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Abstract: A novel type of reduced complexity controller is proposed. It is the combination of
model free control and event triggered control. The robustness of model free control, especially
for badly known dynamics, is added to the event based scheme. The performances of the
proposed method are illustrated in two motion controls, vehicular longitudinal control and
quadrotor control. Comparisons with existing control schemes are also proposed.
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1. INTRODUCTION

The trend to complex embedded control systems brings
out a lot of new challenges. On one hand, the embedded
character demands reduced complexity controllers. On the
other hand, the complexity of the controlled systems en-
forces robustness of the proposed control schemes. Many
constraints have to be taken into account, especially in
distributed systems (see Murray et al. [2003]). Low com-
putational cost control schemes which are able to deal with
nonlinear systems with robustness are needed.

Model free control has been proven to be a simple but very
efficient nonlinear feedback technique for the unknown or
partially known dynamics (see Fliess et al. [2009], Choi
et al. [2009]). We shall here use so-called intelligent PID
(or i-PID). While retaining the PID reduced computa-
tional cost, it is able to cope with general types of nonlin-
earities. A precise relationship between i-PID and PIDs
is given in d’Andréa-Novel et al. [2010]. It particularly
emphasizes the ease of tuning of i-PID gains and gives
a clearcut explanation of the performance of usual PIDs.

Contrarily to the time triggered control scheme which the
control signals are sent to the actuator board every fixed
sampling time, in the event based scheme, the control
signals are sent only upon the triggering of an event (see
Årzén [1999]). A typical event is that the tracking error
goes beyond a specified limit. This type of scheme allows
to go beyond the traditional Shannon sampling limit while
still achieving asymptotic stability. We here propose an
event based scheme for intelligent PID. The two techniques
quoted above enable the efficiency and reduced complexity
of the controller.

In the first section, the general setting of model free control
and intelligent PID (i-PID) controllers are recalled. Then,
event driven i-PID controllers are introduced. The simula-
tions on the simplified models of longitudinal dynamics of
a car and aerodynamics of quadrotor are then given.

2. MODEL FREE CONTROL

2.1 General setting

Model free control is a quite recent and very efficient tech-
nique for unknown and partially known systems (see Fliess
et al. [2009]). The input-output behavior of the system is
approximatively governed within its operating range by
a partially known or totally unknown finite-dimensional
ordinary linear or non-linear differential equation. For the
sake of simplicity, the input and output are assumed to be
mono-variable. The system is described implicitly as

E(y, ẏ, . . . , y(a), u, u̇, . . . , u(b)) = 0 (1)

where E : Ra+1×Rb+1 → R is a sufficient smooth function
of its arguments. Assume that for integer ν, 0 < ν 6 ι,
∂E/∂y(ν) 6≡ 0. The implicit function theorem (see Krantz
et al. [2002]) allows to express y(ν) locally

y(ν) = E(t, y, ẏ, . . . , y(ν−1), y(ν+1), . . . , y(ι), u, u̇, . . . , u(κ))

with the function E : R×Rι ×Rκ+1 → R.

Replace (1) by the following phenomenological model
which is only valid in a very short time interval.

y(ν) = F + αu (2)

where

• α ∈ R is a non-physical constant parameter, which is
chosen by the engineer in such a way that F and αu
are of the same magnitude.



• The derivation order ν is also an engineer’s choice.
• F is determined thanks to the knowledge of u, α, and
of the estimate of y(ν).

An estimate of F is obtained as follows:

F̂ = ŷ(ν) − αũ (3)

where ŷ(ν) is an estimate of the νth derivative of the
measure y which is assumed available, and ũ is an ap-
proximate value of u, in order to avoid algebraic loops
in the controllers. Among the existing possibilities, ũ can
be chosen as a past value of the control variable u. The
resulting controller is then

u =
1

α

(
y(ν)r − F̂ + Λ(e〈−ξ,ζ〉)

)

where

• yr is a reference trajectory which is selected as in
flatness-based control (see Fliess et al. [1995]).

• e = yr − y is the tracking error.

• e〈−ξ,ζ〉 = (
∫ ξ
e,
∫ ξ−1

e, . . . , e, ė, e(ζ)), ξ, ζ ∈ [0, ν],
∫ k

is the k iterated integral, and Λ is an appropriate
function Rξ+ζ+1 → R such that the closed loop error
dynamics

e(ν) = Λ(e〈−ξ,ζ〉)

is asymptotically stable.

Remarks 2.1. a) The derivation order ν is not necessar-
ily equal to the derivation order a of y in Equation
(1).

b) The derivation order ν, is often taken equal to 1 or 2,
yielding so called intelligent PIDs or i-PID (see next
subsection).

c) A system may be partially unknown. It is straightfor-
ward to adapt the previous method.

d) The estimate in (3) can be obtained for example
through a simple first order filtering as

L (ˆ̇y) =
s

1 + Tfs
L (y)

typically, 1/Tf ranges from 8 to 20, and L denotes
the transformation to the operational domain.
It can also be given by efficient algebraic techniques

(see Mboup et al. [2009]) yielding for example the
following estimate for the first derivative

ˆ̇y =
−3!

T 3

∫ T

0

(T − 2τ)y(τ)dτ

with T an integration window size which order of
magnitude is 20 times the sampling time in a time
triggered setting.

2.2 Intelligent PIDs

The desired behavior is obtained by implementing, for
instance ν = 2, the intelligent PID controller (i-PID) is

u = −
F̂

α
+
ÿr
α

+KP e+KI

∫
e+KD ė (4)

where KP , KI , KD are the usual tuning gains.

Let us consider the following special cases:

• If ν = 2, we may also employ an intelligent PD
controller (i-PD)

u = −
F̂

α
+
ÿr
α

+KP e+KD ė (5)

• If ν = 1, we restrict ourselves to an intelligent PI
controller (i-PI)

u = −
F̂

α
+
ẏr
α

+KP e+KI

∫
e (6)

or even to an intelligent P controller (i-P)

u = −
F̂

α
+
ẏr
α

+KP e (7)

Remarks 2.2. a) If ν = 2 (resp. 1), plugging Equations
(4) or (5) (resp. (6) or (7)) in Equation (2) yields
the control of a pure double (resp. simple) integra-
tor. This is why tuning the gains of our intelligent
controllers is quite straightforward.

b) It should be emphasized, if ν = 2 (resp. 1), that
Equation (5) (resp. (7)) is mathematically sufficient
for ensuring stability around the reference trajectory.
The integral term KI

∫
e in Equation (4) (resp. (6))

is however adding some well known robustness prop-
erties.

3. EVENT DRIVEN MODEL FREE CONTROL

The basic Årzén’s event based controller consists of two
parts: a time triggered event detector τed and an event
triggered PID controller τec. See Årzén [1999]. The latter
computes the control signal to be delivered to the actuator
board. The former τed runs at a fixed sampling period
hed, and upon fulfillment of a certain event triggering law
Let, sends events to τec. Upon reception of the event, τec
computes the control signal and sends it to the actuator
board.

Examples of event triggering laws Let are:

• Error threshold law:

|e(tk)| > elim (8)

where e = yr−y is the tracking error, tk is the current
discrete sensing time by τed, and elim is a fixed limit.

• Error difference threshold

|e(tk)− e(tk−1)| > elim (9)

• ISS based law:

e(tk) = σ
a

b
|y(tk)| (10)

assuming the system can be rendered ISS (Input to
State Stable) through static feedback (see Sontag
[2007]). σ is chosen less than one to ensure an as-
sociated Lyapounov function decrease. a and b are
chosen according to the Lipschitz constants of the
K∞ (consisting of all functions γ R+ → R+ which
are continuous, strictly increasing, satisfying γ(0) = 0
and limξ→∞ = ∞. See, e.g., Sontag [2007]).

The present control goal is path tracking. We shall use geo-
metric information on the reference trajectory yr. Namely,
we shall take the following event triggering scheme:

|e(tk)− e(tk−1)| > elim ∧ tk − tk−1 >
max(σ(ẏr)).hM

σ(ẏr(tk))
(11)

where σ is a saturation function, and hM is the maxi-
mum sampling time ensuring stability in a time triggered
scheme. We have chosen the following smooth saturating
function



σ(ξ) =
H − l

2(ξH − ξl)

(
φ(ξ) + ψ(ξ)

)
+
ξH + ξl

2

φ(ξ) =
1

ζ
ln
(
cosh(ζ(ξ − ξl))

)
(12)

ψ(ξ) =
−1

ζ
ln

(
cosh(−ζ(ξ − ξH))

)

with l and H the low and high saturated values, ξl and
ξH the beginning and ending abscissa of the linear part,
and ζ is a stiffness value. The ln(cosh(ξ)) functions enable
to have a linear part (when ξ ≪ 0 , cosh(ξ) ≈ exp(−ξ)/2,
and ln(cosh(ξ)) ≈ −ξ/2; when ξ ≫ 0 , cosh(ξ) ≈ exp(ξ)/2,
and ln(cosh(ξ)) ≈ ξ/2) with smooth transitions between
the constant and linear parts.

4. APPLICATION TO VEHICLE LONGITUDINAL
CONTROL

4.1 Model

We shall take a simplified model of longitudinal car dy-
namics as example. See Kiencke et al. [2005]. No attempt
will be made to take longitudinal slip into account. Thus,
the motor torque is supposed to be directly transmitted to
the longitudinal dynamics.

The simplified model is as the following:

MV̇x =
C

r
− Cae(Vx + Vw)

∣∣Vx + Vw
∣∣−Mg sin(θ)−

MgCrrsign(Vx) cos(θ) (13)

where M the vehicle’s mass, Vx the vehicle’s longitudinal
speed. C the traction torque which is taken as control
input. r the wheel’s mean radius. Cae the aerodynamics
coefficient. Vw the wind speed disturbance. g the gravity
constant. θ the road slope. Crr the Rolling resistance
coefficient.

The chosen values for the parameters are: M = 1200kg,
Vx = 0 to 36m/s, r = 0.025m, Cae = 0.015Ns2/m2, Vw =
0 to 14m/s, θ = 0 to 0.52rad, Crr = 0.15. In the second
member of equation (13): The first term is the traction
force. The second term is the aerodynamics force. The
third term is the slope effect force, and the fourth term
is the rolling resistance force.

4.2 Model free setting

The model given in (13) can be expressed as

V̇x = F +
1

Mr
C (14)

with

F =
1

M
(−Cae(Vx + Vw)

∣∣Vx + Vw
∣∣−Mg sin(θ)−

MgCrrsign(Vx) cos(θ)) (15)

which is of the form (2) with α = 1/Mr. Thus, we have

C =Mr

(
V̇xr − F̂ − kpe− ki

∫ t

0

e(τ)dτ

)

F̂ = ˆ̇Vx −
1

Mr
C̃ (16)

e = Vx − Vxr

with Vxr the reference speed,
ˆ̇Vx an estimate of the deriva-

tive of Vx, and C̃ a past value of C (an approximation of
C).

For instance, we can take the above form in discrete time

C(tk) = C(tk−1) +Mr
(
ˆ̇e(tk) + kpe(tk) + kiI(tk)

)

ˆ̇e(tk) = V̇xr(tk)−
ˆ̇Vx(tk)

e(tk) = Vxr(tk)− Vx(tk)

I(tk) = I(tk−1) + he(tk) (17)

ˆ̇Vx(tk) =
Tf

Tf + h
ˆ̇Vx(tk−1) +

1

Tf + h

(
Vx(tk)− Vx(tk−1)

)

h = tk − tk−1

For comparison, a usual PID takes the following form

C(tk) = Kpe(tk) +KiI(tk)

e(tk) = Vxr(tk)− Vx(tk)

I(tk) = I(tk−1) + he(tk) (18)

h = tk − tk−1

4.3 Simulations: continuous ideal flatness based control

Supposing we have the full knowledge of the dynamics, the
ideal flatness based control is of the form:

C =Mr

(
Vxr − F − kpe− ki

∫ t

0

e(τ)dτ

)

F = −Cae(Vx + Vw)
∣∣Vx + Vw

∣∣−Mg sin(θ)−

MgCrrsign(Vx) cos(θ) (19)

e = Vx − Vxr
The error in the case of flatness based control is depicted
in figure 1.

4.4 Simulations: time triggered PI control and i-PID
control

We first compare the cases of a time triggered PID and a
time triggered i-PID.

Consider a fixed sampling time of h = 10ms (knowing
that h = 35ms is the limit of stability). This yields
1976 actuation steps. We take a PI controller with gains
kp = 17000 and ki = 100. The reference trajectory and
the tracking error are depicted in figure 1.

4.5 Simulations: event triggered PI control and i-PID
control

We now consider the event triggered controls. The event
triggering scheme for PI control is the classical error
difference of equation (9). The limit elim in (9) is taken
as

elim =
max(yr)−min(yr)

200
It yields 291 actuation steps and the tracking error is given
in figure 1. The i-PI controller is with gains Kp = 60 and
Ki = 6.

4.6 Discussion

Note that the maximum absolute tracking error is 6.4.10−2

m/s in the PI case, and 3.2.10−3 m/s in the i-PI case which



Fig. 1. (1) Reference trajectory. (2) Tracking errors of
ideal flatness based control. (3) Tracking errors of
time triggered PI control. (4) Tracking errors of time
triggered i-PID control. (5) Tracking errors of event
triggered PI control. (6) Tracking errors of event
triggered i-PID control.

is 20 times less (2000%) than in the PI case. If we exclude
the first second, the maximum absolute tracking error in
the i-PI case is of 5.2.10−4, which is 123 times less than in
the PI case.

Consider now an i-PI control. The event triggered scheme
is the one given in equation (11), with l = 1, L = 20,
ξl = −2, ξH = 2, and ζ = 6. The corresponding tracking
error is given in figure 1, and was performed in 569
actuation steps. The gain in performance, when using an
i-PI instead of a PI, is 68.18 and the loss in actuation steps
is 1.95.

Model free control has better performance than PI control.
Using the event triggered schemes, i-PID can further
reduce the number of actuation loops, which is very useful
for real time control systems.

5. APPLICATION TO QUADROTOR CONTROL

5.1 Model

The chosen model of quadrotor is depicted in equations
(20). See Bouabdallah [2007]. The rotation angles φ, θ and
ψ are along the world axis x, y and z respectively, namely,
roll, pitch and yaw. Ωr (i = 1..4) are the angular velocities
of each rotor, which are the real inputs of the quadrotor.
The forces Ti, Hi (i = 1..4) are the thrust and hub forces

of each motor. The moments Ri, Qi (i = 1..4) are the
drag and rolling moments of each rotor. The quantities
ω̇1ω̇2(Iii−Iii), Jrω̇Ωr (ω = φ, θ, ψ; i = x, y, z) are the body
gyroscopic effects and propeller gyroscopic effects. The
notations c and s represent cos and sin respectively. The
values of all the parameters can be found in Bouabdallah
[2007].

Ixxφ̈ = θ̇ψ̇(Iyy − Izz) + Jr θ̇Ωr + l(−T2 + T4)−

h(

4∑

i=1

Hyi) + (−1)i+1
4∑

i=1

Rmxi

Iyy θ̈ = φ̇ψ̇(Izz − Ixx)− Jrφ̇Ωr + l(T1 − T3)−

h(

4∑

i=1

Hxi) + (−1)i+1
4∑

i=1

Rmyi

Izzψ̈ = θ̇φ̇(Ixx − Iyy) + (−1)i
4∑

i=1

Qi+

l(Hx2 −Hx4) + l(−Hy1 +Hy3)

mz̈ = −mg + (cθcφ)

4∑

i=1

Ti

mẍ = (sψsφ+ cψsθcφ)

4∑

i=1

Ti −

4∑

i=1

Hxi −
1

2
CxAcρẋ|ẋ|

mÿ = (−cψsφ+ sψsθcφ)

4∑

i=1

Ti −

4∑

i=1

Hyi −
1

2
CyAcρẏ|ẏ|

(20)

The most important forces and moments are the thrust T
and the rolling moments Q. Therefore, we can take

u1 =

4∑

i=1

Ti u2 = l(−T2 + T4)

u3 = l(T1 − T3) u4 = (−1)i
4∑

i=1

Qi

as control inputs to compute the needed torques for each
rotor, and then use them to control the altitude z, position
x, y and direction ψ.

5.2 Altitude z control

The equation given in (20) related to z can be expressed
as

mz̈ = (cθcφ)u1 + Fz (21)

where Fz can be considered as disturbances (e.g. the wind)
or some parts of dynamics neglected in (20). In discrete
time, the unknown part Fz can be expressed as following.
The estimate of z̈(k) is denoted as ˆ̈z(k).

F̂z = mˆ̈z(tk)− (cθcφ)u1(tk−1) (22)

Therefore, the chosen control input is

u1(tk) = u1(tk−1) +
m

cθcφ
(êz2d(tk) + kz1e

z
d(tk) + kz2e

z(tk))

(23)

with



êz2d(tk) = z̈r(tk)− ˆ̈z(tk), e
z
d(tk) = żr(tk)− ż(tk)

ez(tk) = zr(tk)− z(tk)

ˆ̈z(tk) =
Tf

Tf + h
ˆ̈z(tk−1) +

1

Tf + h

(
z(tk)− z(tk−1)

)

z̈r, żr, zr are the reference acceleration, velocity and posi-
tion of z. The variable sampling step is h = tk − tk−1.

5.3 Position x,y control

We want to use u2 and u3 to control directly the position
x, y. Therefore, we need to differentiate twice the equations
related to x and y in (20) in order to appear the control
inputs u2 and u3. Since the equations in x and y are
coupled, we get

x(4) =
u1
mIxx

(sψcφ− cψsθsφ)u2 +
u1
mIyy

(cψcθcφ)u3 + Fx

y(4) = −
u1
mIxx

(cψcφ+ sψsθsφ)u2 +
u1
mIyy

(sψcθcφ)u3 + Fy

(24)

where Fx, Fy are considered as the badly known parts.
For simplicity, we define A = u1

mIxx

(sψcφ − cψsθsφ),

B = u1

mIyy

(cψcθcφ), C = − u1

mIxx

(cψcφ + sψsθsφ) and

D = u1

mIyy

(sψcθcφ). Using the model free control scheme

as before, we get

(
u2(tk)
u3(tk)

)
=

(
u2(tk−1)
u3(tk−1)

)
+

(
A B
C D

)−1




êx4d +

3∑

i=0

kxi e
x
id

êy4d +

3∑

i=0

kyi e
y
id




(25)

where êx4d, ê
y
4d are the errors between the references

x
(4)
r , y

(4)
r and the estimates of x(4), y(4).

5.4 Yaw control

For yaw control, we consider the equation of ψ as

Izzψ̈ = u4 + Fψ (26)

Then the control feedback is

u4(tk) = u4(tk−1) + Izz(ê
ψ
2d(tk) + kψ1 e

ψ
d (tk) + kψ2 e

ψ(tk))
(27)

where êψ2d is the error between the reference ψ̈r and the

estimate of ψ̈.

5.5 Simulation: time triggered control

The task is to follow a rounded square path with length of
2m while hovering at the altitude of 10m, which is given in
(28). The desired length is hd, and Tf is the time needed
to reach the desired length. Here we choose hd equals 2m,
and Tf equals 6s. The reference trajectory is in figure 2.

In the time triggered i-PID control, the sampling time is
10ms, and it yields 2785 actuation steps. The results are
given in figure 3. The red lines are the desired trajectories.
The maximum errors in x and y are both less than 0.05m,
that is, less than 2, 5% of the desired length.

Fig. 2. Reference trajectory for the quadrotor.

σ(t) =





0 0 6 t 6 t1, t4 < t 6 30

hd
t5

t5 + (Tf − t)5
t1 < t 6 t2

2 t2 < t 6 t3

hd − hd
t5

t5 + (Tf − t)5
t3 < t 6 t4

hd = 2, Tf = 6

x = σ(t) with t1 = 3, t2 = 9, t3 = 15, t4 = 21.

y = σ(t) with t1 = 9, t2 = 15, t3 = 21, t4 = 27.

z = 10
(28)

5.6 Simulation: event triggered control

In the event triggered i-PID control, the event triggering
law is the absolute error limit. We set the error limit of z
to be 0.1m. The error limit of yaw angle is 0.1rad. For x
and y, we take the error limits both as 0.1m. The event
triggered i-PID control yields 2389 actuation steps. The
results are given in figure 4.

5.7 Discussion

The system mentioned in (20) is not complete. The aero-
dynamics of the system is complicated, and many more
forces and moments will affect the system. Therefore, a
control scheme which can adapt to the changes of the
system is needed. The time triggered model free control
performed nicely. It controls the system without the need
of computing all the forces and moments in the system. In
event triggered i-PID control, we set the the error limit to
be 5% of the reference. It has 396 steps less comparing to
the time triggered model free scheme while still achieving
stability.

6. CONCLUSION

Event triggered model free controllers which yields strong
robustness while needing few computing resources is pro-
posed in this paper. It is very efficient to control the non-
linear multi-input-output system which traditional PID is
not able to. The i-PID control is also efficient to solve
the partially known systems. From the simulation of a
quadrotor model, we see that the i-PID control scheme
avoids the heavy computations of the control laws, forces,
moments and 4th derivatives of the variables. Moreover,
the event triggered scheme enables to eliminate the small
vibrations in the system while diminishing the number of
actuation steps.



Fig. 3. Time triggered i-PID control of quadrotor
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S. Choi, B. d’Andréa-Novel, M. Fliess, H. Mounier. Model-
free control of automotive engine and brake for stop-
and-go scenario. Proc. of 10th Europ. Control Conf.
(ECC’09), Budapest.

M. Fliess, J. Levine, P. Martin and P. Rouchon. Flatness
and defect of nonlinear systems : introductory theory

Fig. 4. Event triggered i-PID control of quadrotor

and examples. Internat. J. Control, Vol. 61, pp. 1327–
1361, 1995.

M. Fliess and C. Join. Model-free control and intelligent
PID controllers: towards a possible trivialization of
nonlinear control?. Proc. of 15th IFAC Symp. System
Identif., Saint-Malo, France, 2009.

U. Kiencke, L. Nielsen. Automotive Control Systems: For
Engine, Driveline, And Vehicle. Springer, Berlin, 2005.

S.G. Krantz, H.R. Parks. The Implicit Function Theorem:
History, Theory, and Applications. Birkhser, Boston,
United States, 2002.

R.M. Murray, K.J. Astrom, S.P. Boyd, R.W. Brockett, G.
Stein. Future Directions in Control in an Information-
Rich World. IEEE Contr. Syst. Mag., vol. 23, pp. 20–33,
2003.

M. Mboup, C. Join, and M. Fliess. Numerical differen-
tiation with annihiators in noisy environment. Numer.
Algor., vol. 50, pp. 439–467, 2009.

R. Rajamani. Vehicle Dynamics and Control. Springer,
New York, 2006.

E.D. Sontag. Input to state stability: Basic concepts and
results. Nonlinear and Optimal Control Theory, pp. 163-
220, Springer-Verlag, Berlin, 2007.


