
HAL Id: hal-00832029
https://hal.science/hal-00832029v1

Submitted on 2 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ParadisEO-MO: From Fitness Landscape Analysis to
Efficient Local Search Algorithms

Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel

To cite this version:
Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel. ParadisEO-MO: From Fitness
Landscape Analysis to Efficient Local Search Algorithms. Journal of Heuristics, 2013, 19 (6), pp.881-
915. �10.1007/s10732-013-9228-8�. �hal-00832029�

https://hal.science/hal-00832029v1
https://hal.archives-ouvertes.fr

Journal of Heuristics manuscript No.
(will be inserted by the editor)

ParadisEO-MO: From Fitness Landscape Analysis to Efficient
Local Search Algorithms

J. Humeau · A. Liefooghe · E-G. Talbi · S. Verel

Received: 31-01-2012 / Revised: 04-06-2013 / Accepted: date

Abstract This paper presents a general-purpose software framework dedicated to the de-
sign, the analysis and the implementation of local search metaheuristics: ParadisEO-MO.
A substantial number of single solution-based local searchmetaheuristics has been pro-
posed so far, and an attempt of unifying existing approachesis here presented. Based on a
fine-grained decomposition, a conceptual model is proposedand is validated by regarding
a number of state-of-the-art methodologies as simple variants of the same structure. This
model is then incorporated into the ParadisEO-MO software framework. This framework
has proven its efficiency and high flexibility by enabling theresolution of many academic
and real-world optimization problems from science and industry.

Keywords Local search· Metaheuristic· Fitness landscapes· Conceptual unified model·
Algorithm design, analysis and implementation· Software framework

J. Humeau· A. Liefooghe· E-G. Talbi· S. Verel
Inria Lille-Nord Europe, DOLPHIN research team
Parc Scientifique de la Haute Borne, 40 avenue Halley, 59650 Villeneuve d’Ascq, France

J. Humeau
École des Mines de Douai, département IA
941 rue Charles Bourseul, BP 10838, 59508 Douai, France
E-mail: jeremie.humeau@mines-douai.fr

A. Liefooghe
Université Lille 1, Laboratoire LIFL, UMR CNRS 8022
Cité scientifique, Bât. M3, 59655 Villeneuve d’Ascq cedex, France
E-mail: arnaud.liefooghe@univ-lille1.fr

E.-G. Talbi
Université Lille 1, Laboratoire LIFL, UMR CNRS 8022
Cité scientifique, Bât. M3, 59655 Villeneuve d’Ascq cedex, France
E-mail: talbi@lifl.fr

S. Verel
Université Nice Sophia Antipolis, Laboratoire I3S, UMR CNRS 6070
2000 route des Lucioles, BP 121, 06903 Sophia Antipolis cedex, France
E-mail: verel@i3s.unice.fr

2

1 Introduction

The need of software frameworks is essential in the design and implementation of local
search metaheuristics. Those frameworks enable the application of different search algo-
rithms (e.g.hill-climbing, tabu search, simulated annealing, iterated local search) in a uni-
fied way to solve a large variety of optimization problems (single-objective/multi-objective,
continuous/discrete) as well supporting the extension andadaptation of the metaheuristics
for continually evolving optimization problems. A framework is different from a solver,
since it does not implement a universal optimal resolution methodology but rather provides
tools allowing a better development in terms of cost and effort. Hence, the user only has to
focus on high-level design aspects. Indeed, a metaheuristic is not a heuristic. It requires a
number of problem-specific components in order to be appliedto a particular solving task.
A metaheuristic is rather an upper-level general methodology that can be used as a guiding
strategy in designing underlying heuristics to solve specific optimization problems.

In general, the efficient solving of a given optimization problem requires to experiment
many solving methods, tuning the parameters of each metaheuristic, etc. The metaheuristic
domain in terms of new algorithms is also evolving. More and more increasingly complex
local search algorithms are developed. Moreover, it allowsthe design of complex hybrid and
parallel models which can be implemented in a transparent manner on a variety of architec-
tures (shared-memory such as multi-cores and GPUs, distributed memory such as clusters,
and large-scale distributed architecture such as Grids andClouds). Hence, there is a clear
need to provide a ready-to-use implementation of such metaheuristics. It is important for
application engineers to choose, implement and apply state-of-the-art algorithms without
in-depth programming knowledge and expertise in optimization. For optimization experts
and developers, it is useful for them to evaluate and comparefairly different algorithms,
to transform ready-to-use algorithms, to design new algorithms, as well as to combine and
parallelize algorithms. Frameworks may provide default implementation of classes. The user
has to replace the defaults that is appropriate for his/her application. Indeed, software frame-
works are not supposed to be universal implemented applications, but rather adaptable tools
allowing a better implementation in terms of cost and effort.

ParadisEO is a software framework allowing the reusable design of metaheuristics. It
is available at the following URL:http://paradiseo.gforge.inria.fr. Unlike black-
box solvers, It is based on a conceptual separation between the search algorithm and the
problem to be solved. ParadisEO is a free open-source white-box object-oriented software
framework implemented in C++. This project has been downloaded more than 20000 times
and more than 250 active users are registered in the mailing-list. It contains four intercon-
nected modules: EO (Keijzer et al, 2001) for population-based metaheuristics, MO for single
solution-based metaheuristics, MOEO (Liefooghe et al, 2011) for multi-objective optimiza-
tion and PEO (Cahon et al, 2004) for parallel and distributedmetaheuristics. In addition, the
whole framework allows the implementation of hybrid approaches.

ParadisEO-MO (Moving Objects) is the module dedicated to the design of single solution-
based metaheuristics (i.e. local search). An important aspect in ParadisEO-MO is that the
common search concepts of local search metaheuristics are factored. All search components
are defined as templates (generic classes). ParadisEO is based on the object-oriented pro-
gramming and design paradigm in order to make those search mechanisms adaptable. The
user designs and implements a local search algorithm by deriving the available templates that
provide the functionality of different search components:problem-specific templates (e.g.
representation, objective function) and problem-independent templates (e.g.neighborhood
exploration, cooling schedule, stopping criteria, etc.).Moreover, some available components

3

allow to trace statistics on local search execution describing the landscape of the problem.
This paper presents the design, analysis and implementation of the ParadisEO-MO module,
allowing to tackle an optimization problem as a whole, from its fitness landscape analysis to
its resolution by means of local search metaheuristics.

The paper is organized as follows. In Section 2, a unified viewof local search algo-
rithms is presented. This section details the common searchcomponents for local search
metaheuristics. It introduces, in an incremental way, the well-known local search algorithm
and outlines the landscape analysis of optimization problems. Then, Section 3 discusses the
design and implementation of the ParadisEO-MO framework. Some design and implemen-
tations of popular local search algorithms such as hill-climbing, simulated annealing, tabu
search and iterated local search are illustrated. Finally,Section 4 outlines the main conclu-
sions and perspectives of this work.

2 A Conceptual Model for Local Search

2.1 Local Search General Template

While solving optimization problems, single solution-based metaheuristics (or local search
metaheuristics) improve a single solution. They could be viewed as “walks” through neigh-
borhoods or search trajectories through the search space ofthe problem at hand (Talbi,
2009). The walks (or trajectories) are performed by iterative procedures that move from the
current solution to another one in the search space. Local search metaheuristics show their
efficiency in tackling various optimization problems in different domains.

Local search metaheuristics iteratively apply the generation and replacement procedures
from the current single solution (Fig. 1). In the generationphase, a set of candidate solutions
are generated from the current solutions. This setC(s) is generally obtained by local trans-
formations of the solution. A candidate solution is often aneighboring solution, and so, the
setC(s) is a subset of theneighborhoodof solutions. In the replacement phase (also named
transition rule, pivoting rule and selection strategy), a selection is performed from the can-
didate solution setC(s) to replace the current solution,i.e. a solutions′ ∈C(s) is selected
to be the new solution. Whens′ is selected, it replaces the current solution according to an
acceptance criterion. This process iterates until a given stopping criteria is satisfied. The
generation and the replacement phases may bememoryless. In this case, the two procedures
are based only on the current solution. Otherwise, some history of the search stored in a
memory can be used in the generation of the candidate list of solutions and the selection of
the new solution. Popular examples of such local search metaheuristics are hill-climbing,
simulated annealing and tabu search. Algorithm 1 illustrates the high-level template of local
search metaheuristics.

2.2 Common Issues

The common search concepts forall local search metaheuristics are the definition of the
representationof solutions, theevaluation function, theneighborhoodstructure, theincre-
mental evaluationof neighbors, and the determination of theinitial solution.

4

Memory

Candidate
Solutions

Neighborhood
Generate
candidates

Accept?
Select

Fig. 1 Template for local search metaheuristic: (i) generate candidate solutions from the neighborhood,
(ii) select a neighbor, (iii) decide to replace the current solution by the selected neighbor.

Algorithm 1 High-level template of local search metaheuristics.

Input: Initial solutions.
repeat

Select one solutions′ in the neighborhood ofs
if acceptance criterion is truethen

s←− s′

end if
until Stopping criteria satisfied
Output: Best solution found.

2.2.1 Representation

Designing any metaheuristic needs a representation which encodes the solutions of the
search spaceS according to the target optimization problem. It is a fundamental design
question in the development of metaheuristics. The representation plays a major role in the
efficiency and effectiveness of any metaheuristic and then constitutes an essential step in
designing a metaheuristic. The representation must be suitable and relevant to the tackled
optimization problem. Moreover, the efficiency of a representation is also related to the
search operators applied on solutions (Rothlauf, 2006). Infact, when defining a representa-
tion, one has to bear in mind how the solution will be evaluated and how the search operators
which defines the neighborhood will operate.

Many straightforward representations may be applied for some traditional families of
optimization problems. Indeed, there exist some classicalrepresentations that are com-
monly used to solve a large variety of optimization problems. Those representations may
be combined or underly new representations. According to their structure, there are two
main classes of representations: linear and non-linear. Linear representations may be viewed
as strings of symbols of a given alphabet (e.g.binary, permutations, continuous, discrete).
Non-linear representations are in general more complex structures. They are mostly based
on graph structures. Among the traditional non-linear representations, trees are the most
often used.

2.2.2 Evaluation

The objective functionf , also defined as the fitness function, cost function, evaluation func-
tion or utility function, formulates the goal to achieve. Itassociates to each solution of the
search space a real value which describes the quality or the fitness of the solution:f : S→ IR.

5

Then, it represents an absolute value and allows a complete ordering of solutions from the
search space.

The objective function is an important element in designinga metaheuristic. It will guide
the search towards “good” solutions of the search space. If the objective function is improp-
erly defined, it can lead to non-acceptable solutions whatever which metaheuristic is used.

2.2.3 Neighborhood

The definition of the neighborhood is a required common step for the design of any local
search metaheuristic. The neighborhood structure plays a crucial role in the performance of
a local search metaheuristic. If the neighborhood structure is not adequate to the problem,
any local search will fail to solve the problem.

Definition 1 A neighborhood functionN is a mappingN : S−→ 2S which assigns to each
solutionsof Sa set of solutionsN(s)⊂ S.

A solutions′ ∈ N(S) in the neighborhood ofs is called aneighborof s. In general, a neigh-
bor is generated by the application of amoveoperator which performs a small perturbation
to the solutions. The main property that must characterize a neighborhood islocality. Lo-
cality is the effect on the quality (fitness) when performingthe move (perturbation) on the
solution (Sendhoff et al, 1997). When small changes are madein the solution, the quality
must reveal small changes. In this case, the neighborhood issaid to have a strong locality.
Hence, local search will perform a meaningful search in the landscape of the problem. Weak
locality is characterized by a large effect on the quality when a small change is made in the
solution. In the extreme case of weak locality, the search process tends to a random search.

The neighborhood definition depends strongly on the representation associated to the
problem at hand. Some usual neighborhoods are associated totraditional representations
(e.g.continuous, binary, discrete, permutations). Let us notice that for a given optimization
problem, a local optimum for a neighborhoodN1 may not be a local optimum for a differ-
ent neighborhoodN2. In designing a local search algorithm, there is often a compromise
between the size (or diameter) and the quality of the neighborhood to use and the computa-
tional complexity to explore it. Designing large neighborhoods may improve the quality of
the obtained solutions since more neighbors are consideredat each iteration. However, this
requires an additional computational time to generate and evaluate such a large neighbor-
hood.

2.2.4 Incremental Evaluation

Often, the evaluation of the objective function is the most expensive part of any local search
metaheuristic. A naive exploration of the neighborhood of asolutions is acompleteevalua-
tion of the objective function for every candidate neighbors′ of N(s).

A more efficient way to evaluate the set of candidates is theevaluation∆(s,m) of the
objective function, wheres is the current solution andm is the applied move. This is an
important issue in terms of efficiency that must be taken intoaccount in the design of a
local search algorithm. It consists in evaluating only the transformation∆(s,m) applied to a
solutions rather than the complete evaluation of the neighbor solution f (s′) = f (s⊕m). The
definition of such an incremental evaluation and its complexity depends on the neighborhood
used over the target optimization problem. It is a straightforward task for some problems
and neighborhoods (e.g.TSP with 2-opt neighborhood) but it may be very difficult for other
problems and/or neighborhood structures (e.g.VRP with the node exchange operator).

6

2.2.5 Initial Solution

The initial solution of a local search algorithm has a high impact on the final results. Two
main strategies are used to generate the initial solution: arandomor a greedyapproach.
There is always a trade-off between the use of random and greedy initial solutions in terms
of the quality of solutions and the computational time required to generate the solution. The
best answer to this trade-off will depend mainly on the efficiency and effectiveness of the
random and greedy algorithms at hand, and the local search properties (Burke and Newall,
2002). For instance, the larger the neighborhood, the less sensitive the initial solution to the
performance of the local search.

Generating a random initial solution is a quick operation but the local search meta-
heuristic may take a much larger number of iterations to converge. In order to speedup the
search, a greedy heuristic may be used. Indeed, in most cases, greedy algorithms have a
reduced polynomial-time complexity. Using greedy heuristics often leads to better quality
local optima. Hence, the local search algorithm will require in general less iterations to con-
verge towards a local optimum. Some approximation greedy algorithms may also be used to
obtain a bound guarantee for the final solution. However, it does not mean that using better
solutions as initial solutions will always lead to better local optima (Hoos and Stützle, 2004).

2.3 Fitness Landscapes Analysis

2.3.1 Parameter Setting

Generally speaking, additional information to the local search is called algorithm param-
eters, or simplyparameters. The problem to choose efficient parameters for performing a
particular task isparameter setting. Parameter setting has been extensively studied, and still
one of the most critical issue in the design efficient local search algorithms. According to the
taxonomy of Eiben et al (2007), there exists two types of parameter setting: the first one is
off-line, before the actual run, often calledparameter tuning, and the second one ison-line,
during the run, calledparameter control. Usually, parameter tuning is done by testing a sets
of parameters, and selecting the combination of parametersthat give a good performance
with respect to a number of executions. In order to limit the number of executions, some
parameter tuning methods have been developed. They include, among others, racing tech-
niques (Birattari et al, 2002), CALIBRA (Adenso-Dı́az and Laguna, 2006), REVAC (Nan-
nen and Eiben, 2007), and ParamILS (Hutter et al, 2009). Obviously, such approach still
may be time consuming. Another strategy consists in studying the fitness landscape of the
problem under study, by computing a number of statistical measures. From those, designers
may deduce the main properties of the problem under study in order to correctly tune the
parameters.

2.3.2 Local Search Design using Fitness Landscape

The performance of local search algorithms is strongly related to the structure of the search
space, such as the number and the distribution of local optima, the number and the size of
plateaus, etc. The fitness landscape is the main model to analyze the structure of the search
space. Different goals can be achieved by means of fitness landscapes analysis (Hoos and
Stützle, 2004; Verel, 2009). First, an analysis can allow to compare the difficulty between
different search spaces representations, local search operators, etc. Then a proper choice of

7

the “right” search space can be made for a large class of localsearch algorithms, without
an expensive experimental tests campaign. Second, the study of the global geometry of the
landscape helps to decide the most appropriate algorithm. For example, if there is a lot
of plateaus, and according to their features, we can decide to use a very explorative local
search algorithm. Third, an off-line tuning of the parameters which define the local search
algorithm can be guided by the fitness landscapes properties(Marmion et al, 2011a). For
example, such parameters include the number of moves to be performed before a restart
strategy. At last, the on-line control of parameters is the most challenging goal of fitness
landscapes analysis. During the search process, the local geometry of fitness landscape can
be used to control the search parameters, such as the maximumnumber of visited solutions
in the neighborhood, or more generally the parameters whichcontrol the selection pressure.
To summarize, learning about the problem structure using tools from fitness landscapes
analysis leads to design better local search algorithms.

2.3.3 Definition

The definition of fitness landscapes follows the common issues for the design of local search
algorithms. It provides a substantial number of tools in order to analyze the background of
local search algorithms independently of the heuristic being used.

A fitness landscape (Stadler, 2002; Jones, 1995) is a triplet(S, f ,N) whereS is a set
of potential solutions(also called search space),N : S→ 2S, aneighborhoodoperator (see
Definition 1), andf : S→ IR is a fitness function that can be pictured as the “height” ofthe
corresponding potential solutions. Often a topological concept ofdistance dcan be associ-
ated to a neighborhoodN. A distanced : S×S 7→ IR+ is a function that associates with any
two configurations inSa non-negative real number that satisfies well-known properties. For
instance, for a binary-coded local search metaheuristic, the fitness landscapeSis constituted
by the boolean hypercubeB = {0,1}l consisting of the 2l solutions for strings of lengthl
and the associated fitness values. The neighborhood of a solution for the one-bit flip operator
is the set of pointsy∈ B that are reachable fromx by flipping one bit. A natural definition
of distance for this landscape is the well-knownHammingdistance.

Based on the neighborhood notion, one can definelocal optimaas being configurations
x for which (in the case of maximization):∀y∈N(x), f (y)≤ f (x). Global optima are defined
as being the absolute maxima (or minima) in the whole search spaceS. Other features of a
landscape such as basins, barriers, or neutrality can be defined likewise (Stadler, 2002).

Let us define the notion ofwalk on a landscape. A walkΓ from s to s′ is a sequence
Γ = (s0,s1, . . . ,sm) of solutions belonging toS wheres0 = s, sm = s′ and∀i ∈ {1, . . . ,m},
si is a neighbor ofsi−1. The walk can be random, for instance solutions can be chosen
with uniform probability from the neighborhood, as in random sampling, or according to
other weighted non-uniform distributions, as in Metropolis-Hasting sampling. It can also be
obtained through the repeated application of a “move” operator, either stochastic or deter-
ministic, defined on the landscape.

2.3.4 Density of States

Rosé et al (1996) developed thedensity of statesapproach (DOS) by plotting the number of
sampled solutions in the search space with the same fitness value. Knowledge of this density
allows to evaluate the performance of random search or random initialization of local search
metaheuristics. DOS gives the probability of having a givenfitness value when a solution is

8

randomly chosen. The tail of the distribution at optimal fitness value gives a measure of the
difficulty of an optimization problem: the faster the decay,the harder the problem.

2.3.5 Fitness Distance Correlation

Fitness distance correlation was first proposed by Jones (1995) with the aim of measuring
the difficulty of problems with a single number. Jones’ approach states that what makes a
problem hard is the relationship between fitness and distance of the solutions from the op-
timum. This relationship can be summarized by calculating thefitness-distance correlation
coefficient(FDC), which is the correlation coefficient between the fitness and the distance to
the nearest global optimum for all solutions from the searchspace. It can be estimated based
on a sample of the search space: given a sample ofm solutions{s1,s2, ...,sm}, the FDC is
computed by:

FDC=
cov(f (si)d(si))

√

var(f (si))var(d(si))

whered gives the distance function to the nearest global optimum,cov(f (si)d(si)) is the
covariance off andd, andvar(f (si)) andvar(d(si)) are respectively the variance off and
d over the sample ofmsolutions. Thus, by definition, FDC∈ [−1,1]. As we hope that fitness
increases as distance to a global optimum decreases (for maximization problems), we expect
that, with an ideal fitness function, FDC will assume the value of−1. According to Jones
(1995), search problems can be classified into three classes, depending on the value of the
FDC coefficient:

– Misleading(FDC≥ 0.15), in which fitness increases with distance.
– Difficult (−0.15< FDC < 0.15) in which there is virtually no correlation between fit-

ness and distance.
– Straightforward(FDC≤ −0.15) in which fitness increases as the global optimum ap-

proaches.

The second class corresponds to problems for which the FDC coefficient does not bring any
information. The threshold interval[−0.15,0.15] has been empirically determined by Jones.
When FDC does not give a clear indication,i.e. in the interval[−0.15,0.15], examining the
scatterplot of fitness versus distance can be useful.

The FDC has been criticized on the grounds that counterexamples can be constructed
for which the measure gives wrong results (Altenberg, 1997;Quick et al, 1998; Clergue and
Collard, 2002). Another drawback of FDC is the fact that it isnot apredictivemeasure since
it requires knowledge of the optima. Despite its shortcomings, we consider FDC here as
another way of characterizing problem difficulty when we know some optima and we can
predict whether it is easy to reach those local optima or not.

2.3.6 Autocorrelation Length and Autocorrelation Functions

Weinberger (1990, 1991) introduced theautocorrelation functionand thecorrelation length
of random walks to measure the correlation structure of fitness landscapes. Given a random
walk (st ,st+1, . . .), the autocorrelation functionρ of a fitness functionf is the autocorrelation
function of time series(f (st), f (st+1), . . .) :

ρ(k) =
E[f (st) f (st+k)]−E[f (st)]E[f (st+k)]

var(f (st))

9

whereE[f (st)] andvar(f (st)) are the expected value and the variance off (st). Estimates
r(k) of autocorrelation coefficientsρ(k) can be calculated with a time series(s1,s2, . . . ,sL)
of lengthL :

r(k) =
∑L−k

j=1(f (sj)− f̄)(f (sj+k)− f̄)

∑L
j=1(f (sj)− f̄)2

where f̄ = 1
L ∑L

j=1 f (sj), andL >> 0. A random walk is representative of the entire land-
scape when the landscape is statistically isotropic. In this case, whatever the starting point of
random walks and the selected neighbors during the walks, estimates ofr(n) must be nearly
the same. The estimation error diminishes with the walk length.

The correlation lengthτ measures how the autocorrelation function decreases and it
summarizes the ruggedness of the landscape: the larger the correlation length, the smoother
the landscape. Weinberger’s definitionτ =− 1

ln(ρ(1)) makes the assumption that the autocor-
relation function decreases exponentially.

2.3.7 Sampling Local Optima by Adaptive Walks

Escaping from local optima is one of the main issue for local search algorithms. So, the
number of local optima, the size of basins of attraction of local optima, and the network of
local optima (Ochoa et al, 2008) should be estimated to understand the dynamics of local
search and to design efficient search algorithms.

An adaptive walkis a walk(s0,s1, . . . ,sm) where the fitness values increase during the
walk: ∀i < m, f (si) < f (si+1). An adaptive walk stops on a local optimum. Then, the sam-
pling of the search space with adaptive walk can be used to estimate the fitness distribution
of local optima, even if its estimation is biased by the size of basins. The number of local op-
tima, the diameter, and then, the basin of attraction sizes can be estimated with the length of
the adaptive walks. When the length of adaptive walks is large, the number of local optima
is low, and the diameter of basins is large.

2.3.8 Neutrality

Neutrality is a particularly important issue in real-worldoptimization such as flow-shop
scheduling (Marmion et al, 2011b), minimum linear arrangement (Rodriguez-Tello et al,
2008), etc. The notion of neutrality has been suggested by Kimura (1983) in his study of the
evolution of molecular species. According to this view, most moves are neutral (their effect
on fitness is small) or lethal.

A fitness landscapes is said to beneutral when many neighboring solutions have the
same fitness value (Reidys and Stadler, 2001). The picture ofsuch fitness landscapes is
dominated by a lot of plateaus, also calledneutral networks. More precisely, a neutral net-
work is a graph where the nodes are the solutions with a given fitness value, and the edges
are given by the neighborhood relation between those solutions. To study the neutrality of
fitness landscapes, we should be able to measure and describea few properties of neutral
networks. The number of neutral networks, thesize, and thediameterof neutral networks
are basic information on the neutrality, but due to the size of the search space and of neutral
networks, it is not always possible to measure information for real-world problems.

Theneutral degreeof a solution is the number of neighboring solutions with thesame
fitness value. The neutral degree shows the importance of neutrality in the landscapes. For

10

example, theneutral degree distributionof solutionsi.e. the degree distribution of the ver-
tices in a neutral network, gives information which plays a role in the dynamics of local
search metaheuristics (Van Nimwegen et al, 1999; Wilke, 2001).

Another way to describe a neutral network is given by theautocorrelation of neutral de-
greealong a neutral random walk (Bastolla et al, 2003),i.e. a walk over a neutral network.
From neutral degree collected along this neutral walk, its autocorrelation can be computed
(see section 2.3.6). The autocorrelation measures the correlation structure of a neutral net-
work. If the correlation is low, the variation of neutral degree is low ; and so, there is some
areas in the neutral network of solutions which have nearby neutral degrees.

The percolation measure of neutral networks in the landscapes, the evolvability of solu-
tions can be used. The evolvability of a solution is the ability to have better solutions in its
neighborhood. From a solution with high evolvability, a local search can find a better solu-
tion in its neighborhood. The evolvability of solutions of aneutral network gives information
on the surrounding of the neutral network. For instance, theaverage, minimal and maximal
fitness value in the neighborhood of a solution can be used as an evolvability measure.

2.3.9 Fitness Cloud

In this section, we present thefitness cloud(FC) standpoint, first introduced by Verel et al
(2003). The fitness cloud relative to the local search operator op is the conditional bivari-
ate probability densityPop(Y = ϕ̃ | X = ϕ) of reaching a solution of fitness valuẽϕ from
a solution of fitness valueϕ applying the operatorop. To visualize the fitness cloud in
two dimensions, we plot the scatterplot{(f (s), f (s′)) | s∈ Sands′ ∈ N(s)} whereN is the
neighborhood based on the operatorop. Different statistics can be computed to describe
this scatter plot such as: for fitness valuef (s) = ϕ , the average, the standard deviation, the
minimum and the maximum fitness value in the neighborhood.

In general, the size of the search space does not allow to consider all possible solu-
tions, when trying to draw a fitness cloud. Instead, we need touse samples to estimate it.
Two mains ways are used to sample the search space: the uniform random sampling, or
the Metropolis-Hasting sampling (Madras, 2002) which gives more importance to the most
interesting solutions of the search space.

2.4 Local Search Algorithms

This section describes the main local search metaheuristics.

2.4.1 Hill-Climbing Algorithm

The hill-climbing (HC) algorithm, also referred as descent, or iterative improvement, is
likely the oldest and simplest local search metaheuristic (Aarts and Lenstra, 1997; Papadim-
itriou and Steiglitz, 1982). A pseudo-code is given in Algorithm 2 and follows the template
of Algorithm 1. It starts with a given initial solution. At each iteration, the heuristic replaces
the current solution by a neighbor that improves the objective function. The search process
stops when all candidate neighbors are worse than the current solution, meaning a local
optimum is reached. For large neighborhoods, candidate solutions may be a subset of the
neighborhood. The main objective of this restricted neighborhood strategy is to speed-up
the search. Variants of hill-climbing may be distinguishedaccording to the order in which

11

the neighboring solutions are generated (deterministic/stochastic), and the selection strategy
(selection of the neighboring solution).

Algorithm 2 Template of Hill-Climbing (HC) algorithm.

Input: Initial solutions.
repeat

Select one solutions′ in the neighborhood ofs
if f (s′) is better thanf (s) then

s←− s′

end if
until s is not a local optimum
Output: solutions

In addition to the definition of the initial solution and the neighborhood, designing a
basic hill-climbing algorithm has to address the selectionstrategy of the neighbor which
will determine the next current solution. Many strategies can be applied in the selection of a
better neighbor:

– Best improvement(steepest descent): in this strategy, the best neighbor (i.e. the neigh-
bor that improves the most the cost function) is selected. The neighborhood is evalu-
ated in a fully and deterministic manner. Hence, the exploration of the neighborhood
is exhaustive, all possibles moves are tried for a solution to select the best neighboring
solution. This type of exploration may be time-consuming for large neighborhoods.

– First improvement: this strategy consists in choosing the first improving neighbor that
is better than the current solution. Then, an improving neighbor is immediately selected
to replace the current solution. This strategy involves a partial evaluation of the neigh-
borhood. In acyclic exploration, the neighborhood is evaluated in a deterministic way
following a given order for generating the neighbors. In arandomexploration, the neigh-
borhood is evaluated in a random order, and then a random improving neighbor is se-
lected. In the worst case (i.e. when no improvement is found), a complete evaluation of
the neighborhood is performed.

A compromise in terms of quality of solutions and search timemay consist in using the first
improvement strategy when the initial solution is randomlygenerated, and the best improve-
ment strategy when the initial solution is generated using agreedy procedure. In practice,
on many applications, it has been observed that the first improving strategy leads to a same
quality of solutions as the best improving strategy while using a smaller computational time.
Moreover, the probability of premature convergence to a local optimum is less important in
the first improvement strategy.

Another important point is the acceptance criterion used todefine if a solution is “better”
or not. The solution is better when the fitness is strictly higher (in a maximization problem):
f (s) < f (s′). In this case, a local optimum is defined as follows:∀s′ ∈ N(s), f (s′) ≤ f (s),
and the stopping condition is well-defined. For problems with plateaus (neutral problems),
one can define that a solution is better when the fitness value is higher or equal:f (s)≤ f (s′).
The search process can then continue the exploration of plateaus to find an exit solution. In
that case, plateaus are local optima, and then the stopping criterion can be based on the
computational resources available.

12

2.4.2 Escaping from Local Optima

In general, hill-climbing is a very easy method to design andimplement and gives fairly
good solutions very quickly. This is why it is a widely used optimization method in practice.
One of the main disadvantages of hill-climbing is that it converges towards local optima.
Moreover, the algorithm can be very sensitive to the initialsolution, i.e. a large variability
of the quality of solutions may be obtained for some problems. At last, there is no mean to
estimate the relative error from the global optimum and the number of iterations performed
may not be known in advance. Even if the complexity in practice is acceptable, the worst
case complexity of hill-climbing is exponential. Hill-climbing works well if there is not too
many local optima in the search space or the quality of the different local optima is more
or less similar. If the objective function is highly multi-modal, which is the case for the
majority of optimization problems, hill-climbing is usually not an effective method to use.

As the main disadvantage of hill-climbing algorithms is theconvergence towards local
optima, many alternatives algorithms have been proposed toavoid becoming stuck at lo-
cal optima. Those algorithms became popular from the 1980’s. Four different families of
approaches can be used to escape from local optima (Fig. 2):

– Iterating from different initial solutions: this strategy is applied in multi-start local
search (MLS), iterated local search (ILS), GRASP, and so forth.

– Accepting non-improving neighbors:those approaches enable moves that degrade the
current solution. Then, it becomes possible to move out the basin of attraction of a given
local optimum. Simulated annealing and tabu search are popular representatives of this
class of algorithms. Simulated annealing was the first algorithm addressing explicitly
the question “why should we consider only downhill moves?”

– Changing the neighborhood:this class of approaches consists in changing the neigh-
borhood structure during the search process. For instance,this approach is used in vari-
able neighborhood search strategies.

– Changing the objective function or the input data of the problem: in this class,
the problem is transformed by perturbing the input data of the problem, the objective
function or the constraints, in the hope to solve more efficiently the original problem.
This approach has been implemented in the guided local search, the smoothing strategies
and noising methods. The two last approaches may be viewed asapproaches changing
the fitness landscape of the problem to solve.

2.4.3 Simulated Annealing

Simulated annealing (SA) applied to optimization problemsemerges from the work of Kirk-
patrick et al (1983) and Cerny (1985). In those pioneering works, SA has been applied to
graph partitioning and VLSI design. In the 1980’s, SA had a major impact on the field of
heuristic search for its simplicity and efficiency for solving combinatorial optimization prob-
lems. Then, it has been extended to deal with continuous optimization problems (Dekkers
and Aarts, 1991; Ozdamar and Demirhan, 2000; Locatelli, 2000).

SA is a stochastic algorithm which enables, under some conditions, the degradation of
a solution. The goal is to escape from local optima, and so to delay the convergence. SA
is a memoryless algorithm in the sense that the algorithm does not use any information
gathered during the search. From an initial solution, SA proceeds in several iterations. At
each iteration, a random neighbor is generated. Moves that improve the cost function are
always accepted. Otherwise, the neighbor is selected with agiven probability which depends

13

S i m u l a t e d
a n n e a l i n g

 T a b u
s e a r c h

 I te ra t i ve loca l
s e a r c h , G R A S P

A c c e p t n o n i m p r o v i n g
 ne ighbo rs

I t e ra te w i th d i f f e ren t
 so lu t ions

S t r a t e g i e s f o r i m p r o v i n g l o c a l s e a r c h

 Mu l t i - s ta r t
l o c a l s e a r c h

C h a n g e l a n d s c a p e
 o f t he p rob lem

V a r i a b l e n e i g h b o r h o o d
 search

G u i d e d l o c a l
 sea rch

N o i s y m e t h o d S m o o t h i n g
 m e t h o d

 Use d i f f e ren t
n e i g h b o r h o o d s

C h a n g e t h e o b j e c t i v e f u n c t i o n
 o r the da ta inpu t

Fig. 2 Local search family of algorithms for the improvement of hill-climbing and escaping from local op-
tima.

on the current temperature and the amount of degradation∆E of the objective function.∆E
represents the difference in the objective value (energy) between the current solution and the
generated neighbor solution. As the algorithm progresses,the probability that such moves
are accepted decreases. In general, this probability follows the Boltzmann distribution:

P(∆E,T) = e−
∆E
T

It uses a control parameter, called temperature, to determine the probability of accepting
non-improving solutions. At a particular level of temperature, many trials are explored. Once
an equilibrium state is reached, the temperature is gradually decreased according to a cool-
ing schedule such that few non-improving solutions are accepted at the end of the search.
Algorithm 3 gives the template of the SA algorithm for maximization problems.

In addition to the common design issues for hill-climbing algorithms such as the defi-
nition of the neighborhood and the generation of the initialsolution, the main design issues
which are specific to SA are:

– The acceptance probability function:it is the main element of SA which enables non-
improving neighbors to be selected.

– The cooling schedule:the cooling schedule defines the temperature at each step of the
algorithm. It has an essential role in the efficiency and the effectiveness of the algorithm.

Other similar methods to simulated annealing have been proposed in the literature such
as threshold accepting, great deluge algorithm, record-to-record travel and demon algo-
rithms (Talbi, 2009). The main objective in the design of those SA-inspired algorithms is
to speedup the search of the SA algorithm without sacrificingthe quality of solutions.

14

Algorithm 3 Template of Simulated Annealing (SA) algorithm.

Input: Initial solutions.
Set the temperatureT to the initial value
repeat

Select one random solutions′ in the neighborhood ofs
∆E←− f (s)− f (s′)

if f (s)≤ f (s′) or rnd(0,1) ≤ e
−∆E

T then
s←− s′

end if
Update temperatureT according to the cooling schudele

until Stopping criteria satisfied
Output: Best solution found

2.4.4 Tabu Search

Glover (1986) points out the controlled randomization in SAto escape from local optima,
and proposed a deterministic algorithm. In a parallel work,a similar approach named “steep-
est ascent/mildest descent” has been proposed by Hansen (1986). In the 1990’s, the tabu
search algorithm became very popular in solving optimization problems in an approximate
manner. Nowadays, it is one of the most widespread local search metaheuristic. The use of
memory, which stores information related to the search process, represents the particular
feature of tabu search. A comprehensive book on tabu search is (Glover and Laguna, 1997).

TS behaves like a steepest LS algorithm but it accepts non-improving solutions in order
to escape from local optima when all the neighbors are non-improving solutions. Usually,
the whole neighborhood is explored in a deterministic manner, whereas in SA a random
neighbor is selected. As in hill-climbing, when a better neighbor is found, it replaces the
current solution. When a local optimum is reached, the search carries on by selecting a
candidate worse than the current solution. The best solution in the neighborhood is selected
as the new current solution even if it is not improving the current solution. Tabu search
may be viewed as a dynamic transformation of the neighborhood. This policy may generate
cycles,i.e.previous visited solutions could be selected again.

To avoid cycles, TS discards the neighbors that have been previously visited. It memo-
rizes the recent search trajectory. Tabu search manages a memory of the solutions or moves
recently applied, which is called thetabu list. This tabu list constitutes the short-term mem-
ory. At each iteration of TS, the short-term memory is updated. Storing all visited solutions
is time and space consuming. Indeed, we have to check at each iteration if a generated so-
lution does not belong to the list of all visited solutions. Then, the tabu list often contains a
constant number of tabu moves. Usually, the attributes of the moves are stored in the tabu
list.

By introducing the concept of solution features or moves features in the tabu list, one
may lose some information about the search memory. Then, we can reject solutions which
have not yet been generated. If a move is “good”, but it is tabu, do we still reject it? The
tabu list may be too restrictive; a non-generated solution may be forbidden. Yet, for some
conditions, calledaspiration criteria, tabu solutions may be accepted. Then, the admissible
neighbor solutions are those which are non-tabu or hold the aspiration criteria.

In addition to the common design issues for local search metaheuristics such as the
definition of the neighborhood and the generation of the initial solution, the main design
issues which are specific to a simple TS are:

15

– Tabu list: the goal of using the short-term memory is to prevent the search from revisit-
ing previously visited solutions. As mentioned, storing the list of all visited solutions is
not practical for efficiency issues.

– Aspiration criterion: a commonly used aspiration criteria consists in selecting atabu
move if it generates a solution that is better than the best found solution. Another aspira-
tion criteria may be a tabu move that yields a better solutionamong the set of solutions
possessing a given attribute.

Furthermore, some advanced mechanisms are commonly introduced in tabu search to deal
with the intensification and the diversification of the search:

– Intensification (medium-term memory): the medium-term memory stores the elite
(e.g.best) solutions found during the search. Then, the idea is togive a priority to at-
tributes of the set of elite solutions, usually based on a weighted probability. The search
is biased by those attributes.

– Diversification (long-term memory): the long-term memory stores informations on
the visited solutions along the search. Then, it explores the unvisited areas of the search
space. For instance, it will discourage the attributes of elite solutions in the generated
solutions in order to diversify the search to other areas of the search space.

Algorithm 4 describes the template of the TS algorithm. In addition to the search com-
ponents of hill-climbing such as representation, neighborhood, initial solution, we have to
define the following concepts which compose the search memory of TS: the tabu list (short-
term memory), the intensification (medium-term memory), and the diversification (long-
term memory), as detailed in Table 1.

Algorithm 4 Template of Tabu Search (TS) algorithm.

Input: Initial solutions.
Initialize the tabu list
Initialize the medium- and long-term memories of the intensification and the diversification procedures
repeat

Perform intensification procedure ons
Perform diversification procedure ons
Selects′ either, the best non-tabu solution in the neighborhood ofs, or the best solution if it verifies the
aspiration criterium
if one solutions′ is selectedthen

s←− s′

end if
Update the tabu list
Update the medium- and long-term memories of the intensification and the diversification procedures

until Stopping criteria satisfied
Output: Best solution found

2.4.5 Iterated Local Search

The quality of the local optima obtained by a hill-climbing method depends of the initial
solution. As we can generate local optima with high variability, iterated local search (ILS),
also known as iterated descent, large-step Markov chains, and chained local optimization,
may be used to improve the quality of successive local optima. This kind of strategy has been

16

Table 1 The different search memories of tabu search.

Search memory Role Popular representation

Tabu list Prevent cycling Visited solutions, moves attributes
Solutions attributes

Medium-term memory Intensification Recency memory
Long-term memory Diversification Frequency memory

applied first by Martin et al (1991), and then generalized by Stutzle (1999) and Lourenco
et al (2002).

In multi-start local search, the initial solution is always chosen randomly, and then is
unrelated to the generated local optima. ILS improves the classical multi-start local search
by perturbing the local optima and reconsidering them as initial solutions.

ILS is based on a simple principle which has been used in many specific heuristics such
as the iterated Lin-Kernighan heuristic for the traveling salesman problem (Johnson, 1990),
and the adaptive tabu search for the quadratic assignment problem (Talbi et al, 1998). First
a local search is applied to an initial solution (a hill-climbing algorithm or any other local
search metaheuristic). Then, at each iteration, aperturbationof the obtained local optima is
carried out. A local search is then applied on the perturbed solution. The generated solution
is accepted as the new current solution under some conditions. This process iterates until a
given stopping criterion. Algorithm 5 describes the ILS algorithm.

Algorithm 5 Template of the Iterated Local Search (ILS) algorithm.

Input: Initial solutions.
Initialize perturbation
repeat

Perform perturbation ons
Apply local search ons
if acceptance criterium is verifiedthen

s←− s′

end if
Update perturbation

until Stopping criteria satisfied
Output: Best solution found

Three basic elements compose an ILS:

– Local search:any local search metaheuristic (deterministic or stochastic) can be used
within the ILS framework such as a simple hill-climbing algorithm, a tabu search or
simulated annealing. The search procedure is treated as a black-box (Fig. 3). In the lit-
erature, population-based metaheuristics are excluded tobe candidate in the search pro-
cedure as they manipulate populations. However, some population-based metaheuristics
integrate the concept of perturbation of the (sub)population to encourage the search di-
versification.

– Perturbation method:the perturbation operator may be seen as a large random move of
the current solution. The perturbation method should keep some parts of the solution
and perturb strongly another part of the solution to move hopefully to another basin of
attraction.

17

I n i t i a l so lu t ion L o c a l o p t i m a

A c c e p t a n c e
 c r i te r ia

P e r t u r b a t i o n
 m e t h o d

S e a r c h c o m p o n e n t :
 S - m e t a h e u r i s t i c

Fig. 3 The search component is seen as a black-box for the ILS algorithm.

– Acceptance criteria:the acceptance criterion defines the conditions the new local optima
must satisfy to replace the current solution.

Once the local search metaheuristic involved in the ILS framework is specified, the design
of ILS will depend mainly on the used perturbation method andthe acceptance criterion.
Many different designs may be defined according to the various choices for implementing
the perturbation method and the acceptance criterion.

2.4.6 Other Local Search Metaheuristics

Some existing local search algorithms use other strategiesto escape from local optima. They
are briefly described below.

– Variable Neighborhood Search (VNS) (Mladenovic and Hansen, 1997). The basic idea
of VNS is to successively explore a set of predefined neighborhoods to provide a bet-
ter solution. It explores either at random or systematically a set of neighborhoods to
get different local optima and to escape from local optima. VNS exploits the facts that
using various neighborhoods in local search may generate different local optima and
that the global optimum is a local optimum for a given neighborhood. Indeed, different
neighborhoods generate different fitness landscapes.

– Guided Local Search (GLS) is a deterministic local search metaheuristic which has been
mainly applied to combinatorial optimization problems. Its adaptation to continuous
optimization problems is straightforward given that GLS sits on top of a local search
algorithm (Voudouris, 1998). The basic principle of GLS is the dynamic changing of
the objective function according to the already generated local optima (Voudouris and
Tsang, 1999). The features of the obtained local optima are used to transform the objec-
tive function. It allows the modification of the fitness landscape structure to be explored
by a local search metaheuristic to escape from the obtained local optima.

– Search space smoothing consists in modifying the landscapeof the target optimization
problem (Glover and Millan, 1986; Gu and Huang, 1994). The smoothing of the land-
scape associated to the problem reduces the number of local optima and the depth of
the basins of attraction without changing the location region of the global optimum of
the original optimization problem. The search space associated to the landscape remains
unchanged; only the objective function is modified. Once thelandscape is smoothed by
“hiding” some local optima, any local search metaheuristic(or even a population-based
metaheuristic) can be used in conjunction with the smoothing technique.

– The noisy method (NM) is another local search metaheuristicwhich is based on the land-
scape perturbation of the problem to solve (Charon and Hudry, 1993). Instead of taking
the original data into account directly, the NM considers that they are the outcomes of
a series of fluctuating data converging towards the originalones. Some random noise is
added to the objective functionf . At each iteration of the search, the noise is reduced.
For instance, the noise is initially randomly chosen into aninterval [−r,+r]. The range

18

of the intervalr decreases during the search process until a value of 0. Different ways
may be used to decrease the noise rater .

– The GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic is an it-
erative greedy heuristic to solve combinatorial optimization problems. It has been in-
troduced by Feo and Resende (1989). Each iteration of the GRASP algorithm contains
two steps: construction and local search (Feo and Resende, 1995). In the construction
step, a feasible solution is built using a randomized greedyalgorithm, while in the next
step a local search heuristic is applied from the constructed solution. A similar idea,
known as thesemi-greedy heuristic, was presented by Hart and Shogan (1987), where a
multi-start greedy approach is proposed but without the useof local search. The greedy
algorithm must be randomized to be able to generate various solutions. Otherwise, the
local search procedure can be applied only once. This schemais repeated until a given
number of iterations and the best found solution is kept as the final result. We notice
that the iterations are completely independent, and so there is no search memory. This
approach is efficient if the constructive heuristic samplesdifferent promising regions
of the search space which makes the different local searchesgenerating different local
optima of “good” quality.

2.5 Summary

In addition to the representation, the objective function and constraint handling which are
common search concepts to all metaheuristics, the common concepts for local search meta-
heuristics are (Fig. 4):

– Initial solution: an initial solution may be specified randomly or by a given heuristic.
– Neighborhood: the main concept of local search metaheuristics is the definition of the

neighborhood. The neighborhood has an important impact on the performances of this
class of metaheuristics. The interdependency between representation and neighborhood
must not be neglected. The main design question in local search metaheuristics is the
trade-off between the efficiency of the representation/neighborhood and its effectiveness
(e.g.small versus large neighborhoods).

– Incremental evaluation of the neighborhood:this is an important issue for the effi-
ciency aspect of a local search metaheuristic.

– Stopping criteria.

Hence, most of the search components will be reused by different local search algorithms
(Fig. 4). Moreover, an incremental design and implementation of different local search meta-
heuristics can be carried out. In addition to the common search concepts of local search
metaheuristics, the following main search components haveto be defined for designing the
following local search metaheuristics:

– Hill-climbing: neighbor selection strategy.
– Simulated annealing, demon algorithms, threshold accepting, great deluge and record-

to-record travel:annealing schedule.
– Tabu search:tabu list, aspiration criteria, medium and long term memories.
– Iterated local search:perturbation method, acceptance criteria.
– Variable Neighborhood search:neighborhoods for shaking and neighborhoods for local

search.
– Guided local search, smoothing method, noisy method:function changing the input data

or the objective.

19

In i t i a l so lu t ion

N e i g h b o r h o o d

S t o p p i n g c r i t e r i a

L o c a l s e a r c h

S i m u l a t e d a n n e a l i n g
T h r e s h o l d a c c e p t i n g

T a b u S e a r c h

I t e r a t e d L o c a l S e a r c h

 C o m m o n c o n c e p t s
f o r S - m e t a h e u r i s t i c s

I n c r e m e n t a l e v a l u a t i o n

 N e i g h b o r s e l e c t i o n

 A n n e a l i n g s c h e d u l e

 - P e r t u r b a t i o n m e t h o d
 - Accep tance c r i t e r i a

- Tabu l i s t
- Asp i ra t i on c r i t e r i a
- M e d i u m t e r m m e m o r y
- L o n g t e r m m e m o r y

G R A S P

R a n d o m i z e d g r e e d y
 a lgor i thm

R e p r e s e n t a t i o n

 C o m m o n c o n c e p t s
 f o r m e t a h e u r i s t i c s

O b j e c t i v e f u n c t i o n

C o n s t r a i n t h a n d l i n g

R e c o r d - t o - r e c o r d t r a v e l

G r e a t d e l u g e

D e m o n a l g o r i t h m s

V a r i a b l e N e i g h b o r h o o d
 Search

- N e i g h b o r h o o d s f o r s h a k i n g
- N e i g h b o r h o o d s f o r l o c a l s e a r c h

G u i d e d l o c a l s e a r c h

 Da ta o r ob j ec t i ve
 change

S m o o t h i n g m e t h o d

N o i s y m e t h o d

Fig. 4 Common concepts and relationships in local search metaheuristics.

– GRASP:randomized greedy heuristic.

Moreover, there is a high flexibility to transform a local search metaheuristic to another one
reusing most of the design and implementation work.

3 Design and Implementation of Local Search Algorithms under ParadisEO-MO

This sections gives a general presentation of ParadisEO, with a particular interest on the
ParadisEO-MO module, dedicated to the design of local search metaheuristics and of fitness
landscape analysis components.

3.1 The ParadisEO Software Framework

ParadisEO (http://paradiseo.gforge.inria.fr) is a white-box object-oriented soft-
ware framework dedicated to the flexible design of metaheuristics for optimization problems
of continuous and combinatorial nature. Based on EO (Evolving Objects,http://eodev.
sourceforge.net) (Keijzer et al, 2001), this template-based C++ computation library is

20

population-based

metaheuristics

single solution-based

metaheuristics

hybrid, parallel and

distributed metaheuristics

metaheuristics for

multiobjective optimization

ParadisEO-EO

ParadisEO-PEO

ParadisEO-MO ParadisEO-MOEO

Fig. 5 Interacting modules of the ParadisEO software framework.

portable across both Unix-like and Windows systems. This software is governed by the Ce-
CILL license under French law and abiding by the rules of distribution of free software
(http://www.cecill.info). ParadisEO tends to be used both by non-specialists and op-
timization experts. As illustrated in Fig. 5, it is composedof four connected modules that
constitute a global framework. Each module is based on a clear conceptual separation of the
solution methods from the problems they are intended to solve. This separation confers a
maximum code and design reuse to the user. The first module, ParadisEO-EO (Keijzer et al,
2001), provides a broad range of classes for the developmentof population-based meta-
heuristics, including evolutionary algorithms or particle swarm optimization techniques.
Second, ParadisEO-MO, which is of our interest in this paper, contains a set of tools for
single solution-based metaheuristics,i.e. hill-climbing, simulated annealing, tabu search,
iterative local search, etc. Next, ParadisEO-MOEO (Liefooghe et al, 2011) is specifically
dedicated to the reusable design of metaheuristics for multi-objective optimization. Finally,
ParadisEO-PEO (Cahon et al, 2004) provides a powerful set ofclasses for the design of
parallel and distributed metaheuristics: at the algorithmic-level, the iteration-level and the
solution-level. In the frame of this paper, we exclusively focus on the ParadisEO-MO mod-
ule.

3.1.1 Motivations

In practice, there exists a large diversity of optimizationproblems to be solved, engendering
wide possibilities in terms of models to handle in the frame of a metaheuristic solution
method. Moreover, a growing number of general-purpose search methods are proposed in
the literature, with evolving complex mechanisms. From a practitioner point of view, there is
a popular demand to provide a set of ready-to-use metaheuristic implementations, allowing
a minimum programming effort. On the other hand, an expert generally wants to design new
algorithms, to integrate new elements into an existing method, or even to combine different
search mechanisms. Moreover, such a tool is of large interest in order to be able to evaluate
and to compare different algorithms fairly.

Hence, as pointed out by Cahon et al (2004) and Talbi (2009), three major approaches
exist for the development of metaheuristics:from scratchor no reuse, code reuse onlyand
both design and code reuse. Firstly, programmers are tempted to develop and implement
their own code from scratch. However, it requires time and energy and the resulting code

21

is generally error-prone and difficult to maintain and evolve. The second approach consists
of reusing a third-party source code available on the web, either as individual programs or
as libraries. Individual programs often have application-dependent sections that are to be
extracted before a new application-dependent code is to be inserted. Similarly, modifying
these sections is often time-consuming and error-prone. Code reuse through libraries is ob-
viously better because they are often well tried, tested, documented, and thus more reliable.
However, libraries do not allow the reuse of the complete invariant part of the algorithms
related to the design. Therefore, the code effort remains important. At last, both design and
code reuse allow to overcome this problem. As a consequence,an approved approach for
the development of metaheuristics is the use of frameworks.

A metaheuristic software framework may be defined by a set of building-blocks based
on a strong conceptual separation of the invariant part and the problem-specific part of meta-
heuristics. Thus, each time a new optimization problem is tobe tackled, both code and design
can directly be reused in order to redo as little code as possible. Hence, the implementation
effort is minimal with regards to the problem under investigation. Generally speaking, the
constant part is encapsulated in generic or abstract skeletons that are implemented in the
framework. The variable part, which is problem-specific, isfixed in the framework but must
be supplied by the user. These user-defined functions are thus to be called by the frame-
work. To do so, the design of the framework must be based on a clear conceptual separation
between the resolution methods and the problem to be solved.Object-oriented design and
programming is generally recommended for such a purpose. But another way to perform
this separation is to provide a set of modules for each part, and to make them cooperate
thought text files. However, this allows less flexibility than the object-oriented approach,
and the execution is generally much more time consuming. Besides, note that two types of
software frameworks can be distinguished: white-box frameworks and black-box solvers.

3.1.2 Main Characteristics

A framework is usually intended to be exploited by a large number of users. Its exploitation
could only be successful if a range of user criteria are satisfied. Therefore, the main goals of
the ParadisEO software framework are the following ones (Cahon et al, 2004; Talbi, 2009):

– Maximum design and code reuse.The framework must provide a whole architecture
design for the metaheuristic approach to be used. Moreover,the programmer may redo
as little code as possible. This aim requires a clear and maximal conceptual separation
of the solution methods and the problem to be solved. The usermight only write the
minimal problem-specific code and the development process might be done in an in-
cremental way, so that it will considerably simplify the implementation and reduce the
development time and cost.

– Flexibility and adaptability.It must be possible to easily add new features or to mod-
ify existing ones without involving other algorithmic elements. Users must have access
to source code and use inheritance or specialization concepts of object-oriented pro-
gramming to derive new objects from base or abstract classes. Furthermore, as existing
problems evolve and new others arise, the framework must be conveniently specialized
and adapted.

– Utility. The framework must cover a broad range of metaheuristics, problems, parallel
and distributed models, hybridization mechanisms, etc. Ofcourse, advanced features
must not add any difficulty for users wanting to implement classical algorithms.

– Transparent and easy access to performance and robustness.As the optimization ap-
plications are often time-consuming, the performance issue is crucial. Parallelism and

22

distribution are two important ways to achieve high performance execution. Moreover,
the execution of the algorithms must be robust in order to guarantee the reliability and
the quality of the results. Hybridization mechanisms generally allow to obtain robust
and better solutions.

– Portability. In order to satisfy a large number of users, the framework must support many
material architectures (sequential, parallel, distributed) and their associated operating
systems (Windows, Linux, MacOS).

– Easy-of-use and efficiency.The framework must be easy to use and must not contain any
additional cost in terms of time or space complexity in orderto keep the efficiency of a
special-purpose implementation. On the contrary, the framework is intended to be less
error-prone than a specifically developed metaheuristic.

3.1.3 Existing Software Frameworks for Local Search Algorithms

Several white-box frameworks for local search metaheuristics have been proposed in the
literature. Most of them have the following limitations:

– Non unified view of local search algorithms: most of exiting frameworks focus only on
a given local search metaheuristic or family of local searchmetaheuristics such as hill-
climbing, e.g.EasyLocal++ (Gaspero and Schaerf, 2003), Localizer (Michel and Hen-
tenryck, 2001), Opt4j (Lukasiewycz et al, 2011), or Tabu Search, e.g.OpenTS (COIN-
OR). Only few frameworks are dedicated to the design of both families of local search
metaheuristics in an incremental and unified way.

– Optimization problems: most of the software frameworks aretoo narrow,i.e. they have
been designed for a given family of optimization problems: non-linear continuous op-
timization, combinatorial optimization (e.g. iOpt), single-objective optimization (e.g.
Eva2), multi-objective optimization (e.g.PISA by Bleuler et al (2003)), or specific prob-
lem classes (e.g.Google OR-tools).

– Parallel and hybrid metaheuristics: most of the existing frameworks do not provide hy-
brid and parallel local search algorithms at all.

– Architectures: it is seldom to find a framework which can target many types of sequen-
tial or parallel and distributed architectures: shared-memory (e.g. multi-core, GPUs),
distributed-memory (e.g.clusters, network of workstations), large-scale distributed ar-
chitectures (e.g.desktop grids and high-performance grids). Some software frameworks
are dedicated to a given type of parallel architectures,e.g.MALLBA (Alba et al, 2002),
MAFRA (Krasnogor and Smith, 2000), TEMPLAR (Jones et al, 1998; Jones, 2000).

– Fitness landscapes: Only two frameworks, ParadisEO and EasyAnalyzer (Di Gaspero
et al, 2007), which is a plug-in to EasyLocal++, propose tools for fitness landscape
analysis. We can also mention Viz (Halim et al, 2007), that allows to visually analyze
local search metaheuristics, but donot propose tools for fitness landscape analysis.

Table 2 illustrates the characteristics of the main white-box software frameworks for meta-
heuristics. Of course, we do not claim an exhaustive comparison. For a more detailed review
of software frameworks and libraries for metaheuristics, the reader may refer to Voss and
Woodruff (2002) or Parejo et al (2012). Most of the availableframeworks or libraries are not
maintained anymore (e.g.Hotframe, MALLBA, MAFFRA, TEMPLAR). Very few frame-
works are widely used and organized into social networks (e.g.ParadisEO). There are also
some frameworks for what an executable version or source code could not be obtained (e.g.
iOpt, MAGMA, OptQuest).

23

Table 2 Main characteristics of some white-box software frameworks for metaheuristics (S-meta: single
solution-based metaheuristics, P-meta: population-based metaheuristics, COP: Combinatorial optimization,
Cont: Continuous optimization, Mono: Mono-objective optimization, Multi: Multi-objective optimization,
HC: Hill-climbing, TS: Tabu Search, GA: Genetic algorithm,CP: Constraint Programming, Algo-level:
Algorithmic-level of parallel model, Ite-level: Iteration-level of parallel models, Sol-level: Solution-level of
parallel models).

Framework Metaheuristics Optimization Parallel Fitness
or library available problems models landscapes

EasyLocal++ S-meta Mono - yes
& EasyAnalyzer

Eva2 SA Mono - -
FOM S-meta Mono - -

Google OR-tools S-meta Mono - -
Hotframe S-meta Mono - -

iOpt S-meta, GA, CP Mono, COP - -
Localizer++ S-meta Mono - -
MALLBA HC Mono Algo-level -

Ite-level
MAFRA HC Mono - -
MAGMA S-meta Mono - -
OpenTS TS Mono - -
Opt4J SA Mono - -

OptQuest HC Mono - -
TEMPLAR HC, SA Mono, COP Algo-level -

ParadisEO S-meta Mono, Multi Algo-level yes
P-meta COP, Cont Ite-level

Sol-level

It is also worth mentioning two black-box local search-based solvers. First, Local-
Solver (Benoist et al, 2011) is a black-box local search solver for 0-1 integer models. A
mathematical modeling language is proposed, and an adaptive simulated annealing algo-
rithm is used as the main search heuristic. Despite of being ablack-box solver, it provides
an object-oriented application programming interface in different programming languages
(C++, java, .NET). Second, Comet (Michel et al, 2009) is a commercial programming lan-
guage used to solve combinatorial optimization problems inareas such as resource alloca-
tion and scheduling. Comet combines mathematical programming, constraint programming,
and local search algorithm to solve combinatorial optimization problems.

With respect to the ‘Programming by Optimization’ (PbO) framework from Hoos (2012),
ParadisEO falls in the third level of compliance. As pointedout by the author, one key issue
to solve challenging optimization problem lies in the combination of design choices; that
is, in the context of local search metaheuristics, the choice of representation, neighborhood,
and so on. The PbO approach is based on“the idea of avoiding premature commitment of
certain design choices and actively developing promising alternatives for parts of the de-
sign” (Hoos, 2012). PbO seeks at optimizing the performance of a software over a large
design space of programs accomplishing a given computational task (this task may or may
not relate to the context of optimization problem solving).Hoos (2012) identifies five levels
of PbO: at level 0, the parameters are set to a specific context; at level 1, the design choices
hardwired into a given code are explicitly exposed; at level2, the design choices are consid-
ered and actively kept and exposed to the user; at level 3, thesoftware-development process
is structured and carried out in a way that seeks to provide design choices and alterna-
tives in many performance-relevant components; at level 4,all the design choices cannot be

24

Algorithm 6 General Local Search Algorithm
searchExplorer.initParam (solution)
continuator.init (solution)
repeat

searchExplorer.generateSelect(solution)
if searchExplorer.accept(solution) then

searchExplorer.move(solution)
end if
searchExplorer.updateParam(solution)

until (continuator(solution)AND searchExplorer.continue(solution))
searchExplorer.terminate(solution)

made prematurely, and can possibly be set during the optimization process by the user. Par-
adisEO provides design choices and alternatives atmanyparts of a metaheuristic develop-
ment project, specifically for performance-related components. This corresponds to level 3
in PbO. Moreover, as argued in PbO, it is worth to mention thatParadisEO has been recently
used in conjunction with a racing algorithm to automatically identify a well-performing local
search metaheuristic configuration for solving a combinatorial optimization problem from
scheduling; see Marmion et al (to appear) for details.

3.2 Algorithmic Components

Technical details on the implementation of local search algorithms under ParadisEO-MO
can be found at the following URL:http://paradiseo.gforge.inria.fr. In addition, a
complete documentation and many examples of use are provided. The high flexibility of the
framework and its modular architecture based on the main local search design issues allows
to implement efficient algorithms in solving a large diversity of problems. The granular de-
composition of ParadisEO-MO is based on the conceptual model introduced in the previous
section. ParadisEO is an object-oriented application, so that its components can be specified
by the UML standard. UML (Unified Modeling Language) is a standard modeling language
in object-oriented software engineering.

3.2.1 Local Search

The general local search algorithm as implemented in ParadisEO-MO is given in Algo-
rithm 6. Existing approaches require specific parameters than can be set independently from
the local search process. An iteration of the algorithm consists in exploring the neighborhood
of the current solution and selecting one neighbor. Next, the acceptance criteria is tested, and
the current solution is modified accordingly. Then, the possible local search parameters are
updated with respect to the current state of the search process and a continuation condition
is checked. The search explorer is based on the definition of aspecific neighborhood for the
problem under study, as well as an evaluation function. It isdriven by a specific strategy,
so that local search algorithms can now be viewed as simple instances of this conceptual
model.

Main UML classes.In order to instantiate a given local search approach for theproblem
under study, the main classes to be implemented are:

– EO for solution representation, coming from the EO module (Keijzer et al, 2001).

25

Fig. 6 Simplified UML diagram for the design of local search algorithms.

– eoEvalFunc andmoEval for evaluation of solutions and neighbors (complete and incre-
mental), respectively.

– moNeighbor andmoNeighborhood for defining a neighbor and a neighborhood, respec-
tively.

Those classes follow the main design issues identified in Section 2, The UML diagram
of local search algorithms as implemented in the ParadisEO-MO framework is given in
Fig .6. The UML diagram of the whole ParadisEO-MO software framework is omitted due
to space limitation, but is available on the website.moLocalSearch is the main class which
implements Algorithm 6. Different local search approachescan be defined by means of
themoNeighborhoodExplorer abstract class. The different local search variants as defined
below are implemented as specific implementations ofmoNeighborhoodExplorer.

Local search algorithms available.Based on this very general algorithm, a large number of
local search strategies is included in ParadisEO-MO:

– Hill-climbing algorithms (best-improvement HC, first-improvement HC, random first-
improvement HC, neutral HC)

– Walk-like algorithms to sample the search space (random walk, random neutral walk
and Metropolis-Hasting)

– Tabu search (including medium-term and long-term memories)
– Simulated annealing (including multiple cooling scheduling strategies)
– Iterated local search,
– Variable neighborhood search.

These algorithms are based on a simple combination of the ParadisEO-MO building-blocks.
They are implemented in such a way that a minimum number of problem- or algorithm-
specific parameters are required. These easy-to-use algorithms also tends to be used as ref-
erences for a fair performance comparison in the academic world, even if they are also
well-suited for a straight use to solve real-world optimization problems. In comparison to
the previous version of the framework, the modularity has been largely improved, together
with an easier reuse of basic components. Different operators can be experimented without

26

engendering significant modifications in terms of code writing. A wide range of strategies
are already provided, but this list is not exhaustive as the framework perpetually evolves and
offers all that is necessary to develop new ones with a minimum effort. Indeed, ParadisEO
is a white-box framework that tends to be flexible while beingas user-friendly as possible.

Problem-related components available.ParadisEO-MO also provides many components
for classical problem representations, like bit-strings and permutations. As well, many neigh-
borhood structures are defined for such problems,i.e. k-flip for bit-strings;k-swap,k-exchange,
two-opt, and insertion for permutations. Moreover, both a complete and an incremental eval-
uation functions are provided for many academic optimization problems, including One-
Max, MaxSAT, traveling salesman problem, quadratic assignment problem, permutation
flowshop scheduling problem, NK-landscapes, etc. For instance, to instantiate a local search
algorithm for a new permutation-based problem, it is possible to use standard operators for
representation, initialization and neighborhood so that the evaluation function is the sin-
gle component to be implemented. Once this is provided, the user can use any algorithm
(HC, SA, TS, ILS, VNS) or any tool from fitness landscapes for his/her own optimization
problem.

3.2.2 Fitness Landscapes

Another feature of the ParadisEO-MO software framework relates to sampling and statistical
tools for fitness landscape analysis. Indeed, many checkpointing mechanisms have been in-
troduced and clearly adapted to local search principles. This checkpointing process is called
at each iteration of the local search algorithm through the component related to the stop-
ping condition (Algorithm 6, Line 9). Statistical tools include neighborhood-related statis-
tics (minimum, maximum, mean and standard deviation of neighboring solutions, probabil-
ity to increase, neutral degree, and so on), general-purpose statistics (fitness of the current
solution, number of iterations, evaluations, best found sofar, etc.). The evaluation of all
these values can now be printed onto output files. Thanks to all those statistical values, it
is now possible to sample the fitness landscape in order to compute the density of states,
the ruggedness by autocorrelation, the fitness-distance correlation, the fitness distribution of
local optima, the length of adaptive walks, the fitness cloud, the neutral degree distributions
and other statistics based on random neutral walks.

Only the main principle of fitness landscape analysis in ParadisEO-MO are reported
in the paper. The technical details are explained in the tutorial available on the website
of ParadisEO. In particular, one lesson explains how to easily perform a fitness landscape
analysis with all the tools available within the framework using the same components than
the local search metaheuristic presented in other lessons.

3.3 Discussion

We believe that the aforementioned characteristics make from ParadisEO a valuable tool
for both researchers and practitioners, and a unique software framework in comparison to
existing ones. Indeed, it includes many state-of-the-art local search algorithms. The rich set
of ParadisEO modular ingredients has serve as building-blocks to implement these methods.
The related source code of ParadisEO, that contains more than 50000 lines of code, is main-
tained and regularly updated by the developers. Since October 2006, ParadisEO has been

27

downloaded more than 20000 times, and more than 250 users areregistered on the mailing-
list (paradiseo-users@lists.gforge.inria.fr). Moreover, many examples and tutori-
als of local search algorithms and fitness landscapes analysis, as well as a complete docu-
mentation of the application programming interface, are available on the ParadisEO website
(http://paradiseo.gforge.inria.fr). The tutorials related to ParadisEO-MO available
on the website goes from the implementation of an hill-climbing algorithm to fitness land-
scape analysis, and help the user to incrementally incorporate advanced features related to
neighborhood, simulated annealing, tabu search, iteratedlocal search and even hybridization
between local search and evolutionary algorithms.

According to a recent survey on software frameworks for metaheuristics (Parejo et al,
2012), ParadisEO is competitive in terms of supported metaheuristics, problem adapta-
tion/encoding, advanced metaheuristic characteristics,design, implementation and licens-
ing, as well as documentation, samples and popularity. Overall, ParadisEO ranks second
over tenselectedsoftware frameworks (Parejo et al, 2012), behind ECJ (White, 2012).
However, let us emphasize that ECJ does not provide any localsearch metaheuristic, but
is specialized onto evolutionary computation algorithms only.

ParadisEO gives the possibility to design and implement a wide number of new res-
olution methods, either sequential or parallel, just by combining existing elements in an
innovative way, or by implementing original ones. Moreover, it can serve as a reference
implementation in order to compare different algorithms fairly. For instance, whenever a
new algorithm is proposed, its efficiency can be experimentally demonstrated by compar-
ing its behavior with existing ones. On the other hand, ParadisEO is also a practical tool
that can be used to tackle an original optimization problem.The implementation of efficient
programs is highly facilitated so that the user only has to focus on problem-related issues
of representation, initialization, evaluation and neighborhood. The implementation effort is
even more reduced when a classical solution representationcan be applied for the problem
under consideration,i.e. a binary or a permutation-based encoding. For such problems, the
development and time cost is reduced to minimum since the evaluation function is the sin-
gle element to be implemented. Of course, this cost is alwaysrelated to the proficiency of
the programmer in charge of the implementation. Once this evaluation function is available,
the user only has to instantiate any local search algorithm (hill-climbing, simulated anneal-
ing, tabu search. . .) to obtain a powerful resolution program that is able to run on a large
range of material architectures (sequential, cluster, grid, GPU) and their associated operat-
ing systems (Windows, Linux, MacOS). Though, for more sophisticated solution encodings,
the development cost remains substantial with respect to the complexity of the underlying
representation and to the level of expertise of the programmer. But it will always be lower
than implementing a whole specific algorithm from scratch. At last, hybrid metaheuristics
like memetic algorithms (Talbi, 2009) can be conveniently designed by combining compo-
nents from the different modules of ParadisEO. Moreover, starting from a single-objective
optimization problem implemented within ParadisEO, it is acommonplace to investigate a
multiobjective variant by means of the ParadisEO-MOEO module (Liefooghe et al, 2011). In
particular, multiobjective local search algorithms are also provided (Liefooghe et al, 2012).

Finally, the ParadisEO-MO tools for fitness landscape analysis and local search algo-
rithms have been validated on a large range of optimization problems from both academic
and real-world fields, including vehicle routing (Lecron etal, 2010), scheduling (Marmion
et al, 2011b), packing (Khanafer et al, 2012), NK-landscapes (Ochoa et al, 2010), quadratic
assignment problem (Daolio et al, 2010), and bio-informatics (Boisson et al, 2011), among
many others.

28

4 Conclusions

Designing software frameworks for local search algorithmsis primordial. In practice, there
is a large diversity of optimization problems. Moreover, there is a continual evolution of the
models associated to optimization problems. The problem may change or needs further re-
finements. Some objectives and/or constraints may be added,deleted or modified. In general,
the efficient solving of a problem needs to experiment many solving methods, tuning the pa-
rameters of each metaheuristic, etc. Moreover, the metaheuristic domain is also evolving in
terms of new algorithms. More and more increasingly complexlocal search algorithms are
developed (e.g.hybrid strategies, parallel models).

There is a clear need to provide a ready-to-use implementation of metaheuristics. It is
important for application engineers to choose, implement and apply state-of-the-art algo-
rithms without in-depth programming knowledge and expertise in optimization. For opti-
mization experts and developers, it is useful for them to evaluate and compare fairly dif-
ferent algorithms, transform ready-to-use algorithms, design new algorithms, combine and
parallelize algorithms.

ParadisEO-MO has been completely designed in order to provide, at the same time,a
priori , a posterioriand on-line tools of analysis and efficient local search implementations.
This makes from ParadisEO a unique software framework in themetaheuristics community.
All these features have been documented, tested and validated on various problems from
routing, assignment, packing, and scheduling. A number of tutorials with many examples
of use are available on the website. In future works, we plan to extend the framework to
adaptive search metaheuristics based on on-line fitness landscape analysis.

Once a local search algorithm is designed, the ParadisEO-MOsoftware framework al-
lows to implement it easily. The architecture modularity reduces the time and the complexity
of designing local search metaheuristics. An expert user can, without difficulty, extend the
already available building-blocks in order to more suit to the problem, and then to obtain
better performance. Nevertheless, ParadisEO-MO can be used by newbies with a minimum
of code to produce in order to implement diverse search strategies. A natural perspective
is to evolve the open-source software by integrating more search components, heuristics
and problem solving environments (e.g.logistics, transportation, energy production). More-
over, the ParadisEO-MO module has been recently extended torun under GPU (Melab et al,
2011).

The fitness landscape analysis of optimization problems is an important aspect in de-
signing a local search algorithm. It is one of the most challenging problem in the theory
of heuristic search algorithms. Indeed, the properties of the landscape has an important
impact on the performance of local search metaheuristics. They have a major role in de-
scribing, explaining and predicting the behavior of local search metaheuristics. One of the
main lessons to learn is to analyze and exploit the structural properties of the landscape
associated to a problem class. One can also modify the landscape by changing the represen-
tation/neighborhood structure or the guiding function so that it becomes “easier” to solve
(e.g.deep valley landscape).

One of the most important perspective is the automatic parameter setting. Indeed, many
parameters have to be tuned for any local search algorithm. Parameter setting may allow a
larger flexibility and robustness, but requires a careful initialization. Those parameters may
have a great influence on the efficiency and effectiveness of the search. It is not obvious to
define off-line or on-line which parameter setting should beused. The optimal values for
the parameters depend mainly on the problem and even the instance to deal with and on the
search time that the user wants to spend in solving the problem.

29

Acknowledgements The authors would like to gratefully acknowledge the reviewers for their valuable feed-
back that highly contributed to improve the quality of the paper. Moreover, we would like to thank the Inria
research institute for their support on the DOLPHIN project. Thanks are also due to all the members of the
DOLPHIN research group for their collaboration in the development of the ParadisEO framework.

References

Aarts EHL, Lenstra JK (1997) Local search in combinatorial optimization. John Wiley
Adenso-Dı́az B, Laguna M (2006) Fine-tuning of algorithms using fractional experimental

designs and local search. Operations Research 54(1):99–114
Alba E, Almeida F, Blesa M, Cotta C, Dı́az M, Dorta I, GabarróJ, González J, León C,

Moreno L, Petit J, Roda J, Rojas A, Xhafa F (2002) MALLBA: A library of skeletons for
combinatorial optimisation. In: Parallel Processing Conference (Euro-Par 2002), LNCS,
vol 2400, Springer-Verlag, Berlin Heidelberg, pp 927–932

Altenberg L (1997) Fitness distance correlation analysis:an instructive counterexemple. In:
Bäck T (ed) Seventh Int. Conf. on Genetic Algorithms, Morgan Kaufmann, pp 57–64

Bastolla U, Porto M, Roman HE, Vendruscolo M (2003) Statiscal properties of neutral evo-
lution. Journal Molecular Evolution 57(S):103–119

Benoist T, Estellon B, Gardi F, Megel R, Nouioua K (2011) LocalSolver 1.x: a black-box
local-search solver for 0-1 programming. 4OR: A Quarterly Journal of Operations Re-
search 9:299–316

Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configur-
ing metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, GECCO ’02, pp
11–18

Bleuler S, Laumanns M, Thiele L, Zitzler E (2003) PISA - a platform and programming lan-
guage independent interface for search algorithms. In: Second International Conference
on Evolutionary Multi-Criterion Optimization (EMO 2003),Faro, Portugal, pp 494–508

Boisson JC, Jourdan L, Talbi EG (2011) Metaheuristics basedde novo protein sequencing:
A new approach. Applied Soft Computing 11(2):2271–2278

Burke E, Newall J (2002) Enhancing timetable solutions withlocal search methods. In:
Practise and Theory of Automated Timetabling IV (PATAT 2002, Gent, Belgium). LNCS,
Vol. 2740, IEEE Press, Springer, pp 195–206

Cahon S, Melab N, Talbi EG (2004) ParadisEO: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of Heuristics 10(3):357–380

Cerny V (1985) A thermodynamical approach to the traveling salesman problem: An effi-
cient simulation algorithm. Journal of Optimization Theory and Applications 45:41–51

Charon I, Hudry O (1993) The noising method: A new method for combinatorial optimiza-
tion. Operations Research Letters 14:133–137

Clergue M, Collard P (2002) GA-hard functions built by combination of trap functions.
In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), IEEE
Press, pp 249–254

Daolio F, Verel S, Ochoa G, Tomassini M (2010) Local optima networks of the quadratic
assignment problem. In: Proceeding of IEEE world conference on computational intelli-
gence (WCCI), Barcelona, Spain, pp 3145 – 3152

Dekkers A, Aarts E (1991) Global optimization and simulatedannealing. Mathematical Pro-
gramming 50:367–393

Di Gaspero L, Roli A, Schaerf A (2007) Easyanalyzer: an object-oriented framework for the
experimental analysis of stochastic local search algorithms. In: International conference

30

on Engineering stochastic local search algorithms (SLS 2007), Springer, Berlin, Heidel-
berg, Lecture Notes in Computer Science, pp 76–90

Eiben AE, Michalewicz Z, Schoenauer M, Smith JE (2007) Parameter control in evolution-
ary algorithms. In: Lobo FG, Lima CF, Michalewicz Z (eds) Parameter Setting in Evolu-
tionary Algorithms, Studies in Computational Intelligence, vol 54, Springer, pp 19–46

Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters 8:67–71

Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. Journal of
Global Optimization 6:109–133

Gaspero LD, Schaerf A (2003) EasyLocal++: An object-oriented framework for flexible
design of local search algorithms. Software — Practice & Experience 33(8):733–765

Glover F (1986) Future paths for integer programming and links to artificial intelligence.
Comput Ops Res 13(5):533–549

Glover F, Laguna M (1997) Tabu Search. Kluwer Academic, Dordrecht
Glover F, Millan CM (1986) The general employee scheduling problem: An integration of

MS and AI. Computers and Operations Research 13(5):563–573
Gu J, Huang X (1994) Efficient local search with search space smoothing: a case study

of the traveling salesman problem. IEEE Transactions on Systems Man and Cybernetics
24(5):728–735

Halim S, Yap RHC, Lau HC (2007) An integrated white+black boxapproach for designing
and tuning stochastic local search. In: 13th InternationalConference on Principles and
Practice of Constraint Programming (CP 2007), Springer, Lecture Notes in Computer
Science, vol 4741, pp 332–347

Hansen P (1986) The steepest ascent mildest descent heuristic for combinatorial program-
ming, congress on Numerical Methods in Combinatorial Optimization, Capri, Italy

Hart JP, Shogan AW (1987) Semi-greedy heuristics: An empirical study. Operations Re-
search Letters 6(3):107–114

Hoos H, Stützle T (2004) Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann

Hoos HH (2012) Programming by optimization. Communications of the ACM 55(2):70–80,
DOI 10.1145/2076450.2076469

Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009) ParamILS: an automatic algorithm
configuration framework. J Artif Int Res 36(1):267–306

Johnson DS (1990) Local optimization and the travelling salesman problem. In: 17th Col-
loquium on Automata, Languages and Programming, LNCS No.443, Springer, Berlin, pp
446–461

Jones M (2000) A object-oriented framework for the implementation of search techniques.
PhD thesis, University of East Anglia

Jones M, McKeown G, Rayward-Smith V (1998) Templar: A object-oriented framework
for distributed combinatorial optimization. In: Proc. of the UNICOM Seminar on Modern
Heuristics for Decision Support, UNICOM Ltd, Brunel university, UK

Jones T (1995) Evolutionary algorithms, fitness landscapesand search. PhD thesis, Univer-
sity of New Mexico, Albuquerque

Keijzer M, Merelo JJ, Romero G, Schoenauer M (2001) Evolvingobjects: A general purpose
evolutionary computation library. In: 5th International Conference on Artificial Evolution
(EA 2001), Le Creusot, France, pp 231–244

Khanafer A, Clautiaux F, Hanafi S, El-Ghazali T (2012) The min-conflict packing problem.
Computers & Operations Research 39:2122–2132

31

Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press,
Cambridge, UK

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science
220(4598):671–680

Krasnogor N, Smith J (2000) MAFRA: A Java memetic algorithmsframework. In: Data
mining with evolutionary algorithms, Las Vegas, Nevada, USA, pp 125–131

Lecron F, Manneback P, Tuyttens D (2010) Exploiting grid computation for solving the vehi-
cle routing problem. In: 2010 IEEE/ACS International Conference on Computer Systems
and Applications (AICCSA), pp 1–6

Liefooghe A, Jourdan L, Talbi EG (2011) A software frameworkbased on a conceptual
unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. European
Journal of Operational Research 209(2):104–112

Liefooghe A, Humeau J, Mesmoudi S, Jourdan L, Talbi EG (2012)On dominance-
based multiobjective local search: design, implementation and experimental analysis on
scheduling and traveling salesman problems. Journal of Heuristics 18(2):317–352

Locatelli M (2000) Simulated annealing algorithms for continuous global optimization: con-
vergence conditions. Journal of Optimization Theory and Applications 29(1):87–102

Lourenco HR, Martin O, Stutzle T (2002) Handbook of metaheuristics, Operations Re-
search and Management Science, vol 57, Kluwer Academic Publishers, chap Iterated local
search, pp 321–353

Lukasiewycz M, Glaß M, Reimann F, Teich J (2011) Opt4J - A Modular Framework for
Meta-heuristic Optimization. In: Proceedings of the Genetic and Evolutionary Computing
Conference (GECCO 2011), Dublin, Ireland

Madras N (2002) Lectures on Monte Carlo Methods. American Mathematical Society, Prov-
idence, Rhode Island

Marmion ME, Dhaenens C, Jourdan L, Liefooghe A, Verel S (2011a) NILS: a Neutrality-
based Iterated Local Search and its application to FlowshopScheduling. In: Merz P, Hao
JK (eds) Evolutionary Computation in Combinatorial Optimization, Springer, Turino,
Italie, Lecture Notes in Computer Science, vol 6622, pp 191–202

Marmion ME, Dhaenens C, Jourdan L, Liefooghe A, Verel S (2011b) On the neutrality of
flowshop scheduling fitness landscapes. In: 5th Learning andIntelligent OptimizatioN
Conference (LION 5), Springer, Rome, Italy, Lecture Notes in Computer Science, vol
6683, pp 238–252

Marmion ME, Mascia F, López-Ibáñez M, Stützle T (to appear) Automatic design of hybrid
stochastic local search metaheuristics. In: Hybrid Metaheuristics (HM 2013), Springer,
Lecture Notes in Computer Science

Martin O, Otto S, Felten EW (1991) Large-step markov chains for the traveling salesman
problem. Complex Systems 5(3):299–326

Melab N, Luong TV, Karima B, Talbi EG (2011) Towards ParadisEO-MO-GPU: a
Framework for GPU-based Local Search Metaheuristics. In: 11th International Work-
Conference on Artificial Neural Networks, Springer, Torremolinos-Málaga, Espagne,
Lecture Notes in Computer Science, vol 6691

Michel L, Hentenryck PV (2001) Localizer++: An open libraryfor local search. Tech. Rep.
CS-01-02, Brown University, Computer Science

Michel L, See A, Hentenryck PV (2009) Parallel and distributed local search in COMET.
Computers & Operations Research 36(8):2357–2375

Mladenovic M, Hansen P (1997) Variable neighborhood search. Computers and Operations
Research 24:1097–1100

32

Nannen V, Eiben AE (2007) Relevance estimation and value calibration of evolutionary al-
gorithm parameters. In: Proceedings of the 20th international joint conference on Artifical
intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’07, pp
975–980

Ochoa G, Tomassini M, Verel S, Darabos C (2008) A Study of NK Landscapes’ Basins and
Local Optima Networks. In: Proceedings of the 10th annual conference on Genetic and
evolutionary computation, ACM New York, NY, USA, Atlanta, United States, pp 555–
562, DOI 10.1145/1389095.1389204

Ochoa G, Verel S, Tomassini M (2010) First-improvement vs. best-improvement local op-
tima networks of nk landscapes. In: Proceedings of the 11th International Conference on
Parallel Problem Solving From Nature, Krakow, Poland, pp 104–113

Ozdamar L, Demirhan M (2000) Experiments with new stochastic global optimization
search techniques. Computers and Operations Research 27(9):841–865

Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complex-
ity. Prentice-Hall, Inc.

Parejo JA, Ruiz-Cortés A, Lozano S, Fernández P (2012) Metaheuristic optimization frame-
works: A survey and benchmarking. Soft Computing 16(3):527–561

Quick R, Rayward-Smith V, Smith G (1998) Fitness distance correlation and ridge functions.
In: et al AEE (ed) Fifth Conference on Parallel Problems Solving from Nature (PPSN’98),
Springer-Verlag, Heidelberg, Lecture Notes in Computer Science, vol 1498, pp 77–86

Reidys CM, Stadler PF (2001) Neutrality in fitness landscapes. Applied Mathematics and
Computation 117(2–3):321–350

Rodriguez-Tello E, Hao JK, Torres-Jimenez J (2008) An effective two-stage simulated an-
nealing algorithm for the minimum linear arrangement problem. Computers & Operations
Research 35(10):3331 – 3346

Rosé H, Ebeling W, Asselmeyer T (1996) The density of states- a measure of the difficulty
of optimisation problems. In: Parallel Problem Solving from Nature (PPSN 1996), pp
208–217

Rothlauf F (2006) Representations for genetic and evolutionary algorithms, 2nd edn.
Springer-Verlag

Sendhoff B, Kreutz M, von Seelen W (1997) A condition for the genotype-phenotype map-
ping: Causality. In: Proc. of the 7th Int. Conf. on Genetic Algorithms, East Lansing, MI,
pp 73–80

Stadler PF (2002) Fitness landscapes. In: Biological Evolution and Statistical Physics,
Springer-Verlag, Heidelberg, Lecture Notes Physics, vol 585, pp 187–207

Stutzle T (1999) Local search algorithms for combinatorialproblems - analysis, algorithms
and new applications. PhD thesis, DISKI - Dissertationen zur Kunstliken Intelligenz.,
Sankt augustin, Germany

Talbi EG (2009) Metaheuristics: from design to implementation. Wiley
Talbi EG, Hafidi Z, Geib JM (1998) A parallel adaptive tabu search approach. Parallel com-

puting 24(14):2003–2019
Van Nimwegen E, Crutchfield J, Huynen M (1999) Neutral evolution of mutational robust-

ness. In: Proc. Nat. Acad. Sci. USA 96, pp 9716–9720
Verel S (2009) Fitness landscapes and graphs: multimodularity, ruggedness and neutrality.

In: 11th annual conference companion on Genetic and evolutionary computation confer-
ence (GECCO 2009), ACM, Montreal, Canada, pp 3593–3656

Verel S, Collard P, Clergue M (2003) Where are bottleneck in NK fitness landscapes?
In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), IEEE
Press, Canberra, pp 273–280

33

Voss S, Woodruff DL (2002) Optimization software class librairies. Kluwer
Voudouris C (1998) Guided local search - an illustrative example in function optimization.

BT Technology Journal 16(3):46–50
Voudouris C, Tsang E (1999) Guided local search. European Journal of Operational Re-

search 113(2):469–499
Weinberger ED (1990) Correlated and uncorrelatated fitnesslandscapes and how to tell the

difference. In: Biological Cybernetics, pp 63:325–336
Weinberger ED (1991) Local properties of Kauffman’s NK model, a tuneably rugged energy

landscape. Physical Review A 44(10):6399–6413
White DR (2012) Software review: the ECJ toolkit. Genetic Programming and Evolvable

Machines 13(1):65–67
Wilke CO (2001) Adaptative evolution on neutral networks. Bull Math Biol 63:715–730

