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Email: abdou.diongue@ugb.edu.sn

Abstract. In this paper, we generalize the mixture integer-valued ARCH model

(MINARCH) introduced by Zhu et al. (2010) to a mixture integer-valued GARCH

(MINGARCH) for modeling time series of counts. This model include the ability

to take into account the moving average (MA) components of the series. We give

the necessary and sufficient first and second order stationarity conditions. The

estimation is done via the EM algorithm. The model selection problem is studied

by using three information criterions. We also study the performance of the method

via simulations and include a real data application.

Keywords: Integer-valued · Mixture models · GARCH· EM algorithm.

1. Introduction

Time series count data are widely observed in real-world applications (epidemi-
ology, econometrics, insurance . . . ). Many different approaches have been pro-
posed to model time series count data, which are able to describe different types
of marginal distribution. Zeger (1988) discusses a model for regression analysis
with a time series of counts by illustrating the technique with an analysis of
trends in U.S. polio incidence, Ferland et al. (2006) proposed an integer-valued
autoregressive conditional heteroscedastic (INARCH) model to deal with integer-
valued time series with overdispersion. Zhu (2011) propose a negative binomial
INGARCH (NBINGARCH) model that can deal with both overdispersion and
potential extreme observations simultaneously. Zhu (2012) introduce a general-
ized Poisson INGARCH model, which can account for both overdispersion and
underdispersion, among others. Some extensions of the classical mixture models
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to time series have been studied by many authors. For example Le et al. (1996)
introduced the Gaussian mixture transition distribution (GMTD) models to cap-
ture the flat stretches.

In the literature, time series are often assumed to be driven by a unimodal
innovation series. However, many time series may exhibit multimodality either
in the marginal or the conditional distribution. For example, Martin (1992) pro-
posed to model multimodal jump phenomena by a multipredictor autoregressive
time series (MATS) model, Wong and Li (2000) generalized the GMTD model to
the full mixture autoregressive (MAR) model whose predictive distribution could
also be multimodal. Muller and Sawitzki (1991) propose and study a method
for analyzing the modality of a distribution.

Recently, Zhu et al. (2010) generalize the INARCH model to the mixture
(MINARCH) model, which has the advantages over the INARCH model because
of its ability to handle multimodality and non-stationary components. But in
their framework, they did not take into account the MA part of the model.
Our main objective is to include the Moving Average (MA) part for the previ-
ous model, which leads to a generalized MINARCH model, namely the mixture
MINGARCH model.

The paper is organized as follows. In Section 2 we describe the MINGARCH
model and the stationarity conditions. The estimation procedures with an EM
algorithm are discussed in Section 3. A simulation study is presented in Section
4. We illustrate the usefulness of the model in Section 5 by an empirical example.
A brief discussion and concluding remarks are given in Section 6.

2. The mixture integer-valued GARCH model

The MINGARCH(K; p1, . . . , pK ; q1, . . . , qK) model is defined by :






Xt =
∑K

k=11(ηt = k)Ykt,

Ykt|Ft−1 : P(λkt),

λkt = αk0 +
∑pk

i=1 αkiXt−i +
∑qk

j=1 βkjλk(t−j),

(2.1)

with αk0 > 0, αki ≥ 0, βkj ≥ 0, (i = 1, . . . , pk, j = 1, . . . , qk, k = 1, . . . ,K).

where 1(.) denotes the indicator function, pk and qk are respectively the or-
der of AR and MA for the k − th component, Ft−1 indicates the information
given up to time t−1, ηt is a sequence of independent and identically distributed
random variables with P(ηt = k) = αk, k = 1, . . . ,K. It is assumed that Xt−j
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and ηt are independent for all t and j > 0, the variables Ykt and ηt are con-
ditionally independent given Ft−1, α1 ≥ α2 ≥ . . . ≥ αK for identifiability (see

Titterington et al. (1985)) and
∑K

k=1 αk = 1.

The MINGARCH model is able to handle the conditional overdispersion in
integer-valued time series. In fact, the conditional mean and variance are given
by

E

(
Xt|Ft−1

)
=

K∑

k=1

αkλkt,

and

Var
(
Xt|Ft−1

)
= E

(
Xt|Ft−1

)
+

K∑

k=1

αkλ2
kt −

( K∑

k=1

αkλkt

)2

.

This shows that we can have a strict inequality between the conditional mean
and variance. Furthermore

Var
(
Xt

)
= E

(
Var(Xt|Ft−1)

)
+ Var

(
E(Xt|Ft−1)

)

= E

(
K∑

k=1

αkλkt +
K∑

k=1

αkλ2
kt −

( K∑

k=1

αkλkt

)2
)

+ Var

(
K∑

k=1

αkλkt

)

= E

(
Xt

)
+

K∑

k=1

αkE

(
λ2

kt

)
−
(
E(Xt)

)2

.

Using the convexity inequality concerning the expectation, we can easily see that
in general the variance is larger than the mean, which indicates that the MIN-
GARCH model is also able to describe the time series count with overdispersion.

Let us now introduce the polynomials D(B) = 1−βk1B−βk2B
2−. . .−βkqB

q,
where B is the backshift operator. Suppose, from now on, that the roots of
D(z) = 0 lie outside the unit circle which, for non-negative βkj , is equivalent
to saying that

∑q
j=1 βkj < 1, for any fixed k. In the following, we consider

: p = max(p1, . . . , pK) ; q = max(q1, . . . , qK) ; αki = 0, for i > pk ; βkj =
0, for j > qk and L = max(p, q).

The first- and second-order stationarity conditions for the MINGARCH model
(2.1) are given in Theorem 2.1 and 2.3. The proof of the theorems is similar to
that of Zhu et al. (2010).

Theorem 2.1.

The necessary and sufficient condition for the existence of stationary solution is
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that all roots of the equation :

1 −
L∑

i=1

K∑

k=1

αkαkiZ
i −

∞∑

l=1

L∑

j1...jl+1=1

K∑

k=1

αkαkjl+1
βkj1 . . . βkjl

Z(j1+j2+...+jl+1) = 0(2.2)

lie outside the unit circle.

Proof:
Let µt = E(Xt) =

∑K
k=1 αkE(λkt) , for all t ∈ Z.

If the process is first-order stationary, we have µt = µ.
Since λkt = αk0 +

∑pk

i=1 αkiXt−i +
∑qk

j=1 βkjλk(t−j)

The recursion equation give, for all m > 1,

λkt = αk0
+

L∑

i=1

αkiXt−i +
m∑

l=1

L∑

j1,...,jl=1

αk0βkj1 . . . βkjl

+
m∑

l=1

L∑

j1,...,jl+1=1

αkjl+1
βkj1 . . . βkjl

Xt−j1−...−jl−jl+1

+

L∑

j1,...,jm+1=1

βkj1 . . . βkjm+1
λk(t−j1−...−jm+1)

Let Ck0 = αk0 +
∑∞

l=1

∑L
j1...jl=1 αk0βkj1 . . . βkjl

. We define

λ′
kt = Ck0 +

L∑

i=1

αkiXt−i +
∞∑

l=1

L∑

j1,...,jl+1=1

αkjl+1
βkj1 . . . βkjl

Xt−j1−j2−...−jl+1
.

Since
∑L

j=1 βkj < 1 it is easy to see that 0 ≤ λ′
kt < ∞ a.s. for any fixed t and k.

We will show below that λkt = λ′
kt almost surely as m → ∞ for any fixed t

and k. In what follows, C will denote any positive constants whose value is
unimportant and may vary from line to line. Let t and k be fixed now. It follows
that for any m ≥ 1

|λkt − λ′
kt| ≤

∞∑

l=m+1

L∑

j1...jl=1

αk0βkj1 . . . βkjl
+

∞∑

l=m+1

L∑

j1,...,jl+1=1

αkjl+1
βkj1 . . . βkjl

Xt−j1−j2−...−jl+1

+

L∑

j1,...,jm+1=1

βkj1 . . . βkjm+1
λk(t−j1−...−jm+1).

First

E






L∑

j1,...,jl+1=1

αkjl+1
βkj1 . . . βkjl

Xt−j1−j2−...−jl+1




 ≤ C




L∑

j=1

βkj




l
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and

E






L∑

j1,...,jm+1=1

βkj1 . . . βkjm+1
λk(t−j1−...−jm+1)




 ≤ C




L∑

j=1

βkj




m+1

The expectation of the right-hand side of the above is bounded by


Ck0 + C1



1 −
L∑

j=1

βkj




−1






L∑

j=1

βkj




m+1

Let Am =
{
|λkt − λ′

kt| > 1
m

}
. Then

P(Am) ≤ m


Ck0 + C1



1 −
L∑

j=1

βkj




−1






L∑

j=1

βkj




m+1

.

Then, using Borel-Cantelli lemma and the fact that Am ⊂ Am+1, we can show
that λkt = λ′

kt a.s. Therefore,

µt =
K∑

k=1

αkCk0+
L∑

i=1

K∑

k=1

αkαkiµt−i+
∞∑

l=1

L∑

j1...jl+1=1

K∑

k=1

αkαkjl+1
βkj1 . . . βkjl

µt−j1−j2−...−jl+1

The equation can be rewritten as :

(
1−

L∑

i=1

K∑

k=1

αkαkiB
i−

∞∑

l=1

L∑

j1...jl+1=1

K∑

k=1

αkαkjl+1
βkj1 . . . βkjl

B(j1+j2+...+jl+1)
)
µt =

K∑

k=1

αkCk0

where B is the backward shift operator.
The necessary and sufficient condition for the existence of stationary solution is
that all roots of the equation :

1 −
L∑

i=1

K∑

k=1

αkαkiZ
i −

∞∑

l=1

L∑

j1...jl+1=1

K∑

k=1

αkαkjl+1
βkj1 . . . βkjl

Z(j1+j2+...+jl+1) = 0

lie outside the unit circle (Goldberg (1958)). 2

Corollary 2.2. A necessary and sufficient condition for the

MINGARCH(K; 1, . . . , 1; 1, . . . , 1) model to be stationary in the mean is that the

roots of the equation

1 + C1Z + C2Z
2 + . . . + CKZK = 0
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lie outside the unit circle where

C1 = −
K∑

k=1

(
δk + αkγk

)

and

Cj = (−1)j




K∑

k1>k2>...>kj

δk1
δk2

. . . δkj
+

K∑

k=1

αkγk




K∑

k1>k2>...>kj−1

k1 6=k, k2 6=k,...,kj−1 6=k

δk1
δk2

. . . δkj−1







for j = 2, . . . ,K, with γk = αk1 and δk = βk1.

Proof :

The equation (2.2) becomes

1 −
K∑

k=1

∞∑

l=1

αkγkδl−1
k Zl = 0. (2.3)

Assuming that ‖δkZ‖ < 1, we have :

K∑

k=1

∞∑

l=1

αkγkδl−1
k Zl =

K∑

k=1

αkγkZ

1 − δkZ
.

The equation (2.3) gives : 1 −
∑K

k=1
αkγkZ
1−δkZ = 0.

For k = 1, . . . ,K, the preceding equation is equivalent to:

K∏

k=1

(
1−δkZ

)
−

K∑

k=1

αkγkZ
K∏

k′=1
k′ 6=k

(1−δk′)Z = 1+C1Z+C2Z
2+. . .+C2Z

K = 0. 2

Theorem 2.3.

Suppose that the process Xt following a MINGARCH(K; p1, . . . , pK ; q1, . . . , qK)
model is first-order stationary. A necessary and sufficient condition for the pro-

cess to be second-order stationary is that all roots of 1−c1Z−c2Z
2−. . .−cLZL =

6



0 lie outside the unit circle, where

cu =
K∑

k=1

αk

(
∆k,u −

L−1∑

v=1

Λkvbvuωu0

)
, u = 1, . . . , L − 1 and cL =

K∑

k=1

αk∆k,L

with

∆k,i =
∞∑

l=0

∑

j1+...+jl=i

α2
kjl+1

β2
kj1 . . . β2

kjl
,

Λkv =
∞∑

l 6=l′=0

∑

|j1+j2+...+jl+1−j′

1
−j2...−jl′+1|=v

αkjl+1
βkj1 . . . βkjl

αkj′

l′+1
βkj′

1
. . . βkj′

l′
,

and B = (ωij)
L−1
i,j=1 , B−1 = (bij)

L−1
i,j=1, two matrices such that

ωi0 =
∞∑

l=0

K∑

k=1

αkδi0kl, ωiu =
∞∑

l=0

K∑

k=1

αkδiukl for u 6= i, ωii =
∞∑

l=0

K∑

k=1

αkδiikl − 1,

δiukl =
∑

|i−j1−...−jl+1|=u

αkjl+1
βkj1 . . . βkjl

.

Proof :
Let γit = E(XtXt−i) for i = 0, 1, . . . , L,

γit =
K∑

i=1

αkE(λktXt−i)

=
K∑

k=1

αk0
αkE(Xt−i) +

m∑

l=1

K∑

k=1

L∑

j1,...,jl=1

αk0
αkβkj1 . . . βkjl

E(Xt−i)

+
m∑

l=1

K∑

k=1

L∑

j1,...,jl+1=1

αkαkj+1
βkj1 . . . βkjl

E(Xt−j1−...−jl+1
Xt−i)

+

K∑

k=1

L∑

j1,...,jm+1=1

αkβkj1 . . . βkjm+1
E(λk(t−j1−...−jm+1)Xt−i).

Using the same arguments as in the proof of Theorem 2.1, we can show that
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almost surely

γit =
K∑

k=1

αk0
αkE(Xt−i) +

∞∑

l=1

K∑

k=1

L∑

j1,...,jl=1

αk0
αkβkj1 . . . βkjl

E(Xt−i)

+
K∑

k=1

L∑

j=1

αkjαkE(Xt−jXt−i)

+
∞∑

l=1

K∑

k=1

L∑

j1,...,jl+1=1

αkαkjl+1
βkj1 . . . βkjl

E(Xt−j1−...−jl+1
Xt−i)

= I + II + III + IV

with

III =

K∑

k=1

L∑

j=1

αkjαkE(Xt−jXt−i)

=

K∑

k=1

αkiαkγ0,t−i +

K∑

k=1

L∑

j=1,i 6=j

αkjαkγ|j−i|,t

=
K∑

k=1

αkiαkγ0,t−i +
K∑

k=1

αk

( ∑

|j−i|=1

βkiγ1,t + . . . +
∑

|j−i|=i

αkjγi,t + . . . +
∑

|j−i|=L−1

αkjγL−1,t

)

=
K∑

k=1

αkδi0k0γ0,t−i +
K∑

k=1

L−1∑

u=1

αkδiuk0γu,t

and

IV =
∞∑

l=1

K∑

k=1

L∑

j1,...,jl+1=1

αkαkjl+1
βkj1 . . . βkjl

γ|i−j1−...−jl+1|,t

=
∞∑

l=1

K∑

k=1

L∑

j1+...+jl+1=i

αkαkjl+1
βkj1 . . . βkjl

γ0,t−i

+
∞∑

l=1

K∑

k=1

L∑

j1+...+jl+1 6=i

αkαkjl+1
βkj1 . . . βkjl

γ|i−j1−...−jl+1|,t

=
∞∑

l=1

K∑

k=1

αkδi0klγ0,t−i +
∞∑

l=1

K∑

k=1

L−1∑

u=1

αkδiuklγu,t

where
δiukl =

∑

|i−j1−...−jl+1|=u

αkjl+1
βkj1 . . . βkjl

.

8



Then

III + IV =
∞∑

l=0

K∑

k=1

αkδi0klγ0,t−i +
∞∑

l=0

K∑

k=1

L−1∑

u=1

αkδiuklγu,t

where the first term of this summation (l = 0) is III.
Moreover, using the same notation, we get

I + II =




K∑

k=1

αk0
αk +

∞∑

l=1

K∑

k=1

L∑

j1,...,jl=1

αk0
αkβkj1 . . . βkjl



µ

=




∞∑

l=0

K∑

k=1

L∑

j1,...,jl=1

αk0
αkβkj1 . . . βkjl



µ =: K1

Finally, for i = 1, . . . , L

K1 + ωi0γ0,t−i +
L−1∑

u=1

ωiuγu,t = 0

where

ωi0 =
∞∑

l=0

K∑

k=1

αkδi0kl, ωiu =
∞∑

l=0

K∑

k=1

αkδiukl for u 6= i and ωii =
∞∑

l=0

K∑

k=1

αkδiikl − 1.

Let B = (ωij)
L−1
i,j=1 and B−1 = (bij)

L−1
i,j=1

Then

B(γ1,t, . . . , γL−1,t)
T = −(K1 + ω10γ0,t−1, . . . ,K1 + ω(L−1)0γ0,t−(L−1))

which is equivalent to

(γ1,t, . . . , γL−1,t)
T = −B−1(K1 + ω10γ0,t−1, . . . ,K1 + ω(L−1)0γ0,t−(L−1)).

We can show that

γi,t = −K1

L−1∑

u=1

biu −
L−1∑

u=1

biuωu0γ0,t−u.

9



The conditional second moment is given by :

γ0,t = E

(
Xt

)
+

K∑

k=1

αkE

(
λ2

kt

)

= µ +
K∑

k=1

αkE



Ck0 +
L∑

i=1

αkiXt−i +
∞∑

l=1

L∑

j1,...,jl+1=1

αkjl+1
βkj1 . . . βkjl

Xt−j1−...−jl+1




2

= C0 +
K∑

k=1

αk




L∑

i=1

α2
kiγ0,t−i + 2

∞∑

l=1

L∑

i,j1,...,jl=1

αki
αkjl+1

βkj1 . . . βkjl
γ|i−j1−...−jl+1|,t





+
K∑

k=1

αk




∞∑

l=1

L∑

j1,...,jl=1

α2
kjl+1

β2
kj1 . . . β2

kjl
γ0,t−j1−j2...−jl+1





+

K∑

k=1

αk




∞∑

l 6=l′=1

L∑

j1,...,jl=1
j′

1,...,j′

l′
=1

αkjl+1
βkj1 . . . βkjl

αkj′

l′+1
βkj′

1
. . . βkj′

l′
γ|j1+...+jl+1−j′

1
−...−jl′+1|,t




= C0 +
K∑

k=1

αk




∞∑

l=0

L∑

j1,...,jl=1

α2
kjl+1

β2
kj1 . . . β2

kjl
γ0,t−j1−j2...−jl+1





+
K∑

k=1

αk




∞∑

l 6=l′=0

L∑

j1,...,jl=1
j′

1,...,j′

l′
=1

αkjl+1
βkj1 . . . βkjl

αkj′

l′+1
βkj′

1
. . . βkj′

l′
γ|j1+...+jl+1−j′

1
−...−jl′+1|,t




= C0 +
K∑

k=1

αk

(
L∑

i=1

∆k,iγ0,t−i +
L−1∑

v=1

Λkvγv,t

)

where

C0 = µ +
K∑

k=1

αk



C2
k0 + 2Ck0µ




L∑

i=1

αki +
∞∑

l=1

L∑

j1,...,jl+1=1

αkjl+1
βkj1 . . . βkjl







 ,

∆k,i =
∞∑

l=0

∑

j1+...+jl=i

α2
kjl+1

β2
kj1 . . . β2

kjl
,

Λkv =
∞∑

l 6=l′=0

∑

|j1+j2+...+jl+1−j′

1
−j2...−jl′+1|=v

αkjl+1
βkj1 . . . βkjl

αkj′

l′+1
βkj′

1
. . . βkj′

l′
.

10



Then

γ0,t = C0 +
K∑

k=1

αk

(
L∑

i=1

∆k,iγ0,t−i +
L−1∑

v=1

Λkvγv,t

)
(2.4)

= C0 +
K∑

k=1

αk

[
L∑

u=1

∆k,uγ0,t−u +
L−1∑

v=1

Λkv

(
−K1

L−1∑

u=1

bvu −
L−1∑

u=1

bvuωu0γ0,t−u

)]

= c0 +
K∑

k=1

αk

[
L∑

u=1

∆k,uγ0,t−u −
L−1∑

u=1

(
L−1∑

v=1

Λkvbvuωu0

)
γ0,t−u

]

= c0 +
K∑

k=1

αk

[
L−1∑

u=1

(
∆k,u −

L−1∑

v=1

Λkvbvuωu0

)
γ0,t−u + ∆k,Lγ0,t−L

]

where

c0 = C0 − K1

L−1∑

v=1

Λkv

L−1∑

u=1

bvu.

Let

cu =
K∑

k=1

αk

(
∆k,u −

L−1∑

v=1

Λkvbvuωu0

)
, u = 1, . . . , L − 1 and cL =

K∑

k=1

αk∆k,L.

Then the equation 2.4 is equivalent to :

γ0,t = c0 +
L∑

u=1

cuγ0,t−u.

A necessary and sufficient condition for the process to be second-order stationary
is that all roots of 1 − c1Z − c2Z

2 − . . . − cLZL = 0 lie outside the unit circle.
�

3. Estimation procedure

In this section, we discuss the estimation of the parameters of a MINGARCH
model by using the expectation-maximization (EM) algorithm (see Dempster
et al. (1977)).
Suppose that the observation X = (X1, . . . , Xn) is generated from the MIN-
GARCH model.
Let Z = (Z1, . . . , Zn) be the unobserved random variable, where Zt = (Z1,t, . . . , ZK,t)

T

is a K-dimensional vector where

Zi,t =






1 if Xt comes from the i − th component; 1 ≤ i ≤ K,

0 otherwise.

11



The distribution of Zt is

P(Zt = (1, 0, . . . , 0)T ) = α1, . . . , P(Zt = (0, 0, . . . , 0, 1)T ) = αK .

Let α = (α1, . . . , αK−1)
T , α(k) = (αk0, αk1, . . . , αkpk

)T , β(k) = (βk1, . . . , βkqk
)T

θ(k) = (αT
(k), β

T
(k)) and θ = (α, θ(1), . . . , θ(K))

T ∈ Θ (The parameters space).

The conditional distribution of the complete data Xt = (Xt, Zt) is

K∏

k=1

(
αk

λXt

kt exp(−λkt)

Xt!

)Zkt

and the conditional log-likelihood function at time t is given by

lt =
K∑

k=1

Zkt log(αk) + Xt

K∑

k=1

Zkt log(λkt) −
K∑

k=1

Zktλkt − log(Xt!).

The conditional log-likelihood is given by l(θ) =
∑n

t=1 lt.∑L
t=1 lt is the joint log-likelihood function of the first L random variables of the

series and l∗(θ) =
∑n

t=L+1 lt is called the conditional log-likelihood function.

When the sample size n is large, the influence of
∑L

t=1 lt will be negligible.
In this study, the parameters will be estimated by maximizing the conditional
log-likelihood function l∗. The conditional log-likelihood is then given by

l∗(θ) =
n∑

t=L+1

{
K∑

k=1

Zkt log(αk) + Xt

K∑

k=1

Zkt log(λkt) −
K∑

k=1

Zktλkt − log(Xt!)

}
.(3.5)

The first derivatives of the conditional log-likelihood with respect to θ are :

∂l∗

∂αk
=

n∑

t=L+1

(
Zkt

αk
−

ZKt

αK

)
, k = 1, . . . ,K − 1, (3.6)

∂l∗

∂αki
=

n∑

t=L+1

Zkt
Xt − λkt

λkt
U(Xt, i), k = 1, . . . ,K, i = 0, . . . , pk (3.7)

∂l∗

∂βkj
=

n∑

t=L+1

Zkt
Xt − λkt

λkt
λk,t−j , k = 1, . . . ,K, j = 1, . . . , qk, (3.8)

where

U(Xt, i) =






1 if i = 0,

Xt−i if i 6= 0.

12



Given that the process {Zt} is not observed, the data that we have do not allow
the estimation of the parameter θ. An iterative process EM procedure is pro-
posed for estimating the parameters by maximizing the conditional log-likelihood
function l∗(θ) consists of an (E-step) and an (M-step).

These steps are described in the following:

(a) E-step: suppose that θ is known. The missing data Z are then replaced by
their conditional expectations, conditional on the parameters and on the
observed data X. In this case the conditional expectation of the k − th
component of Zt is just the conditional probability that the observation Xt

comes from the k − th component of the mixture distribution conditional
on θ and X. Let τk,t be the conditional expectation of Zkt.
Then the E-step equation is given by :

τ
(s)
k,t =

α
(s−1)
k λ

(s−1)
kt

Xt

exp(−λ
(s−1)
kt )

∑K
i=1 α

(s−1)
i λ

(s−1)
it

Xt

exp(−λ
(s−1)
it )

where k = 1, 2, . . . ,K and t = L + 1, . . . , n. s = 1, 2, . . . represents the
iteration number.
In practice, the Z

(s)
kt ’s are set to the τ

(s)
k,t ’s from the previous E-step of the

EM procedure.

(b) M-step: The missing data Z are replaced by their conditional expectations
on the parameters θ and on the observed data X1, . . . , Xn. The estimates
of the parameters θ can then be obtained by maximizing the conditional
log-likelihood function l∗(θ) by equating expressions (3.7) - (3.8) to 0.
The M-step equations become

α̂
(s)
k =

1

(n − L)

n∑

t=L+1

τ
(s)
k,t , k = 1, . . . ,K

From the equation (3.7), we have :

n∑

t=L+1

τ
(s)
t,k Xt

λ̂kt

U(Xt, i) =
n∑

t=L+1

τ
(s)
k,t U(Xt, i).

Then

n∑

t=L+1





τ

(s)
k,t Xt

∑pk

j=0 α̂
(s)
kj U(Xt, j) +

∑qk

j=1 β̂
(s)
kj λ̂

(s)
k(t−j)

U(Xt, i)




 =
n∑

t=L+1

τ
(s)
k,t U(Xt, i),

13



for k = 1, . . . ,K, i = 0, . . . , pk.
Similarly equation (3.8) gives :

n∑

t=L+1

τ
(s)
k,t Xt

λ̂
(s)
kt

λ̂
(s)
k,t−j =

n∑

t=L+1

τ
(s)
k,t λ̂

(s)
k,t−j .

Then

n∑

t=L+1

{
τ

(s)
k,t Xt

∑pk

i=0 α̂
(s)
ki U(Xt, i) +

∑qk

t=L+1 β̂
(s)
ki λ̂

(s)
k,t−i

λ̂
(s)
k,t−j

}
=

n∑

t=L+1

τ
(s)
k,t λ̂

(s)
k,t−j ,

for k = 1, . . . ,K, j = 1, . . . , qk.

The estimates of the parameters are then obtained by iterating these two
steps until convergence.

Let θ
(s)
i be the i th component of θ(s), then the criterion used for checking

convergence of the EM procedure is

max

{∣∣∣∣∣
θ
(s+1)
i − θ

(s)
i

θ
(s)
i

∣∣∣∣∣ , s, i ≥ 1

}
≤ 10−5.

Among different strategies for choosing starting initial values for the EM algo-
rithm (see Karlis and Xekalaki (2003) and Melnykova and Melnykovb (2012)),
the random initialization method is employed in this paper ( the initial values
for θ(k) are chosen randomly from a uniform distribution and the mixing pro-
portions are generated from a Dirichlet distribution ).
The asymptotic properties are not treated in this paper but they have been
studied by many authors. For example, Nityasuddhia and Bohning (2003) have
studied the asymptotic properties of the EM algorithm estimate for normal mix-
ture models. They show that the EM algorithm gives reasonable solutions of the
score equations in an asymptotic unbiased sense.
The performance of the EM algorithm is assessed by some simulation experi-
ments.

4. Simulation studies

Monte Carlo experiment was conducted to investigate the performances of the
EM estimation method. In all these simulation experiments, we use (R = 100)
independent realizations of the MINGARCH (2.1) model with sizes n = 100,
n = 200 and n = 500. The following two models were used in the experiment.
The first denoted Model (I), is a MINGARCH(2; 1,1; 1,1) model with parameter
values (

α1 α10 α11 β11

α2 α20 α21 β21

)
=

(
0.75 1.00 0.20 0.30
0.25 5.00 0.50 0.30

)
.
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Table 1. Results of the simulation study with model (I).

Sample
size

k αk αk0 αk1 βk1

100 1 True values 0.7500 1.0000 0.2000 0.3000
Mean estimated 0.7410 1.1883 0.1833 0.2446

RMSE 0.0523 0.5789 0.0623 0.2137
MAE 0.0405 0.4726 0.0506 0.1801

2 True values 0.2500 5.0000 0.5000 0.3000
Mean estimated 0.2590 5.1660 0.4619 0.2901

RMSE 0.0523 2.6410 0.2823 0.2588
MAE 0.0405 2.2060 0.2103 0.2274

200 1 True values 0.7500 1.0000 0.2000 0.3000
Mean estimated 0.7463 1.0093 0.1909 0.3054

RMSE 0.0359 0.4429 0.0468 0.1773
MAE 0.0291 0.3641 0.0381 0.1460

2 True values 0.2500 5.0000 0.5000 0.3000
Mean estimated 0.2537 5.2571 0.4612 0.2928

RMSE 0.0359 2.2616 0.1728 0.2380
MAE 0.0291 1.8728 0.1314 0.1976

500 1 True values 0.7500 1.0000 0.2000 0.3000
Mean estimated 0.7510 1.0646 0.1959 0.2817

RMSE 0.0259 0.2525 0.0272 0.1035
MAE 0.0212 0.1867 0.0214 0.0783

2 True values 0.2500 5.0000 0.5000 0.3000
Mean estimated 0.2490 5.3064 0.5026 0.2688

RMSE 0.0259 1.6316 0.0982 0.1702
MAE 0.0212 1.3483 0.0774 0.1443

The second denoted Model (II), is a MINGARCH(3; 1,1,1; 1,1,1) model with
parameter values




α1 α10 α11 β11

α2 α20 α21 β21

α3 α30 α31 β31



 =




0.55 0.80 0.40 0.30
0.25 1.00 0.50 0.25
0.20 0.50 0.60 0.20





The performances of the estimators are evaluated by the root mean square error
(RMSE) and the mean absolute error (MAE).

Based on the results in Tables 4 and 4, we can see that as the sample size
increases, the estimates seem to converge to the true parameter values. The
performance of the estimate improves when the sample size increases. But this
performance varies depending on the parameters. Indeed the parameter estimate
αk seems to give good results for all sample sizes considered. For the parameter
αk0, the RMSE and the MAE are slightly higher.
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Table 2. Results of the simulation study with model (II).

Sample
size

k αk αk0 αk1 βk1

100 1 True values 0.5500 0.8000 0.4000 0.3000
Mean estimated 0.5435 0.7671 0.4429 0.2163

RMSE 0.1063 0.4997 0.1898 0.2339
MAE 0.0828 0.4054 0.1482 0.1977

2 True values 0.2500 1.0000 0.5000 0.2500
Mean estimated 0.2240 1.0888 0.5344 0.2532

RMSE 0.0802 0.7182 0.3804 0.2563
MAE 0.0607 0.5504 0.2420 0.2113

3 True values 0.2000 0.5000 0.6000 0.2000
Mean estimated 0.2323 0.9516 0.4475 0.2714

RMSE 0.0600 0.7127 0.2413 0.2263
MAE 0.0429 0.5490 0.1895 0.1850

200 1 True values 0.5500 0.8000 0.4000 0.3000
Mean estimated 0.5286 0.7471 0.4113 0.2552

RMSE 0.1117 0.4363 0.1563 0.1942
MAE 0.0838 0.3566 0.1190 0.1545

2 True values 0.2500 1.0000 0.5000 0.2500
Mean estimated 0.2316 1.0570 0.5340 0.2433

RMSE 0.0785 0.6025 0.2584 0.1928
MAE 0.0602 0.4787 0.1751 0.1506

3 True values 0.2000 0.5000 0.6000 0.2000
Mean estimated 0.2397 0.8867 0.4450 0.3042

RMSE 0.0652 0.6088 0.2306 0.2439
MAE 0.0452 0.4959 0.1806 0.1825

500 1 True values 0.5500 0.8000 0.4000 0.3000
Mean estimated 0.5556 0.7040 0.4248 0.2725

RMSE 0.0825 0.3246 0.1171 0.1797
MAE 0.0614 0.2595 0.0934 0.1407

2 True values 0.2500 1.0000 0.5000 0.2500
Mean estimated 0.2182 0.9508 0.5223 0.2656

RMSE 0.0620 0.4723 0.2059 0.2132
MAE 0.0487 0.3853 0.1569 0.1576

3 True values 0.2000 0.5000 0.6000 0.2000
Mean estimated 0.2261 0.8985 0.4690 0.2815

RMSE 0.0536 0.5883 0.1963 0.1988
MAE 0.0298 0.4780 0.1586 0.1506
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Table 3. Summary statistics of the crime counts series.

Sample size Minimum Maximum Median Mean Variance Skewness Kurtosis

144 0 30 5 6.347 22.7317 1.9810 8.7646
F
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c
y
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1
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Figure 1. Histogram of the crime counts series.

5. Real data examples

In this section we shall investigate the time series represents a count of CAD
drug calls reported in the 22nd police car beat in Pittsburgh, during one month.
It started in January 1990 and ended in December 2001. The data are available
online at the forecasting principles site (http://www.forecastingprinciples.com),
in the section about crime data. In the framework of Zhu et al. (2010), the
bimodality index of Der and Everitt (2002) is used to show that the series is
bimodal. In their results, they showed that the MINARCH model is more ap-
propriate for this dataset than the INARCH model. But they are not taken
account the MA components in the model.
In the following we fit a MINGARCH model (2.1) to the series with K = 1, 2, 3.
The summary statistics are given in Table 5 . Mean and variance are estimated
as 6.3470 and 22.7317, respectively. Hence the data seem to be overdispersed.
The histogram of the series in Figure 1 show that the series is more or less bi-
modal. The autocorrelation function in Figure 2 implies that the third-order
model can be considered. We consider the MINGARCH model with 1 ≤ p ≤ 3
and 0 ≤ q ≤ 3.

The model selection criteria considered here are the Akaike information crite-
rion (AIC), the Bayesian information criterion (BIC) and the mixture regression
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Figure 2. Crime counts series: the time plot, the sample autocorrelation and partial

autocorrelation function.

criterion (MRC) proposed by Naik et al. (2007). These two first criteria are
both defined as minus twice the maximized log-likelihood plus a penalty term.
The first choice is the log-likelihood given by equation (3.5). The maximized
(observed) log-likelihood is automatically generated by the EM estimation but
it includes the information of the unobserved random variable Z. The second
choice is computed from the (conditional) probability density function of the
MINGARCH model. It is defined as

l′ =
n∑

t=L+1

log

{
K∑

k=1

αk
λXt

kt exp(−λkt)

Xt!

}
.
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We use l
′

because it may have better performance in finite samples (see Wong
and Li (2000)). We use the following definition of AIC and BIC :

AIC = −2l′ + 2

(
2K − 1 +

K∑

k=1

pk +
K∑

k=1

qk

)
,

BIC = −2l′ + log
(
n − max(pmax, qmax)

)(
2K − 1 +

K∑

k=1

pk +
K∑

k=1

qk

)
.

The third criterion consists of three terms: the first measures the lack of fit,
the second imposes a penalty for regression parameters, and the third is the
clustering penalty function. It is an extension of the AIC to mixture regres-
sion models. For the MINGARCH model, let U = (XL+1, . . . , Xn)T , V =
(VL+1, . . . , Vn)T , Vj = (1, Xj−1, . . . , Xj−p, λkj(j−1), . . . , λkj(j−q))

T , kj | τkj ,j =

max {τ1,j , . . . , τK,j} , j = L+1, . . . , n, and θ∗k =
(
α(k)

T ,0T , β(k)
T ,0T

)T

(p+q+1)×1
,

Ŵk = diag
(
(τ̂k,L+1, . . . , τ̂kn)T

)
, V̂k = Ŵ

1/2
k V, Ĥk = V̂k

(
V̂ T

k V̂k

)−1

V̂ T
k , k =

1, . . . ,K.
Then the MRC is defined as

MRC =
K∑

k=1

n̂k log(σ̂2
k) +

K∑

k=1

n̂k(n̂k + ĥk)

n̂k − ĥk − 2
− 2

K∑

k=1

n̂k log(α̂k),

where n̂k = tr(Ŵk), ĥk = tr(Ĥk) and σ̂2
k(U −V θ∗k)T Ŵ

1/2
k (I− Ĥk)(U −V θ∗k)/n̂k.

There are three aspects of model selection in the MINGARCH model. First,
we must select the number of components K. Second, we must select the order
of each AR component, i.e. pk. Thirdly, we must select the order of each MA
component, i.e. qk.
The selection problem for the number of components is not discussed, we con-
centrate on the order selection of each component. The order of the components
is chosen to be that minimizing the values of the three criterions.
The AIC, BIC and MRC values for the crime counts series are given in Tables
5, 5, 5 and 5.

The results in Table 5, the AIC, the BIC and the MRC retain respectively the
two-component mixture model with p = 3, the two-component mixture model
with p = 2 and the single-component model with p = 3 (as selected in the
framework of Zhu et al. (2010)).
Based on the results in these tables (5, 5, 5 and 5), the AIC and the BIC
retain the two-component mixture model with respectively (p, q) = (1, 3) and
(p, q) = (1, 1). It confirms the result of the histogram and lends substantial
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Table 4. AIC, BIC and MRC values for the crime counts series with q = 0.

AIC BIC MRC
K p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

1 825.08 806.21 803.77 831.00 815.08 815.56 554.38 544.71 543.85

2 762.40 755.24 751.92 777.22 775.93 778.46 600.39 590.37 588.23
3 763.73 757.93 756.49 787.43 790.45 797.77 632.82 622.69 686.01

Table 5. AIC, BIC and MRC values for the crime counts series with K = 1.

AIC BIC MRC
Order q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

p = 1 806.61 804.18 798.75 822.50 816.00 813.50 548.34 546.08 544.29

p = 2 804.98 806.89 800.75 816.81 821.67 818.44 546.41 548.58 546.36
p = 3 804.63 805.40 802.97 819.37 823.09 823.61 544.88 547.43 545.62

Table 6. AIC, BIC and MRC values for the crime counts series with K = 2.

AIC BIC MRC
Order q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

p = 1 754.24 749.83 745.47 754.24 776.43 797.69 546.38 531.45 533.94
p = 2 752.44 758.64 749.32 779.04 791.15 787.65 538.78 588.95 538.96
p = 3 753.48 751.45 752.96 785.92 789.79 797.19 590.52 540.92 542.03

Table 7. AIC, BIC and MRC values for the crime counts series with K = 3.

AIC BIC MRC
Order q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

p = 1 756.41 753.64 746.07 789.01 795.03 796.20 573.78 593.44 601.43
p = 2 756.05 759.68 762.29 797.44 809.93 821.26 632.30 888.62 707.24
p = 3 765.62 760.06 760.80 815.74 819.04 828.62 669.78 430.52 465.50
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support to the two-component model. In practice, it is observed that the BIC
criterion selects the model of dimension smaller than the AIC criterion, which
is not surprising since the BIC penalizes more than the AIC (when n > 7). The
MRC suggests the three-component model, but the third smallest MRC values
(531.45) is obtained in the two-component model with (p, q) = (1, 2). The values
of the criteria AIC, BIC and MRC obtained in our model are better than those
of model MINARCH. We can conclude that the MINGARCH model is more
appropriate for this dataset than the MINARCH model.

6. Concluding remarks

The selection of K is more important as it will affect our interpretation of the
MINGARCH model and the correct selection of the orders is dependent on the
selected number of components, but this is difficult to handle and using AIC or
BIC to choose K is somewhat non-standard of particular importance.
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