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Abstract

We present a numerical study of the slip link model introduced by Likhtman for describing the dynamics

of dense polymer melts. After reviewing the technical aspects associated with the implementation of the

model, we extend previous work in several directions. The dependence of the relaxation modulus with the

slip link density and the slip link stiffness is reported. Then the nonlinear rheological properties of the

model, for a particular set of parameters, are explored. Finally, we introduce excluded volume interactions

in a mean field like manner in order to describe inhomogeneous systems, and we apply this description to

a simple nanocomposite model. With this extension, the slip link model appears as a simple and generic

model of a polymer melt, that can be used as an alternative to molecular dynamics for coarse grained

simulations of complex polymeric systems.
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I. INTRODUCTION

The mathematical description of rheological properties of entangled polymers is a difficult chal-

lenge, which can be addressed at several different levels of accuracy and complexity. The most

popular and very successful approach is the one based on the so called tube model of Doi, Ed-

wards and de Gennes [1]. In this model, the description is reduced to the motion of a single chain

reptating along a tube that represents the topological constraints imposed by other chains. The

model is partly analytic, introduces only a few parameters, and through some approximations can

be converted into a local constitutive equation [1]. Its drawbacks are its intrinsically mean field

character (tube length fluctuations or constraint release are not considered) and the difficulty in

extending it to various chain architectures. The first aspect can be corrected in part, and further

modifications of the model including tube length fluctuations and constraint release [2] achieve

quantitative agreement with the rheological data for linear homopolymer melts, with additional

parameters. The corresponding model stays at the one chain level, and developments such as

extension to large strain rate, polydisperse or spatially inhomogeneous systems are difficult. At

the other extreme, a fully realistic modeling of the dynamical properties of a polymer melt can,

in principle, be achieved using molecular dynamics or kinetic Monte-Carlo simulations of coarse

grained polymer models [3, 4]. Such an approach has indeed provided numerical evidence for the

validity of the reptation mechanism, and the analysis of the configurations allows one to identify

the tube structure and the entanglements [5]. However, the approach is so costly from a compu-

tational standpoint that the detailed study of rheological behavior is difficult, especially if one is

interested in deformation rates that are not large compared to the inverse reptation time of a chain.

Models intermediate between the tube description and the fully atomistic simulation have been

proposed by several groups, and are generically described as ”slip link” models. Such models

inherit the tube model in the sense that they impose artificially the existence of topological con-

straints onto chain motion [6, 7]. These topological constraints are, however, treated as statisti-

cal fluctuating objects that interact with the polymer chains, without modifying their equilibrium

statistics. The polymer chains themselves are usually described as Rouse chains of Brownian par-
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ticles connected by Hookean springs, and submitted to friction and random forces. Such models

have the interest of easily accommodating complications such as polydispersity, complex chain

architectures. They can also incorporate in a natural way constraint release and fluctuations in the

tube length (or number of constraint per chain). While originally intended to work as single chain

models, they can also incorporate interchain interactions, as demonstrated below. They therefore

offer an interesting compromise that preserves the computational simplicity of tube models, but

can be related more directly to an atomistic picture of the system.

Several different implementations of slip link models have been described in the literature, starting

with the work of Marrucci and coworkers [8–11], Doi and Takimoto [12] and including the model

of Schieber and coworkers [13–15] and of Likhtman [16]. Here we concentrate on Likhtman’s

model, which we found to be particularly simple in its implementation and most easily extended

to interacting chains. While Schieber and coworkers have published an extensive study of the flow

properties in their model [14], Likhtman’s original work concentrated on equilibrium properties

and allowed him to specify the values of the model parameters appropriate for the description of

several polymers. The present study aims at extending Likhtman’s work into several directions.

First, we will investigate how the various parameters in the model affect the linear rheological

properties. Then, we briefly investigate the nonlinear rheological properties of the model. Fi-

nally, we extend the previous model in order to study an inhomogeneous system, namely a filled

entangled system. For that, we introduce interchain interactions via a simple density dependent

interaction, as described in [17]. In that part, we consider bare fillers distributed on a cubic lattice

and the effect of the fillers volume fraction on the viscosity is investigated. Before we discuss our

results, the next section describes in some detail our implementation of the model.

II. NUMERICAL IMPLEMENTATION OF LIKHTMAN’S MODEL

The original model of Likhtman involves an ensemble of noninteracting Rouse chains, which are

constrained by additional springs representing the topological constraints and called slip-links, as

shown schematically in figure 1. Each slip link is defined by a fixed anchoring point at position ~aj
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and a ring attached to the chain at position ~sj . The ring is constrained to move along the polymer

chain by traveling along straight lines between adjacent monomers:

~sj = ~rtrunc(xj) + (xj − trunc(xj))(~rtrunc(xj)+1 − ~rtrunc(xj)) (1)

trunc(x) is the largest integer not greater than x and xj is the curvilinear abscissa of the ring along

its chain.

The anchoring point ~aj are fixed in space as long as the slip link j is not destroyed. Different

destruction/creation rules for the slip links will be considered in this article and detailed later on.

Each ring is connected to its anchoring point by a Hookean spring corresponding to the confining

potential USL({~sj}) = 3kBT
2Nsb2

(~aj − ~sj)
2, where 3kBT/Nsb

2 is the slip slink stiffness, here counted

in number of monomers Ns, b being the monomer segment length and kBT the thermal energy.

The total potential felt by the single chain with Z slip links writes then :

U = UROUSE + USL (2)

UROUSE({~ri}) =
3kBT

2 b2

Nm
∑

i=1

(~ri − ~ri−1)
2 (3)

USL({~sj}) =
3kBT

2Nsb2

Z
∑

j=1

(~aj − ~sj)
2 (4)

where we note that the parabolic form of the slip link potential does not perturb the Gaussian

statistics of the single chain. Given the total potential, the motion of monomer i of the single chain

obeys the Langevin equation:

ξ
d~ri
dt

=
3kBT

b2
(~ri+1 − 2~ri + ~ri−1) + ~∇~riUSL + ~fi(t) (5)

~∇~riUSL =
3kBT

Nsb2

∑

j:trunc(xj)=i

(1− (xj − trunc(xj)))(~aj − ~sj)

+
3kBT

Nsb2

∑

j:trunc(xj)=i−1

(xj − trunc(xj))(~aj − ~sj) (6)

< ~fi(t) > = ~0 (7)
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< ~fi(t)~fj(t
′) > = 2 ξ kB T δijδ(t− t′)I (8)

where ξ is the monomer friction coefficient. The force ~∇~riUSL on monomer i is due to the slip

links between the monomers i−1 and i+1. Finally, ~fi is a random Brownian force, satisfying the

usual fluctuation/dissipation relations ( I denotes the unit tensor). The slip links positions obey a

Langevin equation coupled to the previous one:

ξs
dxj
dt

= −~∇xj
USL + gj(t) (9)

−~∇xj
USL =

3kBT

Nsb2
(~rtrunc(xj)+1 − ~rtrunc(xj))(~aj − ~sj) (10)

< gi(t) > = 0 (11)

< gi(t)gj(t
′) > = 2 ξS kB T δijδ(t− t′) (12)

where we have introduced the slip link friction coefficient ξs. The value of ξs is chosen to be much

smaller than the monomeric friction ξ, so that the diffusion of the slip links does not introduce a

significant additional dissipation. The different parameters of the slip link model are summarized

in the table II below, and in the following we will study essentially how the two parameters Ne

and Ns affect the linear rheology of the model.

To close the presentation of the model, we present now the slip links renewal algorithm. A static

binary correspondence between pair slip links. When a slip link passes through the end of its chain,

it is destroyed and instantaneously recreated at the extremity of a randomly chosen chain, where

the extremity is defined as the Ne end monomers. Simultaneously, its companion is destroyed and

instantaneously recreated at a random position of a randomly chosen chain. This renewal mech-

anism ensures that the slip links density is uniform along a chain, so that the Gaussian statistics

of the chains remains unaffected. A non uniform distribution of slip links would create stresses

localized at the center of the polymer chain, which in turn would yield to the collapse of the chain

compared to the initial Gaussian configuration. In addition, in a real polymer melt, the entangle-

ments are not static but they can disappear and be created on time scales comparable to the chain
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relaxation times. These relaxation mechanisms, called constraint release (CR), are particularly im-

portant to explain the rheology of entangled polymer melts [18]. The static binary correspondence

allows one to account for this process without exaggerating it, as would be the case for a non-static

binary correspondence. This renewal scheme has been validated by Likhtman by comparison with

data for polystyrene [16].

aj

sj ri

0

1

Nm

xj

FIG. 1. Rouse chain with slip-links. The ring of one slip-link is located by his curvilinear abscissa xj. From

xj the vector ~sj is constructed according to equation (1). The anchoring points ~aj are distributed around ~sj

with the following Boltzmann weight : exp
(

3kBT
2Nsb2

(~sj − ~aj)
2
)

temperature kB T = 1

monomer size b = 1

friction coefficient of the entropic springs ξ = 1

friction coefficient of the slip-links ξS = 0.1 ξ

characteristic time τ0 =
ξ b2

3π2 kB T

number of slip-links per chain Z = Nm

Ne

number of Kuhn’s segments between slip-links Ne

stiffness of the slip-links 3kBT
Nsb2

TABLE I. Main parameters that define the slip link model.
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III. INFLUENCE OF THE MODEL PARAMETERS ON THE RELAXATION

MODULUS

We now analyze the influence of the model parameters on the linear rheology. We focus on pa-

rameters Ne and Ns which control the density of effective entanglements in the slip link model.

Following [19], the expression of the shear relaxation modulus is given by :

G(t) =
V

kBT

1

3
<

2
∑

α=1

3
∑

β>α

σRouse
αβ (t) σT

αβ(0) > (13)

where σT
αβ is the instantaneous shear stress defined by

σT
αβ = σRouse

αβ + σSL
αβ (14)

where σSL
αβ and σRouse

αβ are the instantaneous shear stresses related to the Z = Nm/Ne slip-links on

the considered chain and the Rouse potential respectively. They are given by

σRouse
αβ (t) = − 1

V

∑

i

< αi Fβi
Rouse > (15)

σSL
αβ(t) = − 3kBT

Nsb2V

Z
∑

j=1

< (sα,j − aα,j)(sβ,j − aβ,j) > (16)

V is the volume occupied by the polymer melt, αi is the α coordinate vector of ~ri and Fβi
Rouse is

the β coordinate vector of the total Rouse force ~Fi

Rouse
felt by monomer i. Let us first consider

FIG. 2 which displays the time evolution of the shear relaxation modulus for polymer chains of

different lengths, here counted in number of monomers Nm. The initial value of the modulus is

ρ0kBT , where ρ0 is the mean density of the polymer melt. The relaxation of the shortest chains

considered is typical of unentangled polymer chains, and is close to the shear relaxation modulus

predicted by the Rouse model. On increasing the chain length, the shear modulus deviates from

the Rouse model predictions. In particular, for the two largest values of Nm considered, a rubbery

plateau appears, reminiscent of the plateau observed in rheological experiments of entangled poly-

mer melts. Note, however the log-log scale of FIG. 2, which implies that the rubbery plateau still
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involves a significant relaxation for Nm = 128 . FIG. 3 shows the evolution of the shear relaxation

modulus when increasing the number of slip-links per chain Z = Nm/Ne. When Z is small, the

effect of the slip links on the dynamics of the chain is weak, and the shear relaxation modulus is

closer to the Rouse predictions, with the absence of a well defined plateau. On increasing Z, a

rubbery plateau appears : its amplitude increases with Z and simultaneously the final relaxation

time τd increases (see FIG. 3). Alternatively, the slip-links stiffness may be increased (Ns) at given

Ne (or Z), which also results in an increase of the modulus and of the terminal time (see FIG. 4).

Note however that for values ofNs that stay ”physical” (Ns > 1) this increase is relatively modest.

To make the discussion more quantitative, we have extracted a terminal time τd and an amplitude

G
(0)
N from the simulated G(t) using a fitting procedure with a simple tube model. The reptation

model [1] predicts the evolution of the relaxation modulus :

G(t) = G
(0)
N Ψ(t) (17)

Ψ(t) =
∑

p odd

8

p2π2
exp

(−p2t
τd

)

(18)

In the reptation model, the rubbery modulusG0
n and the terminal time τd are related to the distance

a between entanglements through: G0
n = ρ0kBTb

2/a2 ∝ M−1
e and τd = ζN3b2

π2kBT
b2/a2 ∝ M−1

e

where Me = a2/b2 denotes the mean number of monomers between two entanglements and the

other parameters ρ0 and ζ denote respectively the monomer density and the monomeric friction.

The topology of the tube is described by a single phenomenological parameter a, while in the slip

link model, the effective tube depends on the two parameters Ne and Ns. Therefore the correlation

between G(0)
N and τd that exists in the reptation model is absent from the slip link model. In the

following, we will simply use equations 17 and 18 as convenient fitting formulae, including in

situations where the chains display a "quasi-Rouse" dynamics (for large Ne for example). In the

other extreme case of well entangled polymer melts, G(0)
N can be interpreted as a plateau modulus

and this fitting formulae leading to treat G(0)
N and τd as independent parameters.

The simple form 18 is supposed to predict G(t) for times longer than a time τE , which in the

reptation model is the Rouse time corresponding of a subchain of Me monomers. Fig 5 compares
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the simulatedG(t) to equation (17) and eq. (18) where we have retained only the ten first terms in

the sum and we have emphasized the time domain used in the fit t > τE . The sum of exponentials

describes well the simulated G(t) for long times, while close to the lower boundary t ≃ τE the

fit deviates from G(t), due to short time Rouse like contributions. Hence, we conclude that the

exponential form eq. (17) is an acceptable fit of our simulation data provided there is a clear

separation of time scales τE ≪ τd. This will be the case for long chains, small Ne and large slip

link stiffness (small Ns). This fitting procedure has been applied systematically to all the previous

curves to extract G0
N and τd as a function of Ne and Ns even for quasi-Rouse relaxation.

The resulting values of τd and G(0)
N as function of Ns and Ne are reported in figures 6, 7, 8, and

9 for two chain lengths Nm = 64 and Nm = 128. We mention here that the dependence of

the viscosity and diffusion coefficient on molecular weight have been analyzed in reference [16],

and shown to be in good agreement with the experimental trends, with a crossover from Rouse

behavior to ∼ N3.6
m behaviour for the viscosity. Our results confirm this analysis, which is not

reproduced here.

The dependence of τd on Ne, reported in figure 6, is consistent with the general expectation from

the reptation model, namely τd ∼ N−1
e . This reflects the fact that, for the value of Ns that is used,

each slip link is acting as an independent topological constraint, through which the chain has to

travel in order to disentangle. The length of the primitive tube depends linearly onNe. On the other

hand, figure 7 shows that the amplitude G(0)
N has a much weaker dependence on Ne than expected

in the simple reptation picture, provided we have identified G0
N with the plateau modulus.

When the slip links are dense along the chain, they do not act as independent crosslinks. There-

fore identifying directly the slip links with entanglements is not possible, except perhaps in the

asymptotic limit of large Nm and Ne ≫ 1, which is not explored here in view of the associated

computational cost. The amplitudeG(0)
N depends weakly on the chain length at a fixed value of Ne

and Ns, as seen in figures 7 and 8. This is consistent with the reptation picture, where the rubbery

plateau is entirely controlled by the density of slip links and their stiffness independently of the

mass of the chain. The variation of τd with Ns is reported in figure 9. For the two chain lengths

studied, τd decreases algebraically with Ns with an exponent close to −0.6.
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In the following, we will concentrate on a particular set of parameters, Ns = 0.5, Ne = 4, which

was shown by Likhtman [16] to give an appropriate description of polystyrene data. Our study

shows, however, that the slip link models offer a large flexibility that goes beyond that of tube

models, with in particular the ability to vary independently the amplitude G(0)
N and the terminal

time τd, by playing with the independent parameters Ne and Ns.

IV. NONLINEAR RHEOLOGICAL BEHAVIOR

In this section, we investigate the non linear rheology of the slip link model. To this end, we have

applied a steady shear flow with a constant shear rate γ̇(t) = γ̇. The equations of motion obeyed

by the monomers become:

vx = yγ̇(t) +
1

ξ

(

FRouse
x + F SL

x

)

vy =
1

ξ

(

FRouse
y + F SL

y

)

vz =
1

ξ

(

FRouse
z + F SL

z

)

where we have added the term y γ̇(t) which convects the monomers in the imposed flow field.

Simultaneously, the anchoring points of the slip-links are convected according to:

~v(X~aj ) = Y~aj γ̇(t)~ex

In addition, Lees-Edwards periodic boundary conditions are applied to all the monomers[20].

Finally, we consider here only the Rouse contribution to the instantaneous shear stress: σxy =

σRouse
xy and disregard the slip-links contribution σSL

xy . Indeed, taking into account a total shear

stress defined by σRouse
xy + σSL

xy does not quantitatively change the power laws characterizing the

rheology of the polymer model, as it will be apparent later on.

In figure 10, we have reported the evolution of the shear stress σxy as a function of time under

steady shear flow at several shear rates. The values of the shear rates considered range from γ̇ ∼

τ−1
E to γ̇ ∼ τ−1

d for which the chain has totally relaxed. Two situations have to be distinguished

depending on the value of the shear rate γ̇. For the largest shear rates, the evolution of the shear
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stress with time (or shear strain) is non-monotonous : the stress increases up to a maximum (the

so called stress overshoot maximum). Then, the shear stress decreases to finally reach a plateau,

which corresponds to a steady state situation. The existence of a stress overshoot for entangled

polymers is well known experimentally and also predicted in the theoretical analysis of Doi and

Edwards who have considered the affine deformation of the (primitive chain) tube created by the

entanglements in a shear flow and by the convective constraint release CCR model of Marrucci [27,

28]. In the Doi-Edwards model, the stress overshoot occurs at a constant deformation γmax =

γ̇tmax ≃ 2 and thus the time corresponding to the stress maximum scales as tmax ∝ γ̇−1. We have

compared this prediction to our simulations in figure 11 where we observe that tmax ∝ γ̇−κ with

κ ≃ 0.5, meaning that the deformation at the overshoot increases with strain rate. This increase

is also observed in experiments [21, 24] and in the Marrucci model at large strain rates. However,

note that the scaling tmax ∼ γ̇ is observed experimentally for extremely small shear rates γ̇τd ≪ 1,

a regime difficult to attain in our model. Note also that the value of the exponent κ does not change

if we include the contribution of the slip-links in the definition of the instantaneous shear stress.

Coming back to figure 10, we observe at low shear rates the absence of stress overshoot, and a

monotonous evolution of the shear stress: the stress increases before reaching a low steady state

shear stress. The values of the shear stress plateau as function of the shear rate (flow curve) are

reported in figure 12 for two chain lengths Nm = 64 and Nm = 128 and for a finite extensible

non linear elastic FENE chain with slip-links. In the latter model, the hookean springs between

monomers are replaced by a non linear spring force which derives from the potential UFENE(r) =

−3kBT
2b2

R2
0 log(1 − (r/R0)

2) which defines the maximal extension of the springs R0 (we have set

R0 = 1.6b). The evolution of the steady shear stress as a function of the shear rate displays three

regimes : At low shear rates, the shear stress increases approximately linearly with the shear rate at

least for the chains of lengthNm = 64. In this regime, the chains have totally relaxed in the typical

shear time scale and the rheology of the melt is Newtonian: σplateau = ηγ̇, η being the viscosity

of the melt of chains. This regime is not seen for the longest chains Nm = 128, as it would

correspond to very low shear rates that would need very long simulation times. For intermediate

shear rates γ̇τ0 ∈ [10−4; 10−3], the evolution of the shear stress with the shear rate is slower: we
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observe σplateau ∝ γ̇α with an exponent α ≃ 0.3 independent of the chain length and independent

of the type of elastic springs. This contrast with the Doi Edwards model which predicts in this

intermediate shear rates range a decrease of the stress with the shear rate, which would lead to

a flow instability that is not usually observed in polymer melts. Again, CCR mechanisms are

thought to restore the monotonicity of the flow curve yielding an effective viscosity η ∼ γ̇−1 at

large shear rates [28]. We have considered in fig. 13 the evolution of the viscosity as a function of

the shear rate in steady state conditions. It turns out that the SL model displays a shear thinning

behaviour less marked than predicted by Marrucci: in particular, we observe η ∼ γ̇−x with x ≃ 0.7

for the Nm = 128 melt. Finally, for the highest γ̇, the polymer chains have also a shear thinning

behavior with an apparent exponent x ≃ 0.6 for all the polymer models considered. These shear-

thinning exponents can be compared with rheological measurements, which conclude x = 0.85

for a polymer melt with a comparable degree of entanglement Z = 15 [24].

The study of the steady state viscosity gives also the opportunity to quantify the influence of the

stress due to the slip links on the shear-thinning behavior. We have observed that if we use the

expression of the shear stress which includes the contribution of the slip-links: σRouse
xy + σSL

xy , the

shear thinning exponent changes mildly passing from 0.67 to 0.68. The absolute value of the

viscosity obtained from the two contributions is larger than that obtained with σRouse
xy , by around

20% for γ̇τ0 = 10−5 and 10% for γ̇τ0 = 10−2, (σRouse
xy + σSL

xy )/σ
Rouse
xy evolving as (γ̇τ0)−0.01.

Finally, it is also important to stress at this point that, depending on the flow strength γ̇ the steady

slip-links distribution on the chain may become non-uniform. At small γ̇, figure (14) clearly

shows that the slip-links are uniformly distributed along the chains as in equilibrium simulations.

On the other hand, at larger γ̇ slip-links tend to accumulate close to the chain extremities, while a

depletion is observed at the centers, as seen in Fig.(14). This may be understood as follows: Under

strong shear flow the polymer chains are stretched and tend to align with the stream lines, while

the slip-links anchoring points are advected affinely by the flow (see Fig.(15)). As a consequence,

the slip links tend to drift to the chain ends, and their lifetime of the slip-links decreases when

the shear rate increases. Apart from shear thinning, the non linear rheology of entangled polymer

melts is accompanied by the development of normal stresses. This is quantified by the first and
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second normal stresses defined by:

N1 = σRouse
xx − σRouse

yy (19)

and

N2 = σRouse
yy − σRouse

zz (20)

or by the corresponding first and second normal coefficients:

ψ1,2(γ̇) = N1,2(γ̇)/γ̇
2 (21)

In these equations, N1(γ̇) and N2(γ̇) denote the steady state values of the normal stresses at a

given shear rate. We have measured the normal stresses during shear start flow in fig.16 for the

same range of shear rates considered before. For high shear rates, the evolution of N1 is non

monotonous. The first normal stress difference increases before reaching a maximum which is ob-

served after the stress overshoot maximum, the corresponding time t′max being found to be nearly

independent of the shear rate in agreement with the CCR model [24]. After this overshoot, the

normal stress N1 decreases to reach a steady state valueN1(γ̇) which increases with the shear rate.

Note that for small shear rates, the evolution of N1 towards its steady state value is monotonous.

The shear rate dependence of the plateau value of N1 is best quantified by the normal stress coef-

ficient ψ1 defined above and calculated in fig. 17. At low shear rates, ψ1 is approximately constant

as expected for the reptation model when γ̇τd ≃ 1. For stronger shear flows, ψ1 decreases with

the shear rate γ̇. For the sake of comparison, we have plotted in fig.17 the scaling law ψ1 ∼ γ̇−1

predicted by the CCR model and observed experimentally [23]. The simulation values of ψ1 are

in reasonable agreement with this scaling law at intermediate shear rates. Again the disagreement

at higher strain rates between the SL model results and the expected behaviour may be due to the

relative small separation of time scales in our model between the reptation time τd and the Rouse

time corresponding to the distance between slip links τE ∼ 100τ0.

When it comes to the second normal stress differenceN2, we have not displayed the time evolution

during shear flow, as it is much more noisy than N1 due to the low values of N2. Rather we have

measured the steady state value N2(γ̇) by averaging the instantaneous values of N2 in a long time
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window such that the error bar in the determination of N2(γ̇) is a 20% typically. The resulting

values of ψ2 are shown in fig. 18. Again, at low shear rates ψ2 is found to be a constant independent

of γ̇, with a ψ2/ψ1 ratio of order −0.1, typical of polymer systems. For stronger shear flow, ψ2

decreases as ψ2 ∝ γ̇−β′

with β ′ ≃ 1.5 which is close to the exponent reported experimentally

β = 1.6[24].

In Fig. (19), we compare the instantaneous viscosity η(t) = σRouse+SL
xy (t)/γ̇ obtained from the

Likhtman’s model to experimental results for monodispersed polystyrene given in [24]. The ex-

perimental system is characterized by a number of entanglements per chain around Z = 15 similar

to our simulations (Z = Nm/Ne = 16) and by chains made of 1920 monomers which corresponds

to a number of monomers per bead close to 30. The two fitting parameters b and τ0 used to scale

the viscosity of the model kBTτ0/b3, have been tuned so as to minimize the absolute difference

between the steady state viscosity obtained in our simulations and the experimental data. This

procedure leads to b = 30.5Å and τ0 = 3×10−5s, which corresponds to roughly 30 monomers per

bead, and the correct order of magnitude for the corresponding Rouse time. With this choice one

sees from figure (19) that the family of simulation curves for the instantaneous viscosity as a func-

tion of time is consistent with the family of curves obtained from experiments at different shear

rates. Although the instantaneous viscosity curves are reasonable, the experimental results in [24]

are consistent with an effective shear thinning exponent 0.86, which is slightly higher than our

simulation result 0.67, so that the adjustment is not perfect. In Fig. (20), we display the evolution

of ψplateau
1 obtained using the same values of fit parameters. The discrepancies between the sim-

ulation and the experimental data may be again attributed to the power law exponent Ψ1 ∝ γ̇−κ′

that is smaller in our simulations κ′ ≃ 1 than in rheological measurements κ′ ≃ 1.5.

In conclusion, the nonlinear flow properties of the model appear to be quite typical of what is

experimentally observed in entangled polymer melts, although the effective shear-thinning expo-

nents characterizing the normal stress coefficients are somewhat smaller than what is reported

from rheological measurements. With this caveat, the slip-link model may be used to describe a

”generic” polymer melt in complex situations, at a computational cost much lower than standard

molecular dynamics simulations. We illustrate this point in the next section after extending the
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model to include spatial information and excluded volume interactions.

V. INTRODUCING EXCLUDED VOLUME AND SPACE : A STEP TOWARDS

MODELING NANOCOMPOSITES

So far, we have considered phantom polymer chains that can cross each other, which is sufficient

to describe homogeneous melts of homopolymers. However, in most of the situations practically

encountered, polymer melts are not homogeneous. This is the case for instance in nanocompos-

ites, or in thin films where the proximity of an interface affects the configurations of the polymer

chains and the monomer density as well. In such situations, the polymer density results from the

competition between the interaction between the monomers and the surface, the entropy of the

chains and the compressibility of the polymer melt. To address such situations, it is necessary

to introduce excluded volume interactions between segments in the slip link model. A relatively

simple and computationally efficient way to account for these interactions is to consider a mean

field version of the excluded volume Hamiltonian, discretized on a lattice [17]:

Hhom

kB T
=
κ0 δ

3

2ρ0

∑

~c

(ρ(~c)− ρ0)
2 (22)

where κ0 is the dimensionless bulk modulus κ0 = 1/kBTρ0κT with κT = − 1
V

(

∂V
∂P

)

T
being the

compressibility, and ρ0 is the mean segment density of the melt. The densities ρ(~c) are computed

on a cubic lattice defined by the nodes ~c, with δ3 being the volume of an elementary cell. The

density ρ(~c) is defined by the positions of the monomers in the vicinity of ~c:

ρ(~c) =
1

δ3

Np
∑

nc=1

Nm
∑

i=1

W (~ri − ~c) (23)

with

W (~ri − ~c) =
∏

α=x,y,z

ω(rα − cα) (24)

The weight functionW describes how each monomer contributes to the average density. Its values

on the lattice of discrete sites ~c give the so called charge assignment functions [25] of the particle
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located at point ~r. They must, in particular, have the property that,

∀~r,
∑

~c

W (~r − ~c) = 1 (25)

so that the lattice sum of equation 23 gives the total number of particles. In general, W is chosen

to be a short range function, that spreads the density associated with one particle over a few

neighboring lattice sites. A convenient choice, due to Hockney and Eastwood (see ref. [25]), is to

take a function that spreads the particle over the P neigboring nodes of the lattice. Assuming that

the lattice sites have integer coordinates (in units of the lattice spacing δ) the charge assignment

function of order P is defined, in one dimension, through

W (P ) = χ ∗W (P−1) (26)

where the∗ denotes a convolution product, χ is the characteristic function of the interval [−1/2, 1/2]

and W (1) = χ. If we consider a particle with position (in units of the grid spacing) 0 < x < 1,

clearly W (1) assigns the particle to the nearest lattice site with weight 1, W (2) assigns it to the

nearest two sites 0 and 1 with weights










W
(2)
0 (x) = 1− x

W
(2)
1 (x) = x

(27)

We will also make use of the case where P = 4, which gives charge assignment function on the 4

nearest nodes(-1,0, 1 and 2) of the form:


































W
(4)
−1 (x) = 1

6
(1− 4x+ 4x2 − x3)

W
(4)
0 (x) = 1

48
(32− 48x2 + 24x3)

W
(4)
1 (x) = 1

6
(1 + 4x+ 4x2 − 4x3)

W
(4)
2 (x) = (x3/6)

(28)

The three dimensional assignment is achieved by using the product of the three assignment func-

tions on each dimension, i.e. the particle density is spread over 8 nodes for P = 2 and 64 nodes for

P = 4. We have simulated an ensemble of chains with slip links interacting through the Hamil-

tonian eq. (22). Compared to the previous simulations, each monomer i feels the interaction force
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derived from the Hamiltonian eq. 22:

~Fhom = −κ0δ
3

ρ0

∑

~ci

[

(ρ(~ci)− ρ0) ~∇~ri (ρ(~ci))
]

(29)

where the set ~ci denotes the set of the P 3 node vectors nearest neighbors of the monomer i. We

have used the parameters Nm = 64, Ne = 4, Ns = 0.5 for the slip links, and regarding the

excluded volume interactions, κ0Nm = 50, ρ0 = 5.98 following [17]. We have simulated the

dynamics of an ensemble of typically 1000 chains and used a discretization length δ ∼ 1.2b for

the calculation of the density fields.

After typically 1000 time steps, the variance of the density fluctuations saturates, and we have

checked that, under these conditions, the Gaussian statistics of the chain is weakly affected by the

excluded volume interaction. Figure 21 displays the monomer density distribution estimated by

counting the number of monomers in large cells of length ∆ ≃ 4.4 b. Note that the discretization

used for the estimate of the density here is not the same as the one used to calculate the density

field in eq. (22). Figure (21) shows that the actual monomer distribution is well predicted by the

thermodynamic expectation:

P (ρ) =
1√
2π

exp

(

−(ρ− ρ0)
2

2 σ2

)

(30)

where σ2 = ρ0/(∆
3κ0) is the variance of density fluctuations at the scale ∆ under consideration.

We have also assessed the dynamics of the polymer melt model with excluded volume interac-

tions. To this end, we have compared the stress relaxation modulus with and without excluded

volume interaction, The stress relaxation modulusG(t) is computed using equilibrium simulations

as explained in the previous sections (eq. (13) and (14)). Indeed the excluded volume interactions

do not change the Green-Kubo expression of the shear relaxation modulus (eq. (13)) since they

generate only irrelevant pressure terms [1] and the total stress σT
αβ is reduced to σR

αβ + σSL
αβ . In

presence of excluded volume interactions, it turned out that the resulting G(t) depended on the

discretization of the density field ρ(~c), and in particular on the number of nodes P where the den-

sity of a monomer is distributed. This can be understood from the fact that with a discretization

on only P = 2 nodes, the force given by equation (29) is not a continuous function of space:

when the particle crosses a cell, the nodes that contribute to the sum in equation (29) change,
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while their contribution to the force do not vanish, therefore introducing a discontinuity. On the

other hand, for the P = 4 scheme, the force induced by the lattice node that is farther away from

the particle vanishes when this node ceases to be a neighbor. In general, the function W (P )(x)

defined by the charge assignment of order P is P − 2 times differentiable, so that the minimum

value of P for which spurious force discontinuity can be, in principle, avoided is P = 3. As

shown in figure 22 , the choice P = 4 allows one to recover precisely the relaxation modulus

G(t) of the chains without excluded volume, as expected from theoretical considerations on short

range interactions [1]. The Hamiltonian eq. (22), with the appropriate assignment of particles to

the lattice, guarantees therefore a thermodynamically correct representation of excluded volume

interactions without perturbing the dynamics of the chains.

The last point to be discussed is the renewal rules for the slip links. Indeed, with the aim of

introducing some spatial heterogeneities in the system, we must introduce a spatial constraint in

the rules governing the destruction and rebirth of the slip-links. To take into account the constraint

release processes, we conserve the static binary correspondence between slip links. When a slip

link passes through the end of its chain, it is instantaneously recreated at an extremity of a random

chain nc. However, the new chain nc is chosen so that its center of mass is at a maximal distance

Rg from the original slip link, where Rg denotes the radius of gyration of the chains. The com-

panion slip-link is also destroyed and instantaneously recreated at a random position in a random

chain whose center of mass is again at a distance Rg away from the center of mass of nc. This

spatial constraint seems natural since the diffusion of the center of mass of a chain must be small

during the typical lifetime of a slip-link. Thus, an entanglement must be recreated in the vicinity

of the destroyed one rather than anywhere in the system. To check wether these spatial rules

do not lead to spurious effects, like e.g. an irreversible time-increasing concentration of coupled

slip-links on the same chain, we have quantified the number of self-entanglements, i.e the number

of pair of slip-links belonging to the same chain. This number has been found not to increase

with time, and represents typically an amount of 5 percents of the total number of entanglements,

which is reasonable.
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We now apply this extension of Likhtman’s model to the modeling of a filled entangled poly-

mer melt. In the following, we consider nf = 8 fillers distributed on a simple cubic lattice, with

periodic boundary conditions. These fillers are modeled as fixed hard spheres with a radius σf .

The filler-monomer interaction is taken to be repulsive:

~F
(i,n,j)
fil = F i,n,j

fil

~ri(n)− ~r j
f

∥

∥~ri(n)− ~r j
f

∥

∥

(31)

with F i,n,j
fil =











48kBTb12

(‖~ri(n)−~r
j

f ‖ −σf )13
if
∥

∥~ri(n)− ~r j
f

∥

∥ > σf

Fmax if
∥

∥~ri(n)− ~r j
f

∥

∥ ≤ σf

where ~Ffil(‖~ri‖ , n, j) is the force felt by the ith monomer of the nth chain due to the jth filler,

~ri(n) represents the position of the ith monomer on the chain n and ~r j
f is the center of mass of

the filler particle j. The modulus of the force Ffill is bounded by a maximal force Fmax to avoid

very large forces, a situation encountered if a monomer is at a given time in the vicinity of a

filler center of mass. We have taken typically Fmax = 100kBT/b for all the simulations. The

additional repulsive force due to the presence of the fillers is simply added as an external force in

the Langevin equations of motion of the monomers (Eq. (5)). The steady monomer density profiles

around a filler is represented in figure (23), for different values of the filler volume fraction. The

volume fraction has been changed by tuning the volume of the system, keeping the number of

fillers constant. As a result of the filler repulsive interaction, the monomers are nearly totally

excluded from an effective sphere of radius σeff = σf + b around the center of mass of the filler.

The different density profiles beyond this exclusion zone result from the competition between the

repulsive interaction between the monomers and the surface, the entropy of the chains and the

compressibility of the polymer melt.

The viscosity of the nanocomposite model can be computed using equilibrium simulations and the

Green-Kubo expression involving the integration of the stress stress correlation function:

G(t) =
V

kBT

1

3
<

2
∑

α=1

3
∑

β>α

(

(

σRouse
αβ (t) + σfillers

αβ (t)
)

σT
αβ(0)

)

> (32)

where σfillers
αβ is the instantaneous shear stress due to the filler-monomer interactions defined by

σfillers
αβ = − 1

V

nf
∑

j=1

Np
∑

nc=1

(

Nm
∑

i=1

αi(nc)F
(i,nc,j)
fil (β)− ~rjf (α)

Nm
∑

i=1

F
(i,nc,j)
fil (β)

)

(33)
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where nf , Np and Nm are respectively the number of fillers, chains and monomers in the system of

volume V . αi(nc) is the α coordinate vector of monomer i of chain nc. ~r
j
f (α) is the α component

of the position vector of filler j and F (i,nc,j)
fil (β) is the β component of the force felt by monomer i

of chain nc due to filler j. Finally,

σT
αβ = σRouse

αβ + σSL
αβ + σfillers

αβ (34)

denotes the total stress tensor, including the contribution of the Rouse forces, and the forces due

to the slip-links and the fillers.

Also, the filler volume fraction is defined here in terms of the effective radius σeff , rather than

using the bare value σf : the number of polymer chains in the system is:

Np =
4nf

3Nm

πσ3
effρ0

(1

φ
− 1
)

(35)

The key parameters and their values retained to model the polymer nanocomposite are summarized

in table (V).

In Fig. (24), we show the evolution of the viscosity as a function of the filler volume fraction

between φ = 10% and φ = 30%. As shown in this figure, the viscosity is well described by the

expression η = η0(1 +
5
2
φ+ βφ2), classically used to describe the viscosity of dense suspensions.

The fitting parameters are the viscosity η0 and the coefficient β, which take the values η0 = 889±

33kBT/b
3τ0 and β = 2.9±1.2. This Einstein like increase of the viscosity is maybe not surprising

for a well dispersed filler suspension, in the absence of additional entanglements between the fillers

and the polymer matrix. It shows however that slip links models à la Likhtman may be extended

to model the rheology of polymer nanocomposites at a relatively low cost. Investigation of the

dispersion state of filler particles, or of additional entanglements with polymer chains grafted on

the filler is possible and will be reported in further publications.
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temperature kB T = 1

monomer size b = 1

mean density of the polymer melt ρ0 = 5.98

dimensionless bulk modulus κ0 = 50/Nm

filler volume fraction φ ∈ [10% ; 30%]

effectif radius of fillers σeff = Rg + b ≈ 2.31

friction coefficient of the entropic springs ξ = 1

friction coefficient of the slip-links ξS = 0.1 ξ

number of fillers nf = 8

number of monomers per chain Nm = 32

number of Kuhn’s segments between slip-links Ne = 4

number of slip-links per chain Z = Nm

Ne
= 8

stiffness of the slip-links 3kBT
Nsb2

with Ns = 0.5

characteristic time τ0 =
ξ b2

3π2 kB T

TABLE II. Main parameters that define the slip link model applied to a nanocomposite. We have

also indicated the values of the parameters used in this work.
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VI. SUMMARY

The slip link model studied in this manuscript has a number of attractive features that make it well

suited for investigating the mechanical and rheological properties of complex polymer systems,

at a level of coarse graining and over time scales that are far greater than those usually studied

in molecular dynamics simulations. Specifically, the linear rheology properties are close to those

predicted by the reptation model of Doi and Edwards, but a greater flexibility is possible through

the independent variation of the various model parameters. This was already demonstrated in

the work of Likhtman, who showed the ability of the model to reproduce the linear rheology

and spin echo data on a number of different polymer melts. The nonlinear rheology properties

appear to be quite ’typical’ of what is observed in entangled polymer melts. It also appears that

these properties are maintained when introducing excluded volume (or more generally, specific

interactions between different monomers) in a mean field manner, in the spirit of what has been

achieved at a smaller level of coarse graining [26]. The flexibility of slip-links models paves the

ways to model nanocomposites, which display a hierarchy of length and times scales which makes

the direct use of molecular dynamics simulations prohibitive. Here, we have concentrated on an

idealized situation where the fillers are well dispersed, with a simple hardcore interaction between

the fillers and the polymer matrix. Addressing real situations where the fillers are poorly dispersed

and partially aggregated is clearly possible within the same framework. Also, slip-links models

offer the opportunity to tune the polymer/filler interaction, and introduce glass transition effects

through the monomer friction coefficient. This will be the object of future investigations.

VII. COMMENT

During the submission process, we became aware of two very recent articles [30, 31], where the

non-linear rheology of a similar slip-link model (with a slightly different implementation) has been

investigated. The shear-thinning exponents for the viscosity and normal stress differences have

been found to be close to our present findings [32], which indicates that they are quite independent

from the specific scheme used for the slip link implementation.
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FIG. 2. Stress relaxation modulus as a function of time for different chain lengths Nm. Ne = 4 and
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FIG. 3. Stress relaxation modulus as a function of time for different values of the mean number of monomers

between slip links Ne. Other parameters are Nm = 64 and Ns = 0.5.
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FIG. 4. Stress relaxation modulus as a function of time for different slip link stiffness Ns. Nm = 64 and

Ne = 4.
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FIG. 5. Fitting procedure to obtain the reptation parameters G
(0)
N and τd from the stress relaxation modulus.

The black curve is the simulated relaxation modulus for Nm = 64, Ne = 1 and Ns = 0.5. The red curve is

the best fit of G(t) using the reptation model eqs. (17) and (18).
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Ne, for two chain lengths: Nm = 64 and Nm = 128. The parameter Ns = 0.5 is fixed. For Nm = 64, we

observe G
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N ∼ N−0.56

e , while for Nm = 128, G
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FIG. 9. Relaxation time τd/τ0 as a function of Ns. For Nm = 64, Ne = 4 we observe τd/τ0 ∼ N−0.52
s while

for Nm = 128 and Ne = 8, τd/τ0 ∼ N−0.56
s .
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FIG. 10. Shear stress as a function of time under steady shear flow at several shear rates. The mpa-

rameters are: Nm = 64, Ne = 4 and Ns = 0.5. From top to bottom, the shear rates are γ̇τ0 =

10−2, 8 10−3, 4 10−3, 10−3, 7 10−4, 5 10−4, 3 10−4, 10−4, 7 10−5, 5 10−5, 3 10−5, 10−5.
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FIG. 11. Time corresponding to the maximum of the stress overshoot (see FIG. 10) as a function of the

shear rate. The exponent is not sensitive to the definition of the shear stress (σRouse
xy or σRouse

xy + σSL
xy ).

Parameters : Nm = 64, Ne = 4, Ns = 0.5.
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FIG. 12. Evolution of the shear plateau as a function of shear rate for Rouse chains of lengths Nm = 128

(◦); Nm = 64 (�) and FENE chains having length Nm = 64 (△). Solid lines are guides to the eye. The

other parameters are: Ne = 4 and Ns = 0.5
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FIG. 13. Viscosity extracted from fig. 12 for Rouse chains of lengths Nm = 128 (◦); Nm = 64 (�) and

FENE chains having length Nm = 64 (△). The prediction of the convective constraint release model of

Marrucci [28], η ∼ γ̇ is also shown. Our results correspond to η ∼ γ̇−0.67 with Nm = 64. All the results

have been obtained using the Rouse expression of the shear stress σRouse
xy . The extra contribution of the

slip-links σSL
xy to the shear stress changes the shear thinning exponent from 0.66 to 0.67, in the simulations

with Nm = 64. Same parameters as fig.12.
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FIG. 14. Slip-link distribution along a chain for γ̇τ0 = 10−2 (red) and γ̇τ0 = 10−5 (green). The distribution

is uniform for low γ̇ while it becomes non uniform under the strong shear flow. The model parameters are:

Nm = 64, Ne = 4 and Ns = 0.5.

FIG. 15. Typical configuration of a chain (in the frame of the center of mass) under strong shear flow

conditions. As the slip-links are advected by the flow, they tend to accumulate at the chain extremities,

which explains the non-uniformity observed for large shear rates (see Fig.14).
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FIG. 16. Evolution of the first normal stress difference (N1 = σRouse
xx − σRouse

yy ) as a function of time.

Parameters : Nm = 64, Ne = 4, Ns = 0.5. From top to bottom, the shear rates are equal to γ̇τ0 =

10−2, 8 10−3, 4 10−3, 10−3, 7 10−4, 5 10−4, 3 10−4, 10−4, 7 10−5, 5 10−5, 3 10−5, 10−5.
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FIG. 17. Evolution of the first normal stress coefficient plateau (Ψplateau
1 = N1/(γ̇τ0)

2) as a function of

the shear rate. In red, the shear stress is given by σRouse
xy while in blue the definition is σRouse

xy + σSL
xy . We

have also shown the theoretical scaling predicted by Marrucci [28]: Ψ1 ∼ γ̇−1.5. In our simulations we

obtain Ψ1 ∼ γ̇−1.2. This exponent does not change with the definition of the shear stress. Parameters are:

Nm = 64, Ne = 4, Ns = 0.5.
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FIG. 18. Evolution of the second normal stress coefficient plateau (Ψplateau
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2) as a function

of the shear rate. The scaling law observed experimentally [24], −Ψ2 ∼ γ̇−1.6, is shown for comparison.

Parameters : Nm = 64, Ne = 4, Ns = 0.5.
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FIG. 19. Comparison between the transient viscosities under steady shear flow obtained in the slip-link model

and the experimental curves corresponding to polystyrene with a comparable number of entanglements per

chain Z = 15 (data taken from [24]). The two fitting parameters used here are b = 30.5Å and τ0 = 3×10−5s.

The other slip-link parameters are Ne = 4, Nm = 64 and Ns = 0.5.
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FIG. 20. Comparison between the steady values of Ψ1 and the experimental data of polystyrene having the

same degree of entanglement (from [24]). Same fitting and simulation parameters as in fig.19.
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FIG. 21. Monomer density distribution in cells of length δ = 4.37b for a polymer melt with excluded volume

interaction κ0Nm = 50, ρ0 = 6b−3, and with slip links (Nm = 64, Ne = 4, Ns = 0.5). The black curve

displays the theoretical distribution eq. (30).

33



1 100 10000 1e+06

t/τ
0

0,001

0,01

0,1

1

G(t)  [ ρ
0
k

B
T]

FIG. 22. Stress relaxation modulus against time for a melt of ghost polymer chains with slip links (red

curve) and for a melt of interacting chains. In this latter case, we have compared the result when a monomer

contributes to the density of P 3 = 8 nodes (blue curve) and P 3 = 48 nodes (black curve). See text for further

detail on the density discretization. The parameters are ρ0 = 6b−3, κ0Nm = 50. The other parameters

retained are :Nm = 64, Ne = 4, Ns = 0.5.
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FIG. 23. Monomer density as a function of the distance to the center of the filler for different filler volume

fractions, φ = 10%, φ = 20% and φ = 30%. In blue, we have represented the filler radius σf while the brown

line corresponds to the effective radius σeff = σf +b. We have considered nf = 8 fillers dispersed on a cubic

lattice. The polymer parameters are Nm = 32, κ0Nm = 50, ρ0 = 5.98, Ne = 4 and Ns = 0.5.
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FIG. 24. Viscosity of the model nanocomposite as a function of the filler volume fraction φ. The nf = 8

fillers are distributed on a cubic lattice. The different parameters used are summarized in Tab. (V). We

have also represented the fit obtained from the expression η = η0(1 +
5
2φ+ βφ2) where η0 and β are the two

fitting parameters (η0 = 889± 33 kBT/b
3τ0 and β = 2.9± 1.2).
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