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ABSTRACT 
 
Background and Scope 
Large networks, such as protein interaction networks, are extremely difficult to analyze as a 
whole. We developed Clust&See, a Cytoscape plugin dedicated to the identification, 
visualization and analysis of clusters extracted from such networks.  
Implementation and performance 
Clust&See provides the ability to apply three different, recently developed graph clustering 
algorithms to networks and to visualize (i) the obtained partition as a quotient graph in which 
nodes correspond to clusters, (ii) the obtained clusters as their corresponding subnetworks. 
Importantly, tools for investigating the relationships between clusters and vertices as well as 
their organization within the whole graph are supplied.  
 
Availability 
http://tagc.univ-mrs.fr/tagc/index.php/clustnsee 
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1. INTRODUCTION 
 
The field of functional genomics is producing a large amount of data, often represented as 
interaction networks - or undirected graphs. These graphs typically contain thousands of 
vertices, rendering the extraction of pertinent biological information a daunting task. Graph 
partitioning or clustering methods have been used to highlight groups of densely connected 
vertices (Aittokallio and Schwikowski, 2006) which, in the field of protein interactions, often 
correspond to clusters of proteins involved in the same cellular process(es).  
Cytoscape is a popular and versatile software platform (Shannon et al., 2003) for network 
visualization and analysis. While a number of Cytoscape plugins such as ClusterMaker 
(Morris et al., 2011) or ClusterOne (Nepusz et al., 2012) can identify clusters from graphs, 
they mainly focus on visualizing the obtained clusters individually and independently as 
subnetworks to further investigate their node composition. However, exploring the 
relationships between clusters in detail is as important as studying their internal composition. 
Indeed, while proteins involved in the same process(es) interact within clusters, links between 
clusters correspond to crosstalk between processes. Communication between processes can 
also be performed by proteins belonging to several clusters. Consequently, considering the 
links between network clusters permits a better understanding of the modularity of biological 
networks and the functional transitions imposed by the integrative organization levels, from 
proteins to functional modules to entire systems.  
To fill this gap, we have developed Clust&See, a truly interactive tool that can (i) 
automatically decompose a network into clusters, (ii) visualize those clusters as metanodes 
linked by several types of edges/relationships, (iii) manipulate the clusters for further detailed 
visualization, analyses and comparisons.  
 
 
2. SOFTWARE DESCRIPTION 
 
Clust&See is a Cytoscape plugin developed for Cytoscape version 2.8. Some GUI elements 
have been reused from code from the MCODE (Bader and Hogue, 2003) and ClusterViz 
(http://apps.cytoscape.org/apps/clusterviz) plugins. 



 
2.1. Implemented graph clustering algorithms 
 
To date, three clustering algorithms based on the optimization of Newman’s modularity 
(Newman, 2004) have been implemented in Clust&See. While TFit and FT lead to disjoint 
clusters, OCG leads to overlapping ones:   
 
(1) FT (for Fusion-Transfer) (Guénoche, 2011) is an ascending hierarchical method fusing 
two clusters iteratively if the fusion results in a modularity gain. The algorithm starts with 
singletons and stops when further fusions lead to a loss in modularity. Modularity is then 
further optimized by transferring vertices from one cluster to another. 
 
(2) TFit (for iterated Transfer-Fusion) (Gambette and Guénoche, 2012) is a multi-level 
algorithm in which a vertex transfer procedure is performed at every level. Level one 
corresponds to the network. While modularity increases, each node is associated to its best 
adjacent cluster. Classical transfers are then performed and a quotient graph is computed; 
clusters then become the nodes of the next level to be further optimized. 
 
(3) OCG (for Overlapping Cluster Generator) (Becker et al., 2012) is an ascending 
hierarchical method fusing two clusters at each step. Initially, an overlapping class system 
formed by either (i) maximal cliques, or (ii) edges or (iii) centered cliques is built. These 
classes are then merged, while modularity increases, resulting in overlapping clusters.  
 
Performance values in terms of time and memory of the three algorithms are provided as 
Supplementary Material. Clustering results produced by Clust&See can be exported as text 
files, and subsequently re-imported and re-mapped to the original network, avoiding repetitive 
computation. Importantly, results from external clustering tools can be analyzed with 
Clust&See. Currently, the R package “Linkcomm” (Kalinka and Tomancak, 2011), in which 
the LinkCommunities (Ahn et al., 2010) and OCG (Becker et al., 2012) algorithms are 
implemented, provides output files that are compatible with Clust&See (for further 
information on supported formats, see the online Documentation, http://tagc.univ-
mrs.fr/tagc/index.php/software/clustnsee/clustnseedocumentation). Finally, the modular 
structure of Clust&See makes it easy to implement other clustering algorithms directly in 
Java. 
 
2.2. Visualization and analysis 
 
The clustering results can be visualized in Clust&See as a quotient graph in which clusters are 
represented as metanodes whose width is proportional to the number of their constituent 
vertices (Figure 1). Metanodes can be linked by two types of “metaedges”, one (black) whose 
width is proportional to the number of interactions between their vertices and, most 
importantly, one (green) whose width is proportional to the number of vertices shared by 
overlapping clusters computed by algorithms such as OCG. A docked Result Panel provides a 
sortable list of the clusters in which each cluster’s subnetwork is displayed along with its 
relevant features, such as size or edge density.  
 
Novel views, into which clusters of interest can be successively loaded, can be created on 
demand. An “Expand/collapse nodes” function allows the user to switch from the 
cluster/metanode representation to the corresponding subnetwork of vertices and vice versa 
(Figure 2). Details provided in the Data Panel upon selection of the different objects (vertices, 



edges) facilitate the study of the relationships between clusters. The composition of each 
metanode is provided as well as, importantly, the composition of the metaedges representing 
the shared objects (nodes or edges) between cluster pairs.  
 
When two different partitions are computed on the same network (using different algorithms 
or different parameters), they are compared using the Jaccard index (Jaccard, 1901) which 
provides a measure of the partitions' similarity. A contingency table listing the number of 
shared nodes between the clusters of each partition is provided for further analysis.  
In addition, because launching an analysis on a very large network or selection may lead, at 
best, unmanageable results (too many clusters) and, at worst, to memory issues and very long 
computation times, Clust&See offers the user the choice of extracting sub-networks of interest 
on which to continue the analysis by using the “Build neighborhood network” functionality.  
Finally, the provided search function can identify a specific node among the clusters of all 
partitions under investigation. 
 
 
3. APPLICATION  
 
3.1. From clusters to nodes 
 
Figure 1 shows the results obtained when applying the 3 algorithms currently implemented in 
Clust&See to the PI3K interactome network (Pilot-Storck et al., 2010). A global view of each 
partition as a quotient graph, in which the obtained clusters are represented as metanodes, is 
given. Note that the default view is shown when the partition contains no more than 15 
clusters/metanodes, but can always be displayed on demand for larger partitions. These views 
are one of the original features provided by the plug-in. 
The PI3K pathway transmits signals from receptors located at the cell surface to transcription 
factors in the nucleus, via an intracellular signaling cascade involving several kinases. To 
illustrate the value of a local analysis using Clust&See, we have chosen to explore the 
connections between 3 overlapping clusters generated by the OCG algorithm, containing a 
majority of receptor-binding proteins (Cluster 12), serine/threonine kinases (Cluster 25) and 
nuclear acid binding proteins (Cluster 5) respectively. The 3 clusters are represented as 
metanodes in Figure 2, which shows a “New Cluster View” created on the fly. In addition, 
Cluster 25, formed by 13 nodes linked by 16 intra-cluster edges, is shown in the Cluster 
Browser of the Results panel. Details on the mono/multi-clustered status of vertices are given 
in the Data Panel. Clusters sharing vertices (like Clusters 5 and 25), are easily identifiable 
since they are linked by a green metaedge whose details are shown in the Data Panel upon 
selection: two kinases, KS6B1 and PK3CA, belong to both clusters, suggesting a possible 
functional link between those proteins. Interestingly, particular variants of the genes encoding 
these proteins have been found to interact genetically in a case-control study for colorectal 
cancers (Slattery et al., 2011). A visual exploration of the organization of the clusters with 
Clust&See can therefore help building hypothesis and pointing toward relevant functional 
objects (represented as nodes, metanodes, edges or metaedges) and their relationships. 
Finally, metanodes can be expanded (and subsequently collapsed) in order to visualize the 
underlying subnetwork. The combination of the details shown in the Data Panel and the 
visualization of the composite subnetwork greatly facilitates the study of the identified 
clusters and their connections.  
 
3.2. From nodes to clusters 
 



Figure 3 illustrates the search for a particular node, PARP1, across the different partitions 
obtained when using all three algorithms on the same network. PARP1 belongs to two OCG 
clusters (P3 partition in the Results Panel). Interestingly, when both clusters are loaded in a 
“New Cluster View” for further analysis, the Data Panel shows that PDK1 is also shared by 
the same clusters, suggesting a possible functional link between PARP1 and PDK1. This is 
further confirmed when the expanded cluster view is generated, showing that both proteins 
interact directly. This interaction could in part explain the fact that co-targeting the PI3K 
pathway improves the response of cancer cells to PARP1 inhibition (Kimbung et al., 2012). 
 
4. CONCLUSION  
 
The Cytoscape plug-in Clust&See aims to facilitate network clustering and analysis for 
biologists not only by providing several original functionalities but also by providing them 
within a single analysis framework. While ClusterMaker (Morris et al., 2011) can represent 
clusters as metanodes, it provides neither intra/extra-edge visualization nor the possibility to 
expand/collapse the metanodes. Similarly, while ClusterOne (Nepusz et al., 2012) can 
identify overlapping clusters, studying the relationships between these clusters is not possible 
because their combined representation is not supported. In addition, Clust&See enables (i) 
better evaluation of the biological meaning of network clustering, (ii) better understanding of 
the underlying reasons for a particular node classification, (iii) better estimation of the quality 
of the network under scrutiny and (iv) adjusting the clustering algorithm choice to the studied 
network. In summary, the originality of Clust&See lies in its providing users with a complete 
tool for the creation and analysis of network clusters and the relationships between them. 
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FIGURE LEGENDS 
 
Figure 1: Quotient graphs obtained when clustering the PI3K network with the 3 implemented 
algorithms. 
 
Figure 2: A 'New Cluster View' showing the clusters 5, 12 and 25 generated by the OCG 
algorithm as metanodes and the two edge types linking them. Black metaedges connect 
vertices of one cluster to those of another. Green metaedges represent the nodes shared 
between the clusters. Details are shown in the Data Panel when selecting a green or a black 
metagedge. An example of an expanded metanode is also given. 
 
Figure 3: The result of a search for PARP1 in the clusters obtained from the different 



algorithms is shown. The two clusters containing PARP1 according to OCG are provided as a 
'New Cluster View' and the expanded metanodes are shown below them. 
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Supplementary information 

 

1- Three different algorithms are currently impleme nted in Clust&See. They are all 
based on the optimisation of Newman’s modularity (N ewman, 2004).  

•  FT (for Fusion-Transfer) (Guénoche, 2011) is an ascending hierarchical method fusing two clusters at 
each step if the fusion results in a modularity gain. The algorithm stops when further fusions lead to a loss 
in modularity. Finally, the modularity is further optimized by transfer of vertices from one cluster to another. 

•  TFit (for Transfer-Fusion iterated) (Gambette and Guénoche, 2011) is a multi-level method of transfers. 
Level one corresponds to the network. While modularity increases, each node is associated to its best 
adjacent cluster. Classical transfers are then performed and a quotient graph, in which clusters become the 
nodes of the next level, is computed. 

•  OCG (for Overlapping Cluster Generator) (Becker et al, 2012) is an ascending hierarchical method fusing 
two clusters at each step. The initial clusters make an overlapping class system that can be either (i) 
maximal cliques, (ii) edges or (iii) centered cliques. These are then merged, while modularity increases, 
resulting in overlapping clusters. 

 

Algorithms Initial classes Stop criterion Results S peed  Network Size* 

FT    
(Guénoche, 

2011) 

singletons (N†) maximum 
modularity value 

and 

local transfer 
optimization 

disjoint 
clusters 

slow N<8 000 

TFit      
(Gambette & 
Guénoche, 

2011) 

singletons (N) maximum 
modularity value 

disjoint 
clusters 

fast N<30 000 

OCG       
(Becker et al., 

2012) 

max. cliques (>>N) 

or 

edges (<N(N-1/2)) 

or 

centered cliques 
(<N) 

# of class 

or 

max. class 
cardinality 

or 

max. modularity 
value 

overlapping 
clusters 

and 

list of multi-
clustered 

nodes 

very slow 

 

slow 

 

fairly slow 

N<10 000 

* These limits are just recommendations. Exceeding these limits when using the Clust&See plugin may 
result in very long computation times and high memory usage. Therefore, we recommend a native 
implementation of the clustering algorithm for larger networks.    

† N is the number of nodes in the network.  

�

�
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2- Performance of the three algorithms when applied  to different subnetworks of 
the human interactome (tests performed on an Intel core i7 cpu M640, 2.8GHz, 4GB 
RAM).   

Network name  # nodes # edges 

1 1135 2010 

2 1902 4148 

3 3906 10430 

4 7051 20883 

�

�

time �

� 1 2 3 4 

FT 0'06'' 0'25'' 4'25'' 25' 

TFit 0'01'' 0'04'' 0'10'' 0'30'' 

OCG* 0'19'' 1'47'' 17'32'' 120'�

�

memory use (estimate) �

� 1 2 3 4 

FT 22M 55M 100M 800M 

TFit 20M 50M 270M 920M 

OCG* 17M 77M 286M 612M�

�

* The centered clique system was used for OCG. 
 
 
 
 
 
3- OCG algorithm performance according to implement ation (in C as in Becker at 
al., 2012; in Java as in Clust&See (this work); in R as in the LinkComm package 
(Kalinka and Tomancak, 2011)), when applied to diff erent subnetworks of the 
human interactome  (tests performed on an Intel cor e i7 cpu M640, 2.8GHz, 4GB 
RAM).   

time  
 1 2 3 4 
C 0'14'' 1'07'' 11'35'' 83'06'' 
Java 0'19'' 1'47'' 17'32'' 120' 
R 0’05’’ 0’26’’ 5’50’’ 40’02’’ 
 
 
memory (estimations)  
      1 2 3 4 
C 23M 65M 220M 640M 
Java 17M 77M 286M 612M 
R 15M 50M 100M 350M 
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