanceeissicrucial. Parallelism and

22

distribution are two important ways to achieve high perfance execution. Moreover,
the execution of the algorithms must be robust in order togniae the reliability and
the quality of the results. Hybridization mechanisms galhemllow to obtain robust
and better solutions.

— Portability. In order to satisfy a large number of users, the framework swgport many
material architectures (sequential, parallel, distedyitand their associated operating
systems (Windows, Linux, MacOS).

— Easy-of-use and efficienchhe framework must be easy to use and must not contain any

additional cost in terms of time or space complexity in orgekeep the efficiency of a
special-purpose implementation. On the contrary, the éwaonk is intended to be less
error-prone than a specifically developed metaheuristic.

3.1.3 Existing Software Frameworks for Local Search Alionis

Several white-box frameworks for local search metahdasidtave been proposed in the
literature. Most of them have the following limitations:

— Non unified view of local search algorithms: most of exitingmieworks focus only on
a given local search metaheuristic or family of local seanetaheuristics such as hill-
climbing, e.g.EasyLocal++ (Gaspero and Schaerf, 2003), Localizer (Miahd Hen-
tenryck, 2001), Opt4j (Lukasiewycz et al, 2011), or TaburSege.g.OpenTS (COIN-
OR). Only few frameworks are dedicated to the design of bathilfes of local search
metaheuristics in an incremental and unified way.

— Optimization problems: most of the software frameworkstacenarrow,i.e. they have
been designed for a given family of optimization problemmn-inear continuous op-
timization, combinatorial optimizatione(g. iOpt), single-objective optimizatione(g.
Eva2), multi-objective optimizatiore(g.PISA by Bleuler et al (2003)), or specific prob-
lem classesd.g.Google OR-tools).

— Parallel and hybrid metaheuristics: most of the existimgnfeworks do not provide hy-
brid and parallel local search algorithms at all.

— Architectures: it is seldom to find a framework which can &ngany types of sequen-
tial or parallel and distributed architectures: sharearmg (e.g. multi-core, GPUs),
distributed-memory€.g. clusters, network of workstations), large-scale disteduar-
chitectures€.g.desktop grids and high-performance grids). Some softwaradworks
are dedicated to a given type of parallel architectuees MALLBA (Alba et al, 2002),
MAFRA (Krasnogor and Smith, 2000), TEMPLAR (Jones et al,&9®bnes, 2000).

— Fitness landscapes: Only two frameworks, ParadisEO angABaby/zer (Di Gaspero
et al, 2007), which is a plug-in to EasyLocal++, propose gdof fithess landscape
analysis. We can also mention Viz (Halim et al, 2007), thiives to visually analyze
local search metaheuristics, but ot propose tools for fitness landscape analysis.

Table 2 illustrates the characteristics of the main whigg-software frameworks for meta-
heuristics. Of course, we do not claim an exhaustive corapariFor a more detailed review
of software frameworks and libraries for metaheuristibs, teader may refer to Voss and
Woodruff (2002) or Parejo et al (2012). Most of the availdbéeneworks or libraries are not
maintained anymoree(g. Hotframe, MALLBA, MAFFRA, TEMPLAR). Very few frame-
works are widely used and organized into social netwoekg. ParadisEO). There are also
some frameworks for what an executable version or source codld not be obtainee(g.
iOpt, MAGMA, OptQuest).

23

Table 2 Main characteristics of some white-box software framewdidr metaheuristics (S-meta: single
solution-based metaheuristics, P-meta: populationebasetaheuristics, COP: Combinatorial optimization,
Cont: Continuous optimization, Mono: Mono-objective opiiation, Multi: Multi-objective optimization,
HC: Hill-climbing, TS: Tabu Search, GA: Genetic algoritht@P: Constraint Programming, Algo-level:
Algorithmic-level of parallel model, Ite-level: Iteratidlevel of parallel models, Sol-level: Solution-level of
parallel models).

Framework Metaheuristics | Optimization Parallel Fitness
or library available problems models landscapes
EasyLocal++ S-meta Mono - yes
& EasyAnalyzer
Eva2 SA Mono - -
FOM S-meta Mono - -
Google OR-tools S-meta Mono - -
Hotframe S-meta Mono - -
iOpt S-meta, GA, CP| Mono, COP - -
Localizer++ S-meta Mono - -
MALLBA HC Mono Algo-level -
Ite-level
MAFRA HC Mono - -
MAGMA S-meta Mono - -
OpenTS TS Mono - -
Opt4J SA Mono - -
OptQuest HC Mono - -
TEMPLAR HC, SA Mono, COP | Algo-level -
ParadiseO S-meta Mono, Multi | Algo-level yes
P-meta COP, Cont Ite-level
Sol-level

It is also worth mentioning two black-box local search-lshselvers. First, Local-
Solver (Benoist et al, 2011) is a black-box local searchegofer 0-1 integer models. A
mathematical modeling language is proposed, and an adagitivulated annealing algo-
rithm is used as the main search heuristic. Despite of beilgek-box solver, it provides
an object-oriented application programming interfaceiffecent programming languages
(C++, java, .NET). Second, Comet (Michel et al, 2009) is a km@rtial programming lan-
guage used to solve combinatorial optimization problemar@as such as resource alloca-
tion and scheduling. Comet combines mathematical progiagyraonstraint programming,
and local search algorithm to solve combinatorial optitidraproblems.

With respect to the ‘Programming by Optimization’ (PbOnfiework from Hoos (2012),
ParadisEO falls in the third level of compliance. As pointed by the author, one key issue
to solve challenging optimization problem lies in the conation of design choices; that
is, in the context of local search metaheuristics, the eofaepresentation, neighborhood,
and so on. The PbO approach is basedtba idea of avoiding premature commitment of
certain design choices and actively developing promisiibgriaatives for parts of the de-
sign” (Hoos, 2012). PbO seeks at optimizing the performance offtawa@ over a large
design space of programs accomplishing a given computdtiask (this task may or may
not relate to the context of optimization problem solvirtgpos (2012) identifies five levels
of PbO: at level 0, the parameters are set to a specific comtiebevel 1, the design choices
hardwired into a given code are explicitly exposed; at |@y¢he design choices are consid-
ered and actively kept and exposed to the user; at level 3gifvware-development process
is structured and carried out in a way that seeks to providggdechoices and alterna-
tives in many performance-relevant components; at levell Zhe design choices cannot be

24

Algorithm 6 General Local Search Algorithm

searchExplorenitParam (solution)
continuatoiinit (solution)
repeat
searchExploregenerateSeledsolution)
if searchExploreaccep{(solution)then
searchExploremove(solution)
end if
searchExplorenpdateParam(solution)
until (continuator(solutionAND searchExplorecontinue(solution))
searchExploreterminate(solution)

made prematurely, and can possibly be set during the ogttioizprocess by the user. Par-
adiseO provides design choices and alternativesatyparts of a metaheuristic develop-
ment project, specifically for performance-related congms. This corresponds to level 3
in PbO. Moreover, as argued in PbO, it is worth to mention BaaadisEO has been recently
used in conjunction with a racing algorithm to automaticalkentify a well-performing local
search metaheuristic configuration for solving a combirait@ptimization problem from
scheduling; see Marmion et al (to appear) for details.

3.2 Algorithmic Components

Technical details on the implementation of local searctorélgms under ParadisSEO-MO
can be found at the following URItittp://paradiseo.gforge.inria.fr. In addition, a
complete documentation and many examples of use are pcbvithe high flexibility of the
framework and its modular architecture based on the maal kxarch design issues allows
to implement efficient algorithms in solving a large diversif problems. The granular de-
composition of ParadisEO-MO is based on the conceptual himteduced in the previous
section. ParadisEO is an object-oriented applicatiorhabits components can be specified
by the UML standard. UML (Unified Modeling Language) is a stard modeling language
in object-oriented software engineering.

3.2.1 Local Search

The general local search algorithm as implemented in PsiE&WMO is given in Algo-
rithm 6. Existing approaches require specific parametens ¢n be set independently from
the local search process. An iteration of the algorithm ist&ig exploring the neighborhood
of the current solution and selecting one neighbor. Negtattteptance criteria is tested, and
the current solution is modified accordingly. Then, the pmiedocal search parameters are
updated with respect to the current state of the search gs@® a continuation condition
is checked. The search explorer is based on the definitiorspéeific neighborhood for the
problem under study, as well as an evaluation function. dlrigen by a specific strategy,
so that local search algorithms can now be viewed as simptarioes of this conceptual
model.

Main UML classes.In order to instantiate a given local search approach foptioblem
under study, the main classes to be implemented are:

— EO for solution representation, coming from the EO module j#&ziet al, 2001).

25

1 N:moNeighbori
molLocalSearch

+operator()(sol:EOT): void

moNeighborhoodExplorer
+initParam(sol:EOT): void
+operator()(sol:EOT): void
+accept(sol:EOT): bool
+updateParam(sol:EOT): void
+isContinue(sol:EOQT): bool
+move(sol:EOT): void
+terminate(sol:EOT): void

1 N:moNeighbori

:moNeighbort !
moEval|" =~~~ moNeighborhood [~

Fig. 6 Simplified UML diagram for the design of local search alduris.

— eoEvalFunc andmoEval for evaluation of solutions and neighbors (complete anceinc
mental), respectively.

— moNeighbor andmoNeighborhood for defining a neighbor and a neighborhood, respec-
tively.

Those classes follow the main design issues identified itidge@, The UML diagram
of local search algorithms as implemented in the ParadisEDframework is given in
Fig .6. The UML diagram of the whole ParadisEO-MO softwaesrfework is omitted due
to space limitation, but is available on the websitel.ocalSearch is the main class which
implements Algorithm 6. Different local search approachas be defined by means of
themoNeighborhoodExplorer abstract class. The different local search variants aset&fin
below are implemented as specific implementationsotiéighborhoodExplorer.

Local search algorithms availableBased on this very general algorithm, a large number of
local search strategies is included in ParadisEO-MO:

— Hill-climbing algorithms (best-improvement HC, first-imgwement HC, random first-
improvement HC, neutral HC)

— Walk-like algorithms to sample the search space (randonk,wahdom neutral walk
and Metropolis-Hasting)

— Tabu search (including medium-term and long-term mempries

— Simulated annealing (including multiple cooling schedglstrategies)

— lterated local search,

— Variable neighborhood search.

These algorithms are based on a simple combination of treelR&0O-MO building-blocks.
They are implemented in such a way that a minimum number dileno- or algorithm-
specific parameters are required. These easy-to-usethlgeralso tends to be used as ref-
erences for a fair performance comparison in the academitdweven if they are also
well-suited for a straight use to solve real-world optintiza problems. In comparison to
the previous version of the framework, the modularity hasndargely improved, together
with an easier reuse of basic components. Different operatm be experimented without

26

engendering significant modifications in terms of code wyitiA wide range of strategies
are already provided, but this list is not exhaustive asrdm@éwork perpetually evolves and
offers all that is necessary to develop new ones with a mimireffort. Indeed, ParadiseO
is a white-box framework that tends to be flexible while beasguser-friendly as possible.

Problem-related components availablBaradisEO-MO also provides many components
for classical problem representations, like bit-stringd permutations. As well, many neigh-
borhood structures are defined for such problerasiflip for bit-strings;k-swap k-exchange,
two-opt, and insertion for permutations. Moreover, botlomplete and an incremental eval-
uation functions are provided for many academic optim@atroblems, including One-
Max, MaxSAT, traveling salesman problem, quadratic assgmt problem, permutation
flowshop scheduling problem, NK-landscapes, etc. Fortstato instantiate a local search
algorithm for a new permutation-based problem, it is pdedi use standard operators for
representation, initialization and neighborhood so thatévaluation function is the sin-
gle component to be implemented. Once this is provided, #ee can use any algorithm
(HC, SA, TS, ILS, VNS) or any tool from fitness landscapes figftter own optimization
problem.

3.2.2 Fitness Landscapes

Another feature of the ParadisEO-MO software framewor&tesl to sampling and statistical
tools for fitness landscape analysis. Indeed, many cheatpgimechanisms have been in-
troduced and clearly adapted to local search principles. diteckpointing process is called
at each iteration of the local search algorithm through tvamonent related to the stop-
ping condition (Algorithm 6, Line 9). Statistical tools inde neighborhood-related statis-
tics (minimum, maximum, mean and standard deviation oftrt@ging solutions, probabil-
ity to increase, neutral degree, and so on), general-pergtadistics (fithess of the current
solution, number of iterations, evaluations, best foundaspetc.). The evaluation of all
these values can now be printed onto output files. Thankd tbade statistical values, it
is now possible to sample the fithess landscape in order tputnihe density of states,
the ruggedness by autocorrelation, the fithness-distarnrcelation, the fitness distribution of
local optima, the length of adaptive walks, the fithess cldlie neutral degree distributions
and other statistics based on random neutral walks.

Only the main principle of fithess landscape analysis in #aED-MO are reported
in the paper. The technical details are explained in therialtavailable on the website
of ParadisEO. In particular, one lesson explains how tdyepsrform a fithess landscape
analysis with all the tools available within the frameworing the same components than
the local search metaheuristic presented in other lessons.

3.3 Discussion

We believe that the aforementioned characteristics maka fParadisEO a valuable tool
for both researchers and practitioners, and a unique s@ftifk@mework in comparison to
existing ones. Indeed, it includes many state-of-theemdllsearch algorithms. The rich set
of ParadisEO modular ingredients has serve as buildingkblto implement these methods.
The related source code of ParadisEO, that contains man&0@00 lines of code, is main-
tained and regularly updated by the developers. Since @ct@®06, ParadisEO has been

27

downloaded more than 20000 times, and more than 250 usemrsgigtered on the mailing-
list (paradiseo-users@lists.gforge.inria.fr). Moreover, many examples and tutori-
als of local search algorithms and fitness landscapes asafsswell as a complete docu-
mentation of the application programming interface, aglakle on the ParadisEO website
(http://paradiseo.gforge.inria.fr). The tutorials related to ParadisEO-MO available
on the website goes from the implementation of an hill-climybalgorithm to fitness land-
scape analysis, and help the user to incrementally incatp@dvanced features related to
neighborhood, simulated annealing, tabu search, itetatatisearch and even hybridization
between local search and evolutionary algorithms.

According to a recent survey on software frameworks for metastics (Parejo et al,
2012), ParadisEO is competitive in terms of supported neetiastics, problem adapta-
tion/encoding, advanced metaheuristic characteristiesign, implementation and licens-
ing, as well as documentation, samples and popularity. &lydtaradisEO ranks second
over tenselectedsoftware frameworks (Parejo et al, 2012), behind ECJ (WI2612).
However, let us emphasize that ECJ does not provide any ss@ath metaheuristic, but
is specialized onto evolutionary computation algorithmby.o

ParadisEO gives the possibility to design and implementdewiumber of new res-
olution methods, either sequential or parallel, just by bimimg existing elements in an
innovative way, or by implementing original ones. Moreg\ércan serve as a reference
implementation in order to compare different algorithmislyaFor instance, whenever a
new algorithm is proposed, its efficiency can be experimignteemonstrated by compar-
ing its behavior with existing ones. On the other hand, HsEAd is also a practical tool
that can be used to tackle an original optimization probl€he implementation of efficient
programs is highly facilitated so that the user only has tu$oon problem-related issues
of representation, initialization, evaluation and neigtiimod. The implementation effort is
even more reduced when a classical solution representzioibe applied for the problem
under consideration,e. a binary or a permutation-based encoding. For such problgmas
development and time cost is reduced to minimum since thiei@an function is the sin-
gle element to be implemented. Of course, this cost is alwelgsed to the proficiency of
the programmer in charge of the implementation. Once ttafuation function is available,
the user only has to instantiate any local search algoritiilalimbing, simulated anneal-
ing, tabu search...) to obtain a powerful resolution progthat is able to run on a large
range of material architectures (sequential, clusted, @PU) and their associated operat-
ing systems (Windows, Linux, MacOS). Though, for more ssfitéted solution encodings,
the development cost remains substantial with respectetedmplexity of the underlying
representation and to the level of expertise of the programBut it will always be lower
than implementing a whole specific algorithm from scratchlast, hybrid metaheuristics
like memetic algorithms (Talbi, 2009) can be convenientgigned by combining compo-
nents from the different modules of ParadisEO. Moreovertisg from a single-objective
optimization problem implemented within ParadisEO, it iscenmonplace to investigate a
multiobjective variant by means of the ParadisEO-MOEO n®(lliefooghe et al, 2011). In
particular, multiobjective local search algorithms amsogbrovided (Liefooghe et al, 2012).

Finally, the ParadisEO-MO tools for fitness landscape amlgnd local search algo-
rithms have been validated on a large range of optimizatioblpms from both academic
and real-world fields, including vehicle routing (Lecrona&t2010), scheduling (Marmion
et al, 2011b), packing (Khanafer et al, 2012), NK-landsedfkhoa et al, 2010), quadratic
assignment problem (Daolio et al, 2010), and bio-inforosm{Boisson et al, 2011), among
many others.

28

4 Conclusions

Designing software frameworks for local search algoritlisiarimordial. In practice, there

is a large diversity of optimization problems. Moreovegrthis a continual evolution of the
models associated to optimization problems. The problemehange or needs further re-
finements. Some objectives and/or constraints may be addksded or modified. In general,
the efficient solving of a problem needs to experiment maiyirspmethods, tuning the pa-
rameters of each metaheuristic, etc. Moreover, the metistieldomain is also evolving in

terms of new algorithms. More and more increasingly comfideal search algorithms are
developed€.g.hybrid strategies, parallel models).

There is a clear need to provide a ready-to-use implementafi metaheuristics. It is
important for application engineers to choose, implemexck apply state-of-the-art algo-
rithms without in-depth programming knowledge and exgerin optimization. For opti-
mization experts and developers, it is useful for them tduata and compare fairly dif-
ferent algorithms, transform ready-to-use algorithmsjgtenew algorithms, combine and
parallelize algorithms.

ParadisEO-MO has been completely designed in order to gepeat the same time,
priori, a posterioriand on-line tools of analysis and efficient local search am@ntations.
This makes from ParadisEO a unique software framework imggaheuristics community.
All these features have been documented, tested and \ealidat various problems from
routing, assignment, packing, and scheduling. A numbeutofials with many examples
of use are available on the website. In future works, we ptaextend the framework to
adaptive search metaheuristics based on on-line fithedsdape analysis.

Once a local search algorithm is designed, the ParadisEGsditvare framework al-
lows to implement it easily. The architecture modularitgiuees the time and the complexity
of designing local search metaheuristics. An expert userwahout difficulty, extend the
already available building-blocks in order to more suithie problem, and then to obtain
better performance. Nevertheless, ParadisEO-MO can laehyseewbies with a minimum
of code to produce in order to implement diverse searchegfieg. A natural perspective
is to evolve the open-source software by integrating moegcsecomponents, heuristics
and problem solving environments.§.logistics, transportation, energy production). More-
over, the ParadisEO-MO module has been recently extended tmder GPU (Melab et al,
2011).

The fitness landscape analysis of optimization problems isrgortant aspect in de-
signing a local search algorithm. It is one of the most cinglileg problem in the theory
of heuristic search algorithms. Indeed, the propertiesheflandscape has an important
impact on the performance of local search metaheuristiosy have a major role in de-
scribing, explaining and predicting the behavior of locadsh metaheuristics. One of the
main lessons to learn is to analyze and exploit the strucpraperties of the landscape
associated to a problem class. One can also modify the lapdday changing the represen-
tation/neighborhood structure or the guiding function fsat it becomes “easier” to solve
(e.g.deep valley landscape).

One of the most important perspective is the automatic petemsetting. Indeed, many
parameters have to be tuned for any local search algoritananfeter setting may allow a
larger flexibility and robustness, but requires a carefitidlization. Those parameters may
have a great influence on the efficiency and effectivenedsec$earch. It is not obvious to
define off-line or on-line which parameter setting shouldused. The optimal values for
the parameters depend mainly on the problem and even tlamaesto deal with and on the
search time that the user wants to spend in solving the proble

29

Acknowledgements The authors would like to gratefully acknowledge the reesfor their valuable feed-
back that highly contributed to improve the quality of thepea Moreover, we would like to thank the Inria
research institute for their support on the DOLPHIN praojdttanks are also due to all the members of the
DOLPHIN research group for their collaboration in the depehent of the ParadisEO framework.

References

Aarts EHL, Lenstra JK (1997) Local search in combinatoriatimization. John Wiley

Adenso-Diaz B, Laguna M (2006) Fine-tuning of algorithnséng fractional experimental
designs and local search. Operations Research 54(1):99-11

Alba E, Almeida F, Blesa M, Cotta C, Diaz M, Dorta |, GabadtGonzalez J, Lebn C,
Moreno L, Petit J, Roda J, Rojas A, Xhafa F (2002) MALLBA: Arétny of skeletons for
combinatorial optimisation. In: Parallel Processing Guoahce (Euro-Par 2002), LNCS,
vol 2400, Springer-Verlag, Berlin Heidelberg, pp 927-932

Altenberg L (1997) Fitness distance correlation analyaisinstructive counterexemple. In:
Back T (ed) Seventh Int. Conf. on Genetic Algorithms, Mardgaufmann, pp 57-64

Bastolla U, Porto M, Roman HE, Vendruscolo M (2003) Statipcaperties of neutral evo-
lution. Journal Molecular Evolution 57(S):103-119

Benoist T, Estellon B, Gardi F, Megel R, Nouioua K (2011) U&mver 1.x: a black-box
local-search solver for 0-1 programming. 40R: A Quartedyrdial of Operations Re-
search 9:299-316

Birattari M, Stiitzle T, Paquete L, Varrentrapp K (2002) Airey algorithm for configur-
ing metaheuristics. In: Proceedings of the Genetic andufeslary Computation Con-
ference, Morgan Kaufmann Publishers Inc., San Francisgo,USA, GECCO '02, pp
11-18

Bleuler S, Laumanns M, Thiele L, Zitzler E (2003) PISA - a fdatn and programming lan-
guage independent interface for search algorithms. Inoi@knternational Conference
on Evolutionary Multi-Criterion Optimization (EMO 2003faro, Portugal, pp 494-508

Boisson JC, Jourdan L, Talbi EG (2011) Metaheuristics basedovo protein sequencing:
A new approach. Applied Soft Computing 11(2):2271-2278

Burke E, Newall J (2002) Enhancing timetable solutions vdtbal search methods. In:
Practise and Theory of Automated Timetabling IV (PATAT 20G2nt, Belgium). LNCS,
Vol. 2740, IEEE Press, Springer, pp 195-206

Cahon S, Melab N, Talbi EG (2004) ParadiseO: A framework Far teusable design of
parallel and distributed metaheuristics. Journal of Hgtims 10(3):357-380

Cerny V (1985) A thermodynamical approach to the traveliaigsman problem: An effi-
cient simulation algorithm. Journal of Optimization Theand Applications 45:41-51

Charon I, Hudry O (1993) The noising method: A new method @nbinatorial optimiza-
tion. Operations Research Letters 14:133-137

Clergue M, Collard P (2002) GA-hard functions built by comdtion of trap functions.
In: Proceedings of the 2002 Congress on Evolutionary Coatiout (CEC 2002), IEEE
Press, pp 249-254

Daolio F, Verel S, Ochoa G, Tomassini M (2010) Local optiméwoeks of the quadratic
assignment problem. In: Proceeding of IEEE world confesemt computational intelli-
gence (WCCI), Barcelona, Spain, pp 3145 — 3152

Dekkers A, Aarts E (1991) Global optimization and simuladedealing. Mathematical Pro-
gramming 50:367-393

Di Gaspero L, Roli A, Schaerf A (2007) Easyanalyzer: an dbpeiented framework for the
experimental analysis of stochastic local search algosthn: International conference

30

on Engineering stochastic local search algorithms (SLSR®pringer, Berlin, Heidel-
berg, Lecture Notes in Computer Science, pp 76—-90

Eiben AE, Michalewicz Z, Schoenauer M, Smith JE (2007) Patamcontrol in evolution-
ary algorithms. In: Lobo FG, Lima CF, Michalewicz Z (eds) &aeter Setting in Evolu-
tionary Algorithms, Studies in Computational Intelligeneol 54, Springer, pp 19-46

Feo TA, Resende MGC (1989) A probabilistic heuristic for anpaotationally difficult set
covering problem. Operations Research Letters 8:67-71

Feo TA, Resende MGC (1995) Greedy randomized adaptivelspancedures. Journal of
Global Optimization 6:109-133

Gaspero LD, Schaerf A (2003) EasyLocal++: An object-ogdnframework for flexible
design of local search algorithms. Software — Practice &dfignce 33(8):733—-765

Glover F (1986) Future paths for integer programming ankislito artificial intelligence.
Comput Ops Res 13(5):533-549

Glover F, Laguna M (1997) Tabu Search. Kluwer Academic, Dexit

Glover F, Millan CM (1986) The general employee schedulingbfem: An integration of
MS and Al. Computers and Operations Research 13(5):563-573

Gu J, Huang X (1994) Efficient local search with search spaweothing: a case study
of the traveling salesman problem. IEEE Transactions oteSysMan and Cybernetics
24(5):728-735

Halim S, Yap RHC, Lau HC (2007) An integrated white+black lagproach for designing
and tuning stochastic local search. In: 13th Internati&@ahference on Principles and
Practice of Constraint Programming (CP 2007), Springectire Notes in Computer
Science, vol 4741, pp 332-347

Hansen P (1986) The steepest ascent mildest descent teefatistombinatorial program-
ming, congress on Numerical Methods in Combinatorial Ogation, Capri, Italy

Hart JP, Shogan AW (1987) Semi-greedy heuristics: An ecgistudy. Operations Re-
search Letters 6(3):107-114

Hoos H, Stutzle T (2004) Stochastic Local Search: Foundatand Applications. Morgan
Kaufmann

Hoos HH (2012) Programming by optimization. Communicatiohthe ACM 55(2):70-80,
DOI 10.1145/2076450.2076469

Hutter F, Hoos HH, Leyton-Brown K, Stutzle T (2009) Para&ilan automatic algorithm
configuration framework. J Artif Int Res 36(1):267—-306

Johnson DS (1990) Local optimization and the travellingsialan problem. In: 17th Col-
loguium on Automata, Languages and Programming, LNCS K& .8gringer, Berlin, pp
446-461

Jones M (2000) A object-oriented framework for the impletagan of search techniques.
PhD thesis, University of East Anglia

Jones M, McKeown G, Rayward-Smith V (1998) Templar: A objegented framework
for distributed combinatorial optimization. In: Proc. bEtUNICOM Seminar on Modern
Heuristics for Decision Support, UNICOM Ltd, Brunel unisdy, UK

Jones T (1995) Evolutionary algorithms, fithess landscapéssearch. PhD thesis, Univer-
sity of New Mexico, Albuquerque

Keijzer M, Merelo JJ, Romero G, Schoenauer M (2001) Evolabggcts: A general purpose
evolutionary computation library. In: 5th Internationabi@erence on Artificial Evolution
(EA 2001), Le Creusot, France, pp 231-244

Khanafer A, Clautiaux F, Hanafi S, EI-Ghazali T (2012) The +zmamflict packing problem.
Computers & Operations Research 39:2122-2132

31

Kimura M (1983) The Neutral Theory of Molecular Evolutiona@bridge University Press,
Cambridge, UK

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization bymsilated annealing. Science
220(4598):671-680

Krasnogor N, Smith J (2000) MAFRA: A Java memetic algorithitenework. In: Data
mining with evolutionary algorithms, Las Vegas, NevadaAJgp 125-131

Lecron F, Manneback P, Tuyttens D (2010) Exploiting grid paiation for solving the vehi-
cle routing problem. In: 2010 IEEE/ACS International Caefece on Computer Systems
and Applications (AICCSA), pp 1-6

Liefooghe A, Jourdan L, Talbi EG (2011) A software framewdrdksed on a conceptual
unified model for evolutionary multiobjective optimizatidParadisEO-MOEOQO. European
Journal of Operational Research 209(2):104-112

Liefooghe A, Humeau J, Mesmoudi S, Jourdan L, Talbi EG (2002) dominance-
based multiobjective local search: design, implementatiod experimental analysis on
scheduling and traveling salesman problems. Journal ofistms 18(2):317—352

Locatelli M (2000) Simulated annealing algorithms for donbus global optimization: con-
vergence conditions. Journal of Optimization Theory anglfations 29(1):87-102

Lourenco HR, Martin O, Stutzle T (2002) Handbook of metalstias, Operations Re-
search and Management Science, vol 57, Kluwer Academiddhes, chap Iterated local
search, pp 321-353

Lukasiewycz M, GlaR M, Reimann F, Teich J (2011) Opt4J - A Maddramework for
Meta-heuristic Optimization. In: Proceedings of the Gernand Evolutionary Computing
Conference (GECCO 2011), Dublin, Ireland

Madras N (2002) Lectures on Monte Carlo Methods. Americath&laatical Society, Prov-
idence, Rhode Island

Marmion ME, Dhaenens C, Jourdan L, Liefooghe A, Verel S (20INILS: a Neutrality-
based Iterated Local Search and its application to FlowSubeduling. In: Merz P, Hao
JK (eds) Evolutionary Computation in Combinatorial Optation, Springer, Turino,
Italie, Lecture Notes in Computer Science, vol 6622, pp 29P—

Marmion ME, Dhaenens C, Jourdan L, Liefooghe A, Verel S (2)1n the neutrality of
flowshop scheduling fitness landscapes. In: 5th Learninglatedligent OptimizatioN
Conference (LION 5), Springer, Rome, Italy, Lecture NotesComputer Science, vol
6683, pp 238—-252

Marmion ME, Mascia F, Lopez-lbafez M, Stitzle T (to appeAutomatic design of hybrid
stochastic local search metaheuristics. In: Hybrid Matakgécs (HM 2013), Springer,
Lecture Notes in Computer Science

Martin O, Otto S, Felten EW (1991) Large-step markov chamgtie traveling salesman
problem. Complex Systems 5(3):299-326

Melab N, Luong TV, Karima B, Talbi EG (2011) Towards Paradis®IO-GPU: a
Framework for GPU-based Local Search Metaheuristics. lth International Work-
Conference on Artificial Neural Networks, Springer, Tormimos-Malaga, Espagne,
Lecture Notes in Computer Science, vol 6691

Michel L, Hentenryck PV (2001) Localizer++: An open librefor local search. Tech. Rep.
CS-01-02, Brown University, Computer Science

Michel L, See A, Hentenryck PV (2009) Parallel and distrézbtocal search in COMET.
Computers & Operations Research 36(8):2357-2375

Mladenovic M, Hansen P (1997) Variable neighborhood se&omputers and Operations
Research 24:1097-1100

32

Nannen V, Eiben AE (2007) Relevance estimation and valubresibn of evolutionary al-
gorithm parameters. In: Proceedings of the 20th internatimint conference on Artifical
intelligence, Morgan Kaufmann Publishers Inc., San FsowiCA, USA, 1IJCAI'07, pp
975-980

Ochoa G, Tomassini M, Verel S, Darabos C (2008) A Study of NKdscapes’ Basins and
Local Optima Networks. In: Proceedings of the 10th annuafe@nce on Genetic and
evolutionary computation, ACM New York, NY, USA, Atlantaniled States, pp 555—
562, DOI 10.1145/1389095.1389204

Ochoa G, Verel S, Tomassini M (2010) First-improvement estdmprovement local op-
tima networks of nk landscapes. In: Proceedings of the Iitdrriational Conference on
Parallel Problem Solving From Nature, Krakow, Poland, pg-110.3

Ozdamar L, Demirhan M (2000) Experiments with new stochagtobal optimization
search techniques. Computers and Operations ReseargtB21(B65

Papadimitriou CH, Steiglitz K (1982) Combinatorial optiration: algorithms and complex-
ity. Prentice-Hall, Inc.

Parejo JA, Ruiz-Cortés A, Lozano S, Fernandez P (2012aMitristic optimization frame-
works: A survey and benchmarking. Soft Computing 16(3)-551L

Quick R, Rayward-Smith V, Smith G (1998) Fitness distangesatation and ridge functions.
In: et al AEE (ed) Fifth Conference on Parallel Problems Bgj¥rom Nature (PPSN’98),
Springer-Verlag, Heidelberg, Lecture Notes in Computéerste, vol 1498, pp 77-86

Reidys CM, Stadler PF (2001) Neutrality in fitness landssap@plied Mathematics and
Computation 117(2—3):321-350

Rodriguez-Tello E, Hao JK, Torres-Jimenez J (2008) An ¢iffedwo-stage simulated an-
nealing algorithm for the minimum linear arrangement peofol Computers & Operations
Research 35(10):3331 — 3346

Rosé H, Ebeling W, Asselmeyer T (1996) The density of statesieasure of the difficulty
of optimisation problems. In: Parallel Problem SolvingnfrdNature (PPSN 1996), pp
208-217

Rothlauf F (2006) Representations for genetic and evoiatiyp algorithms, 2nd edn.
Springer-Verlag

Sendhoff B, Kreutz M, von Seelen W (1997) A condition for tlemgtype-phenotype map-
ping: Causality. In: Proc. of the 7th Int. Conf. on Genetigddithms, East Lansing, MI,
pp 73-80

Stadler PF (2002) Fitness landscapes. In: Biological Bwmiuand Statistical Physics,
Springer-Verlag, Heidelberg, Lecture Notes Physics, 3, pp 187-207

Stutzle T (1999) Local search algorithms for combinatagpi@blems - analysis, algorithms
and new applications. PhD thesis, DISKI - Dissertationenkunstliken Intelligenz.,
Sankt augustin, Germany

Talbi EG (2009) Metaheuristics: from design to implementatWiley

Talbi EG, Hafidi Z, Geib JM (1998) A parallel adaptive tabursbaapproach. Parallel com-
puting 24(14):2003-2019

Van Nimwegen E, Crutchfield J, Huynen M (1999) Neutral evoluof mutational robust-
ness. In: Proc. Nat. Acad. Sci. USA 96, pp 9716-9720

Verel S (2009) Fitness landscapes and graphs: multimatlerggedness and neutrality.
In: 11th annual conference companion on Genetic and evolaty computation confer-
ence (GECCO 2009), ACM, Montreal, Canada, pp 3593-3656

Verel S, Collard P, Clergue M (2003) Where are bottleneck K fNness landscapes?
In: Proceedings of the 2003 Congress on Evolutionary Coatiout (CEC 2003), IEEE
Press, Canberra, pp 273-280

33

Voss S, Woodruff DL (2002) Optimization software classdibies. Kluwer

Voudouris C (1998) Guided local search - an illustrativenegke in function optimization.
BT Technology Journal 16(3):46-50

Voudouris C, Tsang E (1999) Guided local search. Europeamadbof Operational Re-
search 113(2):469-499

Weinberger ED (1990) Correlated and uncorrelatated fitlzesscapes and how to tell the
difference. In: Biological Cybernetics, pp 63:325-336

Weinberger ED (1991) Local properties of Kauffman’s NK mipdguneably rugged energy
landscape. Physical Review A 44(10):6399-6413

White DR (2012) Software review: the ECJ toolkit. Genetiogtamming and Evolvable
Machines 13(1):65-67

Wilke CO (2001) Adaptative evolution on neutral networksiliBAath Biol 63:715-730

