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) to a mixture integer-valued GARCH (MINGARCH) for modeling time series of counts. This model include the ability to take into account the moving average (MA) components of the series. We give the necessary and sufficient first and second order stationarity conditions. The estimation is done via the EM algorithm. The model selection problem is studied by using three information criterions. We also study the performance of the method via simulations and include a real data application.

Introduction

Time series count data are widely observed in real-world applications (epidemiology, econometrics, insurance . . . ). Many different approaches have been proposed to model time series count data, which are able to describe different types of marginal distribution. [START_REF] Zeger | A regression model for time series of counts[END_REF] discusses a model for regression analysis with a time series of counts by illustrating the technique with an analysis of trends in U.S. polio incidence, [START_REF] Ferland | Integer-valued garch process[END_REF] proposed an integer-valued autoregressive conditional heteroscedastic (INARCH) model to deal with integervalued time series with overdispersion. [START_REF] Zhu | A negative binomial integer-valued garch model[END_REF] propose a negative binomial INGARCH (NBINGARCH) model that can deal with both overdispersion and potential extreme observations simultaneously. [START_REF] Zhu | Modeling overdispersed or underdispersed count data with generalized poisson integer-valued garch models[END_REF] introduce a generalized Poisson INGARCH model, which can account for both overdispersion and underdispersion, among others. Some extensions of the classical mixture models †Corresponding author to time series have been studied by many authors. For example [START_REF] Le | Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models[END_REF] introduced the Gaussian mixture transition distribution (GMTD) models to capture the flat stretches.

In the literature, time series are often assumed to be driven by a unimodal innovation series. However, many time series may exhibit multimodality either in the marginal or the conditional distribution. For example, [START_REF] Martin | Threshold time series models as multimodal distribution jump processes[END_REF] proposed to model multimodal jump phenomena by a multipredictor autoregressive time series (MATS) model, [START_REF] Wong | On a mixture autoregressive model[END_REF] generalized the GMTD model to the full mixture autoregressive (MAR) model whose predictive distribution could also be multimodal. [START_REF] Muller | Excess mass estimates and tests for multimodality[END_REF] propose and study a method for analyzing the modality of a distribution.

Recently, [START_REF] Zhu | A mixture integer-valued arch model[END_REF] generalize the INARCH model to the mixture (MINARCH) model, which has the advantages over the INARCH model because of its ability to handle multimodality and non-stationary components. But in their framework, they did not take into account the MA part of the model. Our main objective is to include the Moving Average (MA) part for the previous model, which leads to a generalized MINARCH model, namely the mixture MINGARCH model.

The paper is organized as follows. In Section 2 we describe the MINGARCH model and the stationarity conditions. The estimation procedures with an EM algorithm are discussed in Section 3. A simulation study is presented in Section 4. We illustrate the usefulness of the model in Section 5 by an empirical example. A brief discussion and concluding remarks are given in Section 6.

The mixture integer-valued GARCH model

The MINGARCH(K; p 1 , . . . , p K ; q 1 , . . . , q K ) model is defined by :

           X t = K k=1 1(η t = k)Y kt , Y kt |F t-1 : P(λ kt ), λ kt = α k0 + p k i=1 α ki X t-i + q k j=1 β kj λ k(t-j) , (2.1) with α k0 > 0, α ki ≥ 0, β kj ≥ 0, (i = 1, . . . , p k , j = 1, . . . , q k , k = 1, . . . , K).
where 1(.) denotes the indicator function, p k and q k are respectively the order of AR and M A for the k -th component, F t-1 indicates the information given up to time t-1, η t is a sequence of independent and identically distributed random variables with P(η t = k) = α k , k = 1, . . . , K. It is assumed that X t-j and η t are independent for all t and j > 0, the variables Y kt and η t are conditionally independent given F t-1 , α 1 ≥ α 2 ≥ . . . ≥ α K for identifiability (see [START_REF] Titterington | Statistical analysis of finite mixture distributions[END_REF]) and

K k=1 α k = 1.
The MINGARCH model is able to handle the conditional overdispersion in integer-valued time series. In fact, the conditional mean and variance are given by

E X t |F t-1 = K k=1 α k λ kt , and 
Var X t |F t-1 = E X t |F t-1 + K k=1 α k λ 2 kt - K k=1 α k λ kt 2 .
This shows that we can have a strict inequality between the conditional mean and variance. Furthermore

Var X t = E Var(X t |F t-1 ) + Var E(X t |F t-1 ) = E K k=1 α k λ kt + K k=1 α k λ 2 kt - K k=1 α k λ kt 2 + Var K k=1 α k λ kt = E X t + K k=1 α k E λ 2 kt -E(X t ) 2 .
Using the convexity inequality concerning the expectation, we can easily see that in general the variance is larger than the mean, which indicates that the MIN-GARCH model is also able to describe the time series count with overdispersion.

Let us now introduce the polynomials

D(B) = 1-β k1 B-β k2 B 2 -. . .-β kq B q
, where B is the backshift operator. Suppose, from now on, that the roots of D(z) = 0 lie outside the unit circle which, for non-negative β kj , is equivalent to saying that q j=1 β kj < 1, for any fixed k. In the following, we consider : p = max(p 1 , . . . , p K ) ; q = max(q 1 , . . . , q K ) ; α ki = 0, for i > p k ; β kj = 0, for j > q k and L = max(p, q). The first-and second-order stationarity conditions for the MINGARCH model (2.1) are given in Theorem 2.1 and 2.3. The proof of the theorems is similar to that of [START_REF] Zhu | A mixture integer-valued arch model[END_REF].

Theorem 2.1. The necessary and sufficient condition for the existence of stationary solution is that all roots of the equation :

1 - L i=1 K k=1 α k α ki Z i - ∞ l=1 L j1...j l+1 =1 K k=1 α k α kj l+1 β kj1 . . . β kj l Z (j1+j2+...+j l+1 ) = 0(2.2)
lie outside the unit circle.

Proof:

Let µ t = E(X t ) = K k=1 α k E(λ kt ) , for all t ∈ Z.
If the process is first-order stationary, we have

µ t = µ. Since λ kt = α k0 + p k i=1 α ki X t-i + q k j=1 β kj λ k(t-j)
The recursion equation give, for all m > 1,

λ kt = α k0 + L i=1 α ki X t-i + m l=1 L j1,...,j l =1 α k0 β kj1 . . . β kj l + m l=1 L j1,...,j l+1 =1 α kj l+1 β kj1 . . . β kj l X t-j1-...-j l -j l+1 + L j1,...,jm+1=1 β kj1 . . . β kjm+1 λ k(t-j1-...-jm+1) Let C k0 = α k0 + ∞ l=1 L j1...j l =1 α k0 β kj1 . . . β kj l . We define λ ′ kt = C k0 + L i=1 α ki X t-i + ∞ l=1 L j1,...,j l+1 =1 α kj l+1 β kj1 . . . β kj l X t-j1-j2-...-j l+1 .
Since L j=1 β kj < 1 it is easy to see that 0 ≤ λ ′ kt < ∞ a.s. for any fixed t and k.

We will show below that λ kt = λ ′ kt almost surely as m → ∞ for any fixed t and k. In what follows, C will denote any positive constants whose value is unimportant and may vary from line to line. Let t and k be fixed now. It follows that for any m ≥ 1

|λ kt -λ ′ kt | ≤ ∞ l=m+1 L j1...j l =1 α k0 β kj1 . . . β kj l + ∞ l=m+1 L j1,...,j l+1 =1 α kj l+1 β kj1 . . . β kj l X t-j1-j2-...-j l+1 + L j1,...,jm+1=1 β kj1 . . . β kjm+1 λ k(t-j1-...-jm+1) . First E    L j1,...,j l+1 =1 α kj l+1 β kj1 . . . β kj l X t-j1-j2-...-j l+1    ≤ C   L j=1 β kj   l and E    L j1,...,jm+1=1 β kj1 . . . β kjm+1 λ k(t-j1-...-jm+1)    ≤ C   L j=1 β kj   m+1
The expectation of the right-hand side of the above is bounded by

  Ck0 + C 1   1 - L j=1 β kj   -1      L j=1 β kj   m+1 Let A m = |λ kt -λ ′ kt | > 1 m . Then P(A m ) ≤ m   Ck0 + C 1   1 - L j=1 β kj   -1      L j=1 β kj   m+1 .
Then, using Borel-Cantelli lemma and the fact that A m ⊂ A m+1 , we can show that λ kt = λ ′ kt a.s. Therefore,

µ t = K k=1 α k C k0 + L i=1 K k=1 α k α ki µ t-i + ∞ l=1 L j1...j l+1 =1 K k=1 α k α kj l+1 β kj1 . . . β kj l µ t-j1-j2-...-j l+1
The equation can be rewritten as :

1- L i=1 K k=1 α k α ki B i - ∞ l=1 L j1...j l+1 =1 K k=1 α k α kj l+1 β kj1 . . . β kj l B (j1+j2+...+j l+1 ) µ t = K k=1 α k C k0
where B is the backward shift operator. The necessary and sufficient condition for the existence of stationary solution is that all roots of the equation :

1 - L i=1 K k=1 α k α ki Z i - ∞ l=1 L j1...j l+1 =1 K k=1 α k α kj l+1 β kj1 . . . β kj l Z (j1+j2+...+j l+1 ) = 0
lie outside the unit circle [START_REF] Goldberg | Introduction to Difference Equations[END_REF]).
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Corollary 2.2. A necessary and sufficient condition for the MINGARCH(K; 1, . . . , 1; 1, . . . , 1) model to be stationary in the mean is that the roots of the equation

1 + C 1 Z + C 2 Z 2 + . . . + C K Z K = 0
lie outside the unit circle where

C 1 = - K k=1 δ k + α k γ k and C j = (-1) j     K k1>k2>...>kj δ k1 δ k2 . . . δ kj + K k=1 α k γ k     K k1>k2>...>kj-1 k1 =k, k2 =k,...,kj-1 =k δ k1 δ k2 . . . δ kj-1         for j = 2, . . . , K, with γ k = α k1 and δ k = β k1 . Proof : The equation (2.2) becomes 1 - K k=1 ∞ l=1 α k γ k δ l-1 k Z l = 0. (2.3)
Assuming that δ k Z < 1, we have :

K k=1 ∞ l=1 α k γ k δ l-1 k Z l = K k=1 α k γ k Z 1 -δ k Z .
The equation (2.3) gives : 1 -

K k=1 α k γ k Z 1-δ k Z = 0.
For k = 1, . . . , K, the preceding equation is equivalent to:

K k=1 1-δ k Z - K k=1 α k γ k Z K k ′ =1 k ′ =k (1-δ k ′ )Z = 1+C 1 Z +C 2 Z 2 +. . .+C 2 Z K = 0. 2
Theorem 2.3. Suppose that the process X t following a MINGARCH(K; p 1 , . . . , p K ; q 1 , . . . , q K ) model is first-order stationary. A necessary and sufficient condition for the process to be second-order stationary is that all roots of 1-c 1 Z -c 2 Z 2 -. . .-c L Z L = 0 lie outside the unit circle, where

c u = K k=1 α k ∆ k,u - L-1 v=1 Λ kv b vu ω u0 , u = 1, . . . , L -1 and c L = K k=1 α k ∆ k,L with ∆ k,i = ∞ l=0 j1+...+j l =i α 2 kj l+1 β 2 kj1 . . . β 2 kj l , Λ kv = ∞ l =l ′ =0 |j1+j2+...+jl+1-j ′ 1 -j2...-j l ′ +1 |=v α kj l+1 β kj1 . . . β kj l α kj ′ l ′ +1 β kj ′ 1 . . . β kj ′ l ′ , and B = (ω ij ) L-1 i,j=1 , B -1 = (b ij ) L-1 i,j=1
, two matrices such that

ω i0 = ∞ l=0 K k=1 α k δ i0kl , ω iu = ∞ l=0 K k=1 α k δ iukl for u = i, ω ii = ∞ l=0 K k=1 α k δ iikl -1, δ iukl = |i-j1-...-j l+1 |=u α kj l+1 β kj1 . . . β kj l .
Proof :

Let γ it = E(X t X t-i ) for i = 0, 1, . . . , L, γ it = K i=1 α k E(λ kt X t-i ) = K k=1 α k0 α k E(X t-i ) + m l=1 K k=1 L j1,...,j l =1 α k0 α k β kj1 . . . β kj l E(X t-i ) + m l=1 K k=1 L j1,...,j l+1 =1 α k α kj+1 β kj1 . . . β kj l E(X t-j1-...-j l+1 X t-i ) + K k=1 L j1,...,jm+1=1 α k β kj1 . . . β kjm+1 E(λ k(t-j1-...-jm+1) X t-i ).
Using the same arguments as in the proof of Theorem 2.1, we can show that almost surely

γ it = K k=1 α k0 α k E(X t-i ) + ∞ l=1 K k=1 L j1,...,j l =1 α k0 α k β kj1 . . . β kj l E(X t-i ) + K k=1 L j=1 α kj α k E(X t-j X t-i ) + ∞ l=1 K k=1 L j1,...,j l+1 =1 α k α kj l+1 β kj1 . . . β kj l E(X t-j1-...-j l+1 X t-i ) = I + II + III + IV with III = K k=1 L j=1 α kj α k E(X t-j X t-i ) = K k=1 α ki α k γ 0,t-i + K k=1 L j=1,i =j α kj α k γ |j-i|,t = K k=1 α ki α k γ 0,t-i + K k=1 α k |j-i|=1 β ki γ 1,t + . . . + |j-i|=i α kj γ i,t + . . . + |j-i|=L-1 α kj γ L-1,t = K k=1 α k δ i0k0 γ 0,t-i + K k=1 L-1 u=1 α k δ iuk0 γ u,t
and

IV = ∞ l=1 K k=1 L j1,...,j l+1 =1 α k α kj l+1 β kj1 . . . β kj l γ |i-j1-...-j l+1 |,t = ∞ l=1 K k=1 L j1+...+j l+1 =i α k α kj l+1 β kj1 . . . β kj l γ 0,t-i + ∞ l=1 K k=1 L j1+...+j l+1 =i α k α kj l+1 β kj1 . . . β kj l γ |i-j1-...-j l+1 |,t = ∞ l=1 K k=1 α k δ i0kl γ 0,t-i + ∞ l=1 K k=1 L-1 u=1 α k δ iukl γ u,t
where

δ iukl = |i-j1-...-j l+1 |=u α kj l+1 β kj1 . . . β kj l .
Then

III + IV = ∞ l=0 K k=1 α k δ i0kl γ 0,t-i + ∞ l=0 K k=1 L-1 u=1 α k δ iukl γ u,t
where the first term of this summation (l = 0) is III. Moreover, using the same notation, we get

I + II =   K k=1 α k0 α k + ∞ l=1 K k=1 L j1,...,j l =1 α k0 α k β kj1 . . . β kj l   µ =   ∞ l=0 K k=1 L j1,...,j l =1 α k0 α k β kj1 . . . β kj l   µ =: K 1 Finally, for i = 1, . . . , L K 1 + ω i0 γ 0,t-i + L-1 u=1 ω iu γ u,t = 0
where

ω i0 = ∞ l=0 K k=1 α k δ i0kl , ω iu = ∞ l=0 K k=1 α k δ iukl for u = i and ω ii = ∞ l=0 K k=1 α k δ iikl -1. Let B = (ω ij ) L-1 i,j=1 and B -1 = (b ij ) L-1 i,j=1
Then

B(γ 1,t , . . . , γ L-1,t ) T = -(K 1 + ω 10 γ 0,t-1 , . . . , K 1 + ω (L-1)0 γ 0,t-(L-1) )
which is equivalent to

(γ 1,t , . . . , γ L-1,t ) T = -B -1 (K 1 + ω 10 γ 0,t-1 , . . . , K 1 + ω (L-1)0 γ 0,t-(L-1) ).
We can show that

γ i,t = -K 1 L-1 u=1 b iu - L-1 u=1 b iu ω u0 γ 0,t-u .
The conditional second moment is given by :

γ 0,t = E X t + K k=1 α k E λ 2 kt = µ + K k=1 α k E   C k0 + L i=1 α ki X t-i + ∞ l=1 L j1,...,j l+1 =1 α kj l+1 β kj1 . . . β kj l X t-j1-...-j l+1   2 = C 0 + K k=1 α k   L i=1 α 2 ki γ 0,t-i + 2 ∞ l=1 L i,j1,...,j l =1 α ki α kj l+1 β kj1 . . . β kj l γ |i-j1-...-j l+1 |,t   + K k=1 α k   ∞ l=1 L j1,...,j l =1 α 2 kj l+1 β 2 kj1 . . . β 2 kj l γ 0,t-j1-j2...-j l+1   + K k=1 α k     ∞ l =l ′ =1 L j1,...,j l =1 j ′ 1 ,...,j ′ l ′ =1 α kj l+1 β kj1 . . . β kj l α kj ′ l ′ +1 β kj ′ 1 . . . β kj ′ l ′ γ |j1+...+jl+1-j ′ 1 -...-j l ′ +1 |,t     = C 0 + K k=1 α k   ∞ l=0 L j1,...,j l =1 α 2 kj l+1 β 2 kj1 . . . β 2 kj l γ 0,t-j1-j2...-j l+1   + K k=1 α k     ∞ l =l ′ =0 L j1,...,j l =1 j ′ 1 ,...,j ′ l ′ =1 α kj l+1 β kj1 . . . β kj l α kj ′ l ′ +1 β kj ′ 1 . . . β kj ′ l ′ γ |j1+...+jl+1-j ′ 1 -...-j l ′ +1 |,t     = C 0 + K k=1 α k L i=1 ∆ k,i γ 0,t-i + L-1 v=1 Λ kv γ v,t
where

C 0 = µ + K k=1 α k   C 2 k0 + 2C k0 µ   L i=1 α ki + ∞ l=1 L j1,...,j l+1 =1 α kj l+1 β kj1 . . . β kj l     , ∆ k,i = ∞ l=0 j1+...+j l =i α 2 kj l+1 β 2 kj1 . . . β 2 kj l , Λ kv = ∞ l =l ′ =0 |j1+j2+...+jl+1-j ′ 1 -j2...-j l ′ +1 |=v α kj l+1 β kj1 . . . β kj l α kj ′ l ′ +1 β kj ′ 1 . . . β kj ′ l ′ .
Then

γ 0,t = C 0 + K k=1 α k L i=1 ∆ k,i γ 0,t-i + L-1 v=1 Λ kv γ v,t (2.4) = C 0 + K k=1 α k L u=1 ∆ k,u γ 0,t-u + L-1 v=1 Λ kv -K 1 L-1 u=1 b vu - L-1 u=1 b vu ω u0 γ 0,t-u = c 0 + K k=1 α k L u=1 ∆ k,u γ 0,t-u - L-1 u=1 L-1 v=1 Λ kv b vu ω u0 γ 0,t-u = c 0 + K k=1 α k L-1 u=1 ∆ k,u - L-1 v=1 Λ kv b vu ω u0 γ 0,t-u + ∆ k,L γ 0,t-L
where

c 0 = C 0 -K 1 L-1 v=1 Λ kv L-1 u=1 b vu . Let c u = K k=1 α k ∆ k,u - L-1 v=1 Λ kv b vu ω u0 , u = 1, . . . , L -1 and c L = K k=1 α k ∆ k,L .
Then the equation 2.4 is equivalent to :

γ 0,t = c 0 + L u=1 c u γ 0,t-u .
A necessary and sufficient condition for the process to be second-order stationary is that all roots of 1 -c 1 Z -c 2 Z 2 -. . . -c L Z L = 0 lie outside the unit circle.

Estimation procedure

In this section, we discuss the estimation of the parameters of a MINGARCH model by using the expectation-maximization (EM) algorithm (see [START_REF] Dempster | Maxinmum likelihood from incomplete data via the em algorithm[END_REF]). Suppose that the observation X = (X 1 , . . . , X n ) is generated from the MIN-GARCH model. Let Z = (Z 1 , . . . , Z n ) be the unobserved random variable, where Z t = (Z 1,t , . . . , Z K,t ) T is a K-dimensional vector where

Z i,t =    1 if X t comes from the i -th component; 1 ≤ i ≤ K, 0 otherwise.
The distribution of Z t is P(Z t = (1, 0, . . . , 0) T ) = α 1 , . . . , P(Z t = (0, 0, . . . , 0, 1) T ) = α K .

Let α = (α 1 , . . . , α K-1 ) T , α (k) = (α k0 , α k1 , . . . , α kp k ) T , β (k) = (β k1 , . . . , β kq k ) T θ (k) = (α T (k) , β T (k)
) and θ = (α, θ (1) , . . . , θ (K) ) T ∈ Θ (The parameters space).

The conditional distribution of the complete data

X t = (X t , Z t ) is K k=1 α k λ Xt kt exp(-λ kt ) X t ! Z kt
and the conditional log-likelihood function at time t is given by

l t = K k=1 Z kt log(α k ) + X t K k=1 Z kt log(λ kt ) - K k=1 Z kt λ kt -log(X t !).
The conditional log-likelihood is given by l(θ) = n t=1 l t .

L t=1 l t is the joint log-likelihood function of the first L random variables of the series and l * (θ) = n t=L+1 l t is called the conditional log-likelihood function. When the sample size n is large, the influence of L t=1 l t will be negligible. In this study, the parameters will be estimated by maximizing the conditional log-likelihood function l * . The conditional log-likelihood is then given by

l * (θ) = n t=L+1 K k=1 Z kt log(α k ) + X t K k=1 Z kt log(λ kt ) - K k=1 Z kt λ kt -log(X t !) .(3.5)
The first derivatives of the conditional log-likelihood with respect to θ are :

∂l * ∂α k = n t=L+1 Z kt α k - Z Kt α K , k = 1, . . . , K -1, (3.6) ∂l * ∂α ki = n t=L+1 Z kt X t -λ kt λ kt U (X t , i), k = 1, . . . , K, i = 0, . . . , p k (3.7) ∂l * ∂β kj = n t=L+1 Z kt X t -λ kt λ kt λ k,t-j , k = 1, . . . , K, j = 1, . . . , q k , (3.8)
where

U (X t , i) =    1 if i = 0, X t-i if i = 0.
Given that the process {Z t } is not observed, the data that we have do not allow the estimation of the parameter θ. An iterative process EM procedure is proposed for estimating the parameters by maximizing the conditional log-likelihood function l * (θ) consists of an (E-step) and an (M-step).

These steps are described in the following:

(a) E-step: suppose that θ is known. The missing data Z are then replaced by their conditional expectations, conditional on the parameters and on the observed data X. In this case the conditional expectation of the k -th component of Z t is just the conditional probability that the observation X t comes from the k -th component of the mixture distribution conditional on θ and X. Let τ k,t be the conditional expectation of Z kt .

Then the E-step equation is given by :

τ (s) k,t = α (s-1) k λ (s-1) kt Xt exp(-λ (s-1) kt ) K i=1 α (s-1) i λ (s-1) it Xt exp(-λ (s-1) it )
where k = 1, 2, . . . , K and t = L + 1, . . . , n. s = 1, 2, . . . represents the iteration number.

In practice, the Z 

(s) k = 1 (n -L) n t=L+1 τ (s) k,t , k = 1, . . . , K
From the equation (3.7), we have :

n t=L+1 τ (s) t,k X t λkt U (X t , i) = n t=L+1 τ (s) k,t U (X t , i).
Then

n t=L+1    τ (s) k,t X t p k j=0 α(s) kj U (X t , j) + q k j=1 β(s) kj λ(s) k(t-j) U (X t , i)    = n t=L+1 τ (s) k,t U (X t , i),
for k = 1, . . . , K, i = 0, . . . , p k .

Similarly equation (3.8) gives :

n t=L+1 τ (s) k,t X t λ(s) kt λ(s) k,t-j = n t=L+1 τ (s) k,t λ(s) k,t-j .
Then

n t=L+1 τ (s) k,t X t p k i=0 α(s) ki U (X t , i) + q k t=L+1 β(s) ki λ(s) k,t-i λ(s) k,t-j = n t=L+1 τ (s) k,t λ(s) k,t-j , for k = 1, . . . , K, j = 1, . . . , q k .
The estimates of the parameters are then obtained by iterating these two steps until convergence. Let θ (s) i be the i th component of θ (s) , then the criterion used for checking convergence of the EM procedure is max θ

(s+1) i -θ (s) i θ (s) i , s, i ≥ 1 ≤ 10 -5 .
Among different strategies for choosing starting initial values for the EM algorithm (see [START_REF] Karlis | Choosing initial values for the em algorithm for finite mixtures[END_REF] and [START_REF] Melnykova | Initializing the em algorithm in gaussian mixture models with an unknown number of components[END_REF]), the random initialization method is employed in this paper ( the initial values for θ (k) are chosen randomly from a uniform distribution and the mixing proportions are generated from a Dirichlet distribution ). The asymptotic properties are not treated in this paper but they have been studied by many authors. For example, [START_REF] Nityasuddhia | Asymptotic properties of the em algorithm estimate for normal mixture models with component specific variances[END_REF] have studied the asymptotic properties of the EM algorithm estimate for normal mixture models. They show that the EM algorithm gives reasonable solutions of the score equations in an asymptotic unbiased sense. The performance of the EM algorithm is assessed by some simulation experiments.

Simulation studies

Monte Carlo experiment was conducted to investigate the performances of the EM estimation method. In all these simulation experiments, we use (R = 100) independent realizations of the MINGARCH (2.1) model with sizes n = 100, n = 200 and n = 500. The following two models were used in the experiment.

The first denoted Model (I), is a MINGARCH(2; 1,1; 1,1) model with parameter values α 1 α 10 α 11 β 11 α 2 α 20 α 21 β 21 = 0.75 1.00 0.20 0.30 0.25 5.00 0.50 0.30 . Based on the results in Tables 4 and4, we can see that as the sample size increases, the estimates seem to converge to the true parameter values. The performance of the estimate improves when the sample size increases. But this performance varies depending on the parameters. Indeed the parameter estimate α k seems to give good results for all sample sizes considered. For the parameter α k0 , the RMSE and the MAE are slightly higher. 

Real data examples

In this section we shall investigate the time series represents a count of CAD drug calls reported in the 22nd police car beat in Pittsburgh, during one month. It started in January 1990 and ended in December 2001. The data are available online at the forecasting principles site (http://www.forecastingprinciples.com), in the section about crime data. the framework of [START_REF] Zhu | A mixture integer-valued arch model[END_REF], the bimodality index of [START_REF] Der | A Handbook of Statistical Analyses using SAS[END_REF] is used to show that the series is bimodal. In their results, they showed that the MINARCH model is more appropriate for this dataset than the INARCH model. But they are not taken account the MA components in the model.

In the following we fit a MINGARCH model (2.1) to the series with K = 1, 2, 3. The summary statistics are given in Table 5 . Mean and variance are estimated as 6.3470 and 22.7317, respectively. Hence the data seem to be overdispersed. The histogram of the series in Figure 1 show that the series is more or less bimodal. The autocorrelation function in Figure 2 implies that the third-order model can be considered. We consider the MINGARCH model with 1 ≤ p ≤ 3 and 0 ≤ q ≤ 3. The model selection criteria considered here are the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the mixture regression criterion (MRC) proposed by [START_REF] Naik | Extending the akaike information criterion to mixture regression models[END_REF]. These two first criteria are both defined as minus twice the maximized log-likelihood plus a penalty term. The first choice is the log-likelihood given by equation (3.5). The maximized (observed) log-likelihood is automatically generated by the EM estimation but it includes the information of the unobserved random variable Z. The second choice is computed from the (conditional) probability density function of the MINGARCH model. It is defined as

G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 0 
l ′ = n t=L+1 log K k=1 α k λ Xt kt exp(-λ kt ) X t ! .
We use l ′ because it may have better performance in finite samples (see [START_REF] Wong | On a mixture autoregressive model[END_REF]). We use the following definition of AIC and BIC :

AIC = -2l ′ + 2 2K -1 + K k=1 p k + K k=1 q k , BIC = -2l ′ + log n -max(p max , q max ) 2K -1 + K k=1 p k + K k=1 q k .
The third criterion consists of three terms: the first measures the lack of fit, the second imposes a penalty for regression parameters, and the third is the clustering penalty function. It is an extension of the AIC to mixture regression models. For the MINGARCH model, let U = (X L+1 , . . . , X n ) T , V = (V L+1 , . . . , V n ) T , V j = (1, X j-1 , . . . , X j-p , λ kj (j-1) , . . . , λ kj (j-q) ) T , k j | τ kj ,j = max {τ 1,j , . . . , τ K,j } , j = L+1, . . . , n, and

θ * k = α (k) T , 0 T , β (k) T , 0 T T (p+q+1)×1 , W k = diag ( τ k,L+1 , . . . , τ kn ) T , V k = W 1/2 k V, H k = V k V T k V k -1 V T k , k = 1, . . . , K. Then the MRC is defined as MRC = K k=1 n k log( σ 2 k ) + K k=1 n k ( n k + h k ) n k -h k -2 -2 K k=1 n k log( α k ),
where

n k = tr( W k ), h k = tr( H k ) and σ 2 k (U -V θ * k ) T W 1/2 k (I -H k )(U -V θ * k )/ n k .
There are three aspects of model selection in the MINGARCH model. First, we must select the number of components K. Second, we must select the order of each AR component, i.e. p k . Thirdly, we must select the order of each MA component, i.e. q k . The selection problem for the number of components is not discussed, we concentrate on the order selection of each component. The order of the components is chosen to be that minimizing the values of the three criterions. The AIC, BIC and MRC values for the crime counts series are given in Tables 5,5, 5 and 5.

The results in Table 5, the AIC, the BIC and the MRC retain respectively the two-component mixture model with p = 3, the two-component mixture model with p = 2 and the single-component model with p = 3 (as selected in the framework of [START_REF] Zhu | A mixture integer-valued arch model[END_REF]). Based on the results in these tables (5, 5, 5 and 5), the AIC and the BIC retain the two-component mixture model with respectively (p, q) = (1, 3) and (p, q) = (1, 1). It confirms the result of the histogram and lends substantial AIC BIC MRC Order q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 p = AIC BIC MRC Order q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 p = 1 AIC BIC MRC Order q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 p = support to the two-component model. In practice, it is observed that the BIC criterion selects the model of dimension smaller than the AIC criterion, which is not surprising since the BIC penalizes more than the AIC (when n > 7). The MRC suggests the three-component model, but the third smallest MRC values (531.45) is obtained in the two-component model with (p, q) = (1, 2). The values of the criteria AIC, BIC and MRC obtained in our model are better than those of model MINARCH. We can conclude that the MINGARCH model is more appropriate for this dataset than the MINARCH model.

Concluding remarks

The selection of K is more important as it will affect our interpretation of the MINGARCH model and the correct selection of the orders is dependent on the selected number of components, but this is difficult to handle and using AIC or BIC to choose K is somewhat non-standard of particular importance.

  's from the previous E-step of the EM procedure. (b) M-step: The missing data Z replaced by their conditional expectations on the parameters θ and on the observed data X 1 , . . . , X n . The estimates of the parameters θ can then be obtained by maximizing the conditional log-likelihood function l * (θ) by equating expressions (3.7) -(3.8) to 0. The M-step equations become α

  the estimators are evaluated by the root mean square error (RMSE) and the mean absolute error (MAE).

Figure 1 .

 1 Figure 1. Histogram of the crime counts series.

Figure 2 .

 2 Figure 2. Crime counts series: the time plot, the sample autocorrelation and partial autocorrelation function.

Table 1 .

 1 Results of the simulation study with model (I). 10 α 11 β 11 α 2 α 20 α 21 β 21 α 3 α 30 α 31 β 31

	Sample	k		α k	α k0	α k1	β k1
	size						
	100	1	True values	0.7500	1.0000	0.2000	0.3000
		Mean estimated	0.7410	1.1883	0.1833	0.2446
			RMSE	0.0523	0.5789	0.0623	0.2137
			MAE	0.0405	0.4726	0.0506	0.1801
		2	True values	0.2500	5.0000	0.5000	0.3000
		Mean estimated	0.2590	5.1660	0.4619	0.2901
			RMSE	0.0523	2.6410	0.2823	0.2588
			MAE	0.0405	2.2060	0.2103	0.2274
	200	1	True values	0.7500	1.0000	0.2000	0.3000
		Mean estimated	0.7463	1.0093	0.1909	0.3054
			RMSE	0.0359	0.4429	0.0468	0.1773
			MAE	0.0291	0.3641	0.0381	0.1460
		2	True values	0.2500	5.0000	0.5000	0.3000
		Mean estimated	0.2537	5.2571	0.4612	0.2928
			RMSE	0.0359	2.2616	0.1728	0.2380
			MAE	0.0291	1.8728	0.1314	0.1976
	500	1	True values	0.7500	1.0000	0.2000	0.3000
		Mean estimated	0.7510	1.0646	0.1959	0.2817
			RMSE	0.0259	0.2525	0.0272	0.1035
			MAE	0.0212	0.1867	0.0214	0.0783
		2	True values	0.2500	5.0000	0.5000	0.3000
		Mean estimated	0.2490	5.3064	0.5026	0.2688
			RMSE	0.0259	1.6316	0.0982	0.1702
			MAE	0.0212	1.3483	0.0774	0.1443
	The second denoted Model (II), is a MINGARCH(3; 1,1,1; 1,1,1) model with
	parameter values					
		  α 1 α					

Table 2 .

 2 Results of the simulation study with model (II).

	Sample	k		α k	α k0	α k1	β k1
	size						
	100	1	True values	0.5500	0.8000	0.4000	0.3000
			Mean estimated	0.5435	0.7671	0.4429	0.2163
			RMSE	0.1063	0.4997	0.1898	0.2339
			MAE	0.0828	0.4054	0.1482	0.1977
		2	True values	0.2500	1.0000	0.5000	0.2500
			Mean estimated	0.2240	1.0888	0.5344	0.2532
			RMSE	0.0802	0.7182	0.3804	0.2563
			MAE	0.0607	0.5504	0.2420	0.2113
		3	True values	0.2000	0.5000	0.6000	0.2000
			Mean estimated	0.2323	0.9516	0.4475	0.2714
			RMSE	0.0600	0.7127	0.2413	0.2263
			MAE	0.0429	0.5490	0.1895	0.1850
	200	1	True values	0.5500	0.8000	0.4000	0.3000
			Mean estimated	0.5286	0.7471	0.4113	0.2552
			RMSE	0.1117	0.4363	0.1563	0.1942
			MAE	0.0838	0.3566	0.1190	0.1545
		2	True values	0.2500	1.0000	0.5000	0.2500
			Mean estimated	0.2316	1.0570	0.5340	0.2433
			RMSE	0.0785	0.6025	0.2584	0.1928
			MAE	0.0602	0.4787	0.1751	0.1506
		3	True values	0.2000	0.5000	0.6000	0.2000
			Mean estimated	0.2397	0.8867	0.4450	0.3042
			RMSE	0.0652	0.6088	0.2306	0.2439
			MAE	0.0452	0.4959	0.1806	0.1825
	500	1	True values	0.5500	0.8000	0.4000	0.3000
			Mean estimated	0.5556	0.7040	0.4248	0.2725
			RMSE	0.0825	0.3246	0.1171	0.1797
			MAE	0.0614	0.2595	0.0934	0.1407
		2	True values	0.2500	1.0000	0.5000	0.2500
			Mean estimated	0.2182	0.9508	0.5223	0.2656
			RMSE	0.0620	0.4723	0.2059	0.2132
			MAE	0.0487	0.3853	0.1569	0.1576
		3	True values	0.2000	0.5000	0.6000	0.2000
			Mean estimated	0.2261	0.8985	0.4690	0.2815
			RMSE	0.0536	0.5883	0.1963	0.1988
			MAE	0.0298	0.4780	0.1586	0.1506

Table 3 .

 3 Summary statistics of the crime counts series.

	Sample size Minimum Maximum Median Mean Variance Skewness Kurtosis
	144	0	30	5	6.347	22.7317	1.9810	8.7646

Table 4 .

 4 AIC, BIC and MRC values for the crime counts series with q = 0.

			AIC			BIC			MRC	
	K	p = 1	p = 2	p = 3	p = 1	p = 2	p = 3	p = 1	p = 2	p = 3
	1	825.08	806.21	803.77	831.00	815.08	815.56	554.38	544.71	543.85
	2	762.40	755.24	751.92	777.22	775.93	778.46	600.39	590.37	588.23
	3	763.73	757.93	756.49	787.43	790.45	797.77	632.82	622.69	686.01

Table 5 .

 5 AIC, BIC and MRC values for the crime counts series with K = 1.

Table 6 .

 6 AIC, BIC and MRC values for the crime counts series with K = 2.

	1	806.61	804.18	798.75	822.50	816.00	813.50	548.34	546.08	544.29
	p = 2	804.98	806.89	800.75	816.81	821.67	818.44	546.41	548.58	546.36
	p = 3	804.63	805.40	802.97	819.37	823.09	823.61	544.88	547.43	545.62

Table 7 .

 7 AIC, BIC and MRC values for the crime counts series with K = 3.

		754.24	749.83	745.47	754.24	776.43	797.69	546.38	531.45	533.94
	p = 2	752.44	758.64	749.32	779.04	791.15	787.65	538.78	588.95	538.96
	p = 3	753.48	751.45	752.96	785.92	789.79	797.19	590.52	540.92	542.03