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FABER-KRAHN INEQUALITIES IN SHARP QUANTITATIVE FORM

LORENZO BRASCO, GUIDO DE PHILIPPIS, AND BOZHIDAR VELICHKOV

Abstract. The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first
eigenvalue of the Dirichlet-Laplacian among sets with given volume. In this paper we prove a
sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and
Bhattacharya-Weitsman. More generally, the result applies to every optimal Poincaré-Sobolev
constant for the embeddings W 1,2

0 (Ω) →֒ Lq(Ω).

1. Introduction

1.1. Background. Let Ω ⊂ R
N be an open set with finite measure, we denote by W 1,2

0 (Ω) the
closure of C∞

0 (Ω) in the norm

‖u‖
W 1,2

0
(Ω)

=

(∫

Ω
|∇u|2 dx

)1/2

.

The first eigenvalue of the Dirichlet-Laplacian of Ω is defined by

λ(Ω) = min
u∈W 1,2

0
(Ω)

{∫

Ω
|∇u|2 dx : ‖u‖L2(Ω) = 1

}
.

The quantity λ(Ω) is also called principal frequency of the set Ω. If we denote by ∆ the usual Laplace
operator, λ(Ω) coincides with the smallest real number λ for which the Helmholtz equation

−∆u = λu in Ω, u = 0, on ∂Ω,

admits non-trivial solutions.
A classical optimization problem connected with λ is the following one: among sets with given

volume, find the one which minimizes the principal frequency λ. Actually, balls are the (only)
solutions to this problem. As λ has the dimensions of a length to the power −2, this “isoperimetric”
property can be equivalently rewritten as

(1.1) |Ω|2/N λ(Ω) ≥ |B|2/N λ(B),

where B denotes a generic N−dimensional ball and | · | stands for the N−dimensional Lebesgue
measure of a set. Moreover, equality holds in (1.1) if and only if Ω is a ball. The estimate (1.1)
is the celebrated Faber-Krahn inequality. We recall that the usual proof of this inequality relies on
the so-called Schwarz symmetrization (see [24, Chapter 2]). The latter consists in associating to

each positive function u ∈W 1,2
0 (Ω) a radially symmetric decreasing function u∗ ∈W 1,2

0 (BΩ), where
BΩ is the ball centered at the origin such that |BΩ| = |Ω|. The function u∗ is equimeasurable with
u, that is

|{x : u(x) > t}| = |{x : u∗(x) > t}|, for every t ≥ 0,

so that in particular every Lq norm of the function u is preserved. More interestingly, one has the
well-known Pólya-Szegő principle

(1.2)

∫

BΩ

|∇u∗|2 dx ≤
∫

Ω
|∇u|2 dx,
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2 BRASCO, DE PHILIPPIS, AND VELICHKOV

from which the Faber-Krahn inequality easily follows.

The fact that balls can be characterized as the only sets for which equality holds in (1.1), naturally
leads to consider the question of its stability. More precisely, one would like to improve (1.1), by
adding in its right-hand side a reminder term measuring the deviation of a set Ω from spherical
symmetry. A typical quantitative Faber-Krahn inequality then reads as follows

(1.3) |Ω|2/N λ(Ω)− |B|2/N λ(B) ≥ g(d(Ω)),

where g is a modulus of continuity and Ω 7→ d(Ω) is some scaling invariant asymmetry functional.
The quest for quantitative versions like (1.3) is not new and has attracted an increasing interest
in the last years. To the best of our knowledge, the first ones to prove partial results in this
direction have been Hansen and Nadirashvili in [23] and Melas in [30]. Both papers treat the case
of simply connected sets in dimension N = 2 or the case of convex sets in general dimensions.
These pioneering results prove inequalities like (1.3), with a modulus of continuity (typically a
power function) depending on the dimension N and with the following asymmetry functionals1

d1(Ω) = 1− rΩ
rBΩ

, where
rΩ = inradius of Ω,
rBΩ

= radius of the ball BΩ,

like in [23], or

d2(Ω) = min

{
max{|Ω \B1|, |B2 \ Ω|}

|Ω| : B1 ⊂ Ω ⊂ B2 balls

}
,

as in [30]. It is easy to see that for general sets an estimate like (1.3) with the previous asymmetry
functionals can not be true (just think of a ball with a small hole at the center). In the general
case, a better notion of asymmetry is the so called Fraenkel asymmetry, defined as

(1.4) A(Ω) = inf

{ |Ω∆B|
|B| : B ball such that |B| = |Ω|

}
,

where the symbol ∆ now stands for the symmetric difference between sets. For such an asymmetry
functional, Bhattacharya and Weitsman [7] and Nadirashvili [32] indipendently conjectured the
following.

Conjecture. There exists a dimensional constant σ > 0 such that

(1.5) |Ω|2/N λ(Ω)− |B|2/N λ(B) ≥ σA(Ω)2.

In this paper we provide a positive answer to the above conjecture.

Let us notice that the previous result is sharp, since the power 2 on the asymmetry can not be
replaced by any smaller power. Indeed one can verify that the family of ellipsoids

Ωε =
{
(x′, xN ) ∈ R

N : |x′|2 + (1 + ε)x2N ≤ 1
}
, 0 < ε≪ 1,

are such that
A(Ωε) ≃ ε and |Ωε|2/N λ(Ωε)− |B|2/N λ(B) ≃ ε2.

We mention that the following weaker version of (1.5) was already known,

|Ω|2/N λ(Ω)− |B|2/N λ(B) ≥ σ

{
A(Ω)3, N = 2,

A(Ω)4, N ≥ 3,

obtained by Bhattacharya [6] (for the case N = 2) and more recently by Fusco, Maggi and Pratelli
in [21] for the general case. For ease of completeness, we also mention [34] and [36] for similar
partial results and some probabilistic applications.

1In the paper [30], the quantitative result is stated in a slighlty different form, but it is not difficult to see that it
can be written as in (1.3), by using the functional d2(Ω).
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1.2. The result of this paper. Actually, we are going to prove a slightly more general version of
(1.5). To state our result, let us consider the following optimal Poincaré-Sobolev constants for the

embedding W
1/2
0 (Ω) →֒ Lq(Ω)

(1.6) λ2,q(Ω) = min
u∈W 1,2

0
(Ω)

{∫

Ω
|∇u|2 dx : ‖u‖Lq(Ω) = 1

}
,

where the exponent q satisfies

(1.7) 1 ≤ q < 2∗ :=





2N

N − 2
, if N ≥ 3,

+∞, if N = 2.

Of course, when q = 2 we are back to the principal frequency mentioned at the beginning. We also
point out that for q = 1, the quantity 1/λ2,1(Ω) is usually referred to as the torsional rigidity of
the set Ω. Observe that the shape functional Ω 7→ λ2,q(Ω) verifies the scaling law

λ2,q(tΩ) = t
N−2− 2

q
N
λ2,q(Ω),

the exponent N − 2− 2/q N being negative. In particular, the quantity

|Ω|
2

N
+ 2

q
−1
λ2,q(Ω),

is scaling invariant. Still by means of Schwarz symmetrization, the following general family of
Faber-Krahn inequalities can be derived

(1.8) |Ω|
2

N
+ 2

q
−1
λ2,q(Ω) ≥ |B|

2

N
+ 2

q
−1
λ2,q(B),

where B is any N−dimensional ball. Again, equality in (1.8) is possible if and only if Ω is a ball.
The main result of the paper is the following sharp quantitative improvement of (1.8).

Main Theorem. Let q be an exponent verifying (1.7). There exists a constant σ2,q, depending

only on the dimension N and q, such that for every open set Ω ⊂ R
N with finite measure we have

(1.9) |Ω|
2

N
+ 2

q
−1
λ2,q(Ω)− |B|

2

N
+ 2

q
−1
λ2,q(B) ≥ σ2,q A(Ω)2.

As already mentioned, by choosing q = 2 we obtain a proof of the Bhattacharya-Weitsman and
Nadirashvili Conjecture.

We also remark that, as explained in [11, Remark 3.6], the above Theorem allows to improve the
exponent in the quantitative stability inequality for the second Dirichlet eigenvalue of the Laplacian
proved in [11, Theorem 3.5].

1.3. Strategy of the proof. We start recalling the usual strategy used to derive quantitative
versions of Faber-Krahn inequalities. As the proof of (1.8) is based on the Pólya-Szegő principle
(1.2), the central core of all the already exhisting stability results is represented by Talenti’s proof
of (1.2) (see [38]). This combines the Coarea Formula, the convexity of the function t 7→ t2 and
the standard Isoperimetric Inequality

(1.10) |Ω| 1−N
N P (Ω) ≥ |B| 1−N

N P (B),

applied to the superlevel sets of a function u achieving λ2,q(Ω), where P (·) denotes the perimeter
of a set. The main idea of the papers [6, 21, 23] and [30] is that of substituting the classical
isoperimetric statement (1.10) with an improved quantitative version. For simply connected sets in
dimension N = 2 or for convex sets one can appeal to the so called Bonnesen inequalities (see [33]),
like in [6, 23, 30]. More generally, one can apply the striking recent result of [20], proving a sharp
quantitative version of (1.10) valid for every set and every dimension. Then the main difficulty is
that of estimating the “propagation of asymmetry” from the superlevel sets of the optimal function
u to the whole domain Ω. This is a very delicate step, which usually results in a (non sharp)



4 BRASCO, DE PHILIPPIS, AND VELICHKOV

estimate like the ones recalled above. It is worth mentioning the recent paper [5] for some recent
developments on quantitative versions of the Pólya-Szegő principle.

In this paper on the contrary, we use a different strategy. Indeed, the proof of our Main Theorem
is based on the selection principle introduced by Cicalese and Leonardi in [15] to give a new proof
of the previously recalled quantitative isoperimetric inequality of [20].

The selection principle turns out to be a very flexible technique and after the paper [15] it has
been applied to a wide variety of geometric problems, see for instance [1, 8] and [17]. Up to now
however it has been used only for problems where the main term is given, roughly speaking, by the
perimeter of Ω. As we will explain below, this is due to the fact the selection principle highly relies
on the regularity theory for sets minimizing some (perturbed) shape functional. If the dominating
term of the functional is given by a area-type term, then well developed techniques in Geometric
Measure Theory ensure the desired regularity.

Let us now explain the main ideas behind our proof. First by an application of the Kohler-Jobin

inequality ([28]) we will show in Section 2 that (1.9) is implied by the following inequality

(1.11) E(Ω)− E(B1) ≥ σA(Ω)2, for every Ω such that |Ω| = |B1|,
where σ is a dimensional constant and B1 is the ball of radius 1 and centered at the origin. Here
E(Ω) is the energy functional of Ω,

(1.12) E(Ω) = min
u∈W 1,2

0
(Ω)

1

2

∫

Ω
|∇u|2 dx−

∫

Ω
u dx =

1

2

∫

Ω
|∇uΩ|2 dx−

∫

Ω
uΩ dx,

where uΩ ∈W 1,2
0 (Ω) is the (unique) function achieving the above minimum.

Suppose now by contradiction that (1.11) is false. Since it is pretty easy to see that (1.11)
can only fail in the small asymmetry regime (i.e. on sets converging in L1 to the ball), we find a
sequence of sets Ωj such that

(1.13) |Ωj | = |B1|, εj := A(Ωj) → 0 and E(Ωj)− E(B1) ≤ σA(Ωj)
2,

with σ as small as we wish. We now look for an “improved” sequence of sets Uj , still contradicting
(1.11) and enjoying some additional smoothness properties. In the spirit of Ekeland’s variation
principle, these sets will be selected through some minimization problem. Roughly speaking we
look for sets Uj which solve the following

(1.14) min
{
E(Ω) +

√
ε2j + σ(A(Ω)− εj)2 : |Ω| = |B1|

}
.

One can easily show that the sequence Uj still contradict (1.11) and that A(Uj) → 0 (see Lemma
4.7). Relying on the minimality of Uj , one then would like to show that the L1 convergence to B1

can be improved to a smooth convergence. If this is the case, then the second order expansion of
E(Ω) for smooth nearly spherical sets done in Section 3 shows that (1.13) cannot hold true if σ is
sufficiently small.

The key point is thus to prove (uniform) regularity estimates for sets solving (1.14). For this,
first one would like to get rid of volume constraints applying some sort of Lagrange multiplier
principle to show that Uj minimizes

(1.15) E(Ω) +
√
ε2j + σ(A(Ω)− εj)2 + Λ |Ω|.

Then, taking advantage of the fact that we are considering a “min–min” problem, the previous is
equivalent to require that uj = uUj minimizes

1

2

∫

RN

|∇v|2 dx−
∫

RN

v dx+ Λ
∣∣{v > 0}

∣∣+
√
ε2j + σ(A({v > 0})− εj)2,(1.16)
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among all functions with compact support. Since we are now facing a perturbed free boundary
type problem, we aim to apply the techniques of Alt and Caffarelli [3] (see also [12, 13]) to show
the regularity of ∂Uj = ∂{uj > 0} and to obtain the smooth convergence of Uj to B1.

Even if this will be the general strategy, several non-trivial modifications have to be done to
the above sketched proof. First of all, although solutions to (1.16) enjoy some mild regularity
property, we cannot expect ∂{uj > 0} to be smooth. Indeed, by formally computing the optimality
condition2 of (1.16) and assuming that B1 is the unique optimal ball for {uj > 0} in (1.4), one gets
that uj should satisfy

∣∣∣∣
∂uj
∂ν

∣∣∣∣
2

= Λ+
σ(A({uj > 0})− εj)√

ε2j + σ(A({uj > 0})− εj)2

(
1
RN\B1

− 1B1

)
, on ∂{uj > 0},

where 1A denotes the characteristic function of a set A and ν is the outer normal versor. This
means that the normal derivative of uj is discontinuous at points where Uj = {uj > 0} crosses ∂B1.

Since classical elliptic regularity implies that if ∂Uj is C1,γ then uj ∈ C1,γ(Uj), it is clear that the
sets Uj can not enjoy too much smoothness properties.

To overcome this difficulty, inspired by [4], we replace the Fraenkel asymmetry with a new
“distance” between a set Ω and the set of balls, which behaves like a squared L2 distance between
the boundaries (see Definition 4.1). In particular it dominates the square of the Fraenkel asymmetry
(see Lemma 4.2) and it is differentiable with respect to the variations needed to compute the
optimality conditions (see Lemma 4.15).

A second technical difficulty is that no global Lagrange multiplier principle is available. Indeed,
since the energy E is negative and

E(tΩ) = t−N−2E(Ω) and |tΩ| = tN |Ω|, t > 0,

by a simple scaling argument one sees that the infimum of (1.15) is identically −∞. Reducing to a
priori bounded set and following [2], we can however replace the term Λ |Ω| with a term of the form
f(|Ω|), for a suitable strictly increasing function vanishing when |Ω| = |B1|, see Lemma 4.5 below.
At this point we are able to perform the strategy described above to obtain (1.11) for uniformly
bounded sets Ω, with a constant σ depending on diam(Ω).

In Section 5 we will finally show how to pass from bounded to general sets. For this last step,
we will take advantage of the non-optimal quantitative stability inequality proved in [21].

2. First step: reduction to the energy functional

For every Ω ⊂ R
N open set with finite measure, the energy functional is defined as

(2.1) E(Ω) = min
u∈W 1,2

0
(Ω)

1

2

∫

Ω
|∇u|2 dx−

∫

Ω
u dx.

The function uΩ achieving the above minimum is unique and will be called energy function of Ω,
and it satisfies

(2.2) −∆uΩ = 1 in Ω, uΩ = 0, on ∂Ω,

in weak sense. Multiplying the above equation by uΩ and integrating by parts one sees that

(2.3) E(Ω) = −1

2

∫

Ω
|∇uΩ|2 dx = −1

2

∫

Ω
uΩ dx.

2That is differentiating the functional along perturbation of the form vt = uj ◦ (Id + tV ) where V is a smooth
vector field, see Appendix A and Lemma 4.15 below.
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By means of an easy homogeneity argument, we have

(2.4) E(Ω) = −1

2
max

u∈W 1,2
0

(Ω)

{(∫

Ω
u dx

)2

: ‖∇u‖L2(Ω) = 1

}
= −1

2

1

λ2,1(Ω)
.

In other words E(Ω) coincides with the opposite of the torsional rigidity of Ω (up to the multiplica-
tive factor 1/2). In particular we should pay attention to the fact that E(Ω) is always a negative

quantity. Then the Faber-Krahn inequality (1.8) for q = 1 can now be rewritten

(2.5) E(Ω) |Ω|−N+2

N ≥ E(B) |B|−N+2

N ,

where B is any ball and equality can hold if and only if Ω itself is a ball. Sometimes we will refer
to this inequality as the Saint-Venant inequality.

The quantity λ2,q defined in (1.6) and the energy functional are linked by the following “isoperi-
metric” inequality, due to Marie-Thérèse Kohler-Jobin ([27, Theorem 3] and [28, Théorème 1]), see
also [9] for some recent generalizations of this inequality.

Kohler-Jobin inequality. Let q > 1 be an exponent verifying (1.7). For every Ω ⊂ R
N open set

with finite measure, we have

(2.6) λ2,q(Ω) (−E(Ω))ϑ ≥ λ2,q(B) (−E(B))ϑ, with ϑ(q,N) =

(
1

q
− N − 2

2N

)
2N

N + 2
,

where B is any ball. Equality holds in (2.6) if and only if Ω itself is a ball.

The next result shows that quantitative estimates for the energy functional E, automatically
translate into estimates for the Faber-Krahn inequality.

Proposition 2.1. Let q > 1 be an exponent verifying (1.7). Suppose that there exists a constant

σE > 0 such that

(2.7) E(Ω) |Ω|−N+2

N − E(B) |B|−N+2

N ≥ σE A(Ω)2,

for every open set Ω ⊂ R
N with finite measure. Then we also have

|Ω|
2

N
+ 2

q
−1
λ2,q(Ω)− |B|

2

N
+ 2

q
−1
λ2,q(B) ≥ σ2,q A(Ω)2,

for some constant σ2,q > 0 depending only on σE and q.

Proof. Without loss of generality, let us suppose that |Ω| = 1 and let B be a ball having unit
measure. By (2.6) one obtains

(2.8)
λ2,q(Ω)

λ2,q(B)
− 1 ≥

(
E(B)

E(Ω)

)ϑ

− 1.

By concavity, for every 0 < ϑ ≤ 1 we have

tϑ − 1 ≥ (2ϑ − 1) (t− 1), t ∈ [1, 2].

From (2.8) we can easily infer that if −E(B) ≤ −2E(Ω), then

λ2,q(Ω)

λ2,q(B)
− 1 ≥ cϑ

(
E(B)

E(Ω)
− 1

)
≥ cϑ σE

−E(B)
A(Ω)2,

where in the last inequality we used that −E(Ω) ≤ −E(B) by (2.5). On the other hand, if
−E(B) > −2E(Ω), still by (2.8)

λ2,q(Ω)

λ2,q(B)
− 1 ≥ 2ϑ − 1 ≥ 2ϑ − 1

4
A(Ω)2,

since A(Ω) < 2. �
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Remark 2.2. It is well-known that for N ≥ 3 we have

lim
q→2∗

λ2,q(Ω) = inf

{∫

RN

|∇u|2 dx : u ∈W 1,2
0 (Ω), ‖u‖L2∗ (RN ) = 1

}
,

and the latter is the best costant in the Sobolev inequality, a quantity which does not depend on
the set Ω. Clearly this implies that the constant σ2,q in (1.9) must converge to 0 as q goes to 2∗.
A closer inspection of the proof of Proposition 2.1 shows that

σ2,q ≃ 2ϑ(q,N) − 1 ≃ (2∗ − q),

as q goes to 2∗. The conformal case N = 2 is a little bit different. In this case we have (see [35,
Lemma 2.2])

lim
q→+∞

λ2,q(Ω) = 0 and lim
q→+∞

q λ2,q(Ω) = 8π e,

for every set Ω. The asymptotic behaviour of the constant σ2,q is then given by

σ2,q ≃ (2ϑ(q,2) − 1)λ2,q(B) ≃ 8π e

q2
,

as q goes to +∞.

3. Second step: sharp stability for nearly spherical sets

In this section we show the validity of a stronger form of (1.11) for sets smoothly close to the
ball B1 of unit radius and centered at the origin. We start with two definitions.

Definition 3.1. An open bounded set Ω ⊂ R
N is said nearly spherical of class C2,γ parametrized

by ϕ, if there exists ϕ ∈ C2,γ(∂B1) with ‖ϕ‖L∞ ≤ 1/2, such that ∂Ω is represented by

∂Ω = {x ∈ R
N : x = (1 + ϕ(y)) y, for y ∈ ∂B1}.

Definition 3.2. Given a function ϕ : ∂B1 → R we define

‖ϕ‖2
H1/2(∂B1)

:=

∫

∂B1

ϕ2 dHN−1 +

∫

B1

|∇H(ϕ)|2 dx,

where H(ϕ) is the W 1,2 harmonic extension of ϕ, i.e.

∆H(ϕ) = 0 in B1, H(ϕ) = ϕ on ∂B1.

It can be easily proved that the above norm is equivalent to the classical H1/2 norm and that
H1/2(∂B1) is a Hilbert space with this norm. Moreover, thanks to the following Poincaré-Wirtinger
trace inequality (see for instance [10, Section 4])

∫

∂B1

∣∣∣∣w −
∫

∂B1

w

∣∣∣∣
2

dHN−1 ≤
∫

B1

|∇w|2 dx, w ∈W 1,2(B1),

we have

(3.1) ‖∇H(ϕ)‖L2(B1) ≤ ‖ϕ‖H1/2(∂B1)
≤

√
2 ‖∇H(ϕ)‖L2(B1), for every ϕ s. t.

∫

∂B1

ϕ = 0.

The main result of this section is then the following, where we denote by

(3.2) xΩ =
1

|Ω|

∫

Ω
x dx,

the barycenter of Ω.
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Theorem 3.3. Let 0 < γ ≤ 1. Then there exists δ1 = δ1(N, γ) such that if Ω is a nearly spherical

set of class C2,γ parametrized by ϕ with

‖ϕ‖C2,γ ≤ δ1, |Ω| = |B1| and xΩ = 0,

then

(3.3) E(Ω)− E(B1) ≥
1

32N2
‖ϕ‖2H1/2(∂B1)

.

The proof of the above Theorem is based on the following Lemma, which is due to Dambrine,
see [16, Theorem 1]. For the sake of completeness we give a sketch of its proof in Appendix A at
the end of the paper.

Lemma 3.4. Let 0 < γ ≤ 1, there exist a modulus of continuity ω and a constant δ2 = δ2(N, γ),
such that, for every C2,γ nearly spherical set Ω parametrized by ϕ with ‖ϕ‖C2,γ ≤ δ2 and |Ω| = |B1|,
we have

(3.4) E(Ω) ≥ E(B1) +
1

2
∂2E(B1)[ϕ,ϕ]− ω

(
‖ϕ‖C2,γ

)
‖ϕ‖2

H1/2(∂B1)
,

where, for every ϕ ∈ H1/2(∂B1) we set

(3.5) ∂2E(B1)[ϕ,ϕ] :=
1

N2

(∫

B1

|∇H(ϕ)|2 dx−
∫

∂B1

ϕ2 dHN−1
)
.

By using this result, we can now prove Theorem 3.3.

Proof of Theorem 3.3. By assumption

|Ω| =
∫

∂B1

(1 + ϕ)N

N
dHN−1 = |B1| and xΩ =

∫

∂B1

y
(1 + ϕ)N+1

N + 1
dHN−1 = 0.

Thanks to the smallness assumption on ϕ we get

(3.6)

∣∣∣∣
∫

∂B1

ϕdHN−1

∣∣∣∣ =
∣∣∣∣∣

N∑

h=2

(
N

h

)∫

∂B1

ϕh

N
dHN−1

∣∣∣∣∣ ≤ C

∫

∂B1

ϕ2 dHN−1 ≤ C δ1 ‖ϕ‖H1/2(∂B1)
,

and

(3.7)

∣∣∣∣
∫

∂B1

yi ϕdHN−1

∣∣∣∣ ≤
N∑

h=2

(
N

h

)∫

∂B1

∣∣∣∣
ϕh

N + 1

∣∣∣∣ dHN−1 ≤ C δ1 ‖ϕ‖H1/2(∂B1)
,

where C = C(N) is a dimensional constant. Thus we obtain that ϕ belongs to MCδ1 , where we
define

Mδ :=

{
ξ ∈ H1/2(∂B1) :

∣∣∣∣
∫

∂B1

ξ dHN−1

∣∣∣∣+
∣∣∣∣
∫

∂B1

x ξ dHN−1

∣∣∣∣ ≤ δ ‖ξ‖H1/2(∂B1)

}
.

By Lemma 3.4, if δ1 ≤ δ2 we can infer

(3.8) E(Ω) ≥ E(B1) +
1

2
∂2E(B1)[ϕ,ϕ]− ω

(
‖ϕ‖C2,γ

)
‖ϕ‖2

H1/2(∂B1)
.

We now claim the following: there exists δ̂ = δ̂(N) > 0 such that if δ ≤ δ̂ then

(3.9) ∂2E(B1)[ξ, ξ] ≥
1

8N2
‖ξ‖2

H1/2(∂B1)
, for every ξ ∈ Mδ.

By choosing δ1 ≪ min{δ̂, δ2} sufficiently small it is clear that (3.9) together with (3.8) concludes
the proof of (3.3). We are thus left to prove (3.9), which will be done in the two steps below.

•Step 1: Let M0 be

M0 =

{
ξ ∈ H1/2(∂B1) :

∫

∂B1

ξ dHN−1 =

∫

∂B1

xi ξ dHN−1 = 0, i = 1, . . . , N

}
,
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then

(3.10) ∂2E(B1)[ξ, ξ] ≥
1

4N2
‖ξ‖2

H1/2(∂B1)
, for every ξ ∈ M0.

To see this, just notice that

min





∫

B1

|∇H(ξ)|2 dx
∫

∂B1

ξ2 dHN−1
: ξ ∈ M0 \ {0}





= 2,

in every dimension N ≥ 2. Indeed the above minimum is the Rayleigh quotient of a Stekloff eigen-
value problem on ∂B1 which has as associated eigenspace the homogeneous harmonic polynomials
of degree 2, see [10, Section 4] and [31]. From this, the definition of ∂2E (3.5) and (3.1) we get

∂2E(B1)[ξ, ξ] ≥
1

2N2

∫

B1

∣∣∇H(ξ)
∣∣2 dx ≥ 1

4N2
‖ξ‖2

H1/2(∂B1)
for every ξ ∈ M0,

which is (3.10).

•Step 2: For every ξ in Mδ let us consider its L2 projection on M⊥
0 , given by

Π(ξ) = a0 Y0 +

N∑

i=1

a1,i Y1,i,

where

Y0 =

√
1

N |B1|
Y1,i(x) =

√
1

|B1|
xi, x ∈ ∂B1, i = 1, . . . , N.

and

a0 =

∫

∂B1

ξ Y0 dHN−1 a1,i =

∫

∂B1

ξ Y1,i dHN−1, i = 1, . . . , N.

It is immediate to check that ξ −Π(ξ) ∈ M0. Moreover by Green formula

(3.11) ‖ξ −Π(ξ)‖2
H1/2(∂B1)

= ‖ξ‖2
H1/2(∂B1)

− ‖Π(ξ)‖2
H1/2(∂B1)

,

and, by the definition of Mδ,

(3.12) ‖Π(ξ)‖2
H1/2(∂B1)

= a20 + 2
N∑

i=1

a21,i ≤ C δ2 ‖ξ‖2
H1/2(∂B1)

.

By bilinearity and Step 1, we have

∂2E[ξ, ξ] = ∂2E[ξ −Π(ξ), ξ −Π(ξ)] + 2 ∂2E[ξ,Π(ξ)]− ∂2E[Π(ξ),Π(ξ)]

≥ 1

4N2
‖ξ −Π(ξ)‖2

H1/2(∂B1)
− 2‖ξ‖H1/2(∂B1)

‖Π(ξ)‖H1/2(∂B1)
− ‖Π(ξ)‖2

H1/2(∂B1)
,

(3.13)

where we have used the trivial estimate
∣∣∂2E(B1)[ξ1, ξ2]

∣∣ ≤ ‖ξ1‖H1/2(∂B1)
‖ξ2‖H1/2(∂B1)

for every ξ1, ξ2 ∈ H1/2(∂B1).

Equation (3.13), together with (3.11) and (3.12), gives

∂2E[ξ, ξ] ≥ 1

4N2
‖ξ‖2

H1/2(∂B1)
− C δ ‖ξ‖2

H1/2(∂B1)
,

from which (3.9) follows, choosing δ̂ small enough. �
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4. Third step: stability for bounded sets with small asymmetry

Throughout the rest of the paper we will denote by BR(x0) the ball

BR(x0) = {x ∈ R
N : |x− x0| < R}.

When x0 coincides with the origin, we will simply use the notation BR.

4.1. Stability via a selection principle. The aim of this section is to prove the validity of the
quantitative Saint-Venant inequality for bounded sets with small asymmetry. For this, we need to
replace the Fraenkel asymmetry A(Ω) with a smoother asymmetry functional, as explained in the
Introduction.

Definition 4.1. Given a bounded set Ω ⊂ R
N , we define

(4.1) α(Ω) =

∫

Ω∆B1(xΩ)

∣∣1− |x− xΩ|
∣∣ dx,

where xΩ is the barycenter of Ω introduced in (3.2). Notice that α(Ω) = 0 if and only if Ω is a ball
of radius 1, moreover we can write

(4.2) α(Ω) = βN +

∫

Ω
(|x− xΩ| − 1) dx, where βN =

∫

B1

(
1− |x|

)
dx.

Below we summarize the main properties of α.

Lemma 4.2. Let R ≥ 2, then:

(i) there exists a constant C1 = C1(N) such that for every Ω

C1 α(Ω) ≥ |Ω∆B1(xΩ)|2;
(ii) there exists a constant C2 = C2(R) such that for every Ω1,Ω2 ⊂ BR, we have

|α(Ω1)− α(Ω2)| ≤ C2 |Ω1∆Ω2|;
(iii) there exists two constants δ3 = δ3(N) > 0 and C3 = C3(N) > 0 such that for every nearly

spherical set Ω with ‖ϕ‖L∞ ≤ δ3, we have

α(Ω) ≤ C3 ‖ϕ‖2L2(∂B1)
.

Proof. The proof of (i) can be obtained by a simple rearrangement argument, similar to that used
in the proof of [10, Theorem 2.2]. First of all, we can suppose for simplicity that xΩ = 0, then

(4.3) α(Ω) =

∫

Ω\B1

(|x| − 1) dx+

∫

B1\Ω
(1− |x|) dx.

We then introduce the annular regions

T1 = {x ∈ R
N : 1 < |x| < R1} and T2 = {x ∈ R

N : R2 < |x| < 1},
where the two radii R1 and R2 are such that |T1| = |Ω \B1| and |T2| = |B1 \ Ω|, i.e.

R1 =

(
1 +

|Ω \B1|
|B1|

) 1

N

and R2 =

(
1− |B1 \ Ω|

|B1|

) 1

N

.

By using this and the fact that in (4.3) we are integrating two monotone functions of the modulus,
we get

α(Ω) ≥
∫

T1

(|x| − 1) dx+

∫

T2

(1− |x|) dx

= ωN

[
RN+1

1 − 1

N + 1
− RN

1 − 1

N
+
RN+1

2 − 1

N + 1
− RN

2 − 1

N

]
≥ 1

C1
|Ω∆B1|2.
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In order to prove (ii), we first notice that by using (4.2) and triangular inequality, we get

|α(Ω1)− α(Ω2)| ≤
∣∣∣∣
∫

Ω1

|x− xΩ1
| dx−

∫

Ω2

|x− xΩ2
| dx
∣∣∣∣+ |Ω1∆Ω2|

≤
∫

Ω1∩Ω2

|xΩ1
− xΩ2

| dx+

∫

Ω1\Ω2

|x− xΩ1
| dx

+

∫

Ω2\Ω1

|x− xΩ2
| dx+ |Ω1∆Ω2|.

Finally, by using that

|Ω1 ∩ Ω2| |xΩ1
− xΩ2

| ≤ C(R) |Ω1∆Ω2|,
and that |x− xΩ| ≤ 2R for every x ∈ BR, we can conclude.

We then prove property (iii), for nearly spherical sets. By definition of α(Ω)

α(Ω) =

∫

Ω\B1

(|x| − 1) dx+

∫

B1\Ω
(1− |x|) dx

=

∫

{ϕ≥0}

(1 + ϕ(y))N+1 − 1

N + 1
dHN−1 −

∫

{ϕ≥0}

(1 + ϕ(y))N − 1

N
dHN−1

+

∫

{ϕ<0}

(1 + ϕ(y))N+1 − 1

N + 1
dHN−1 −

∫

{ϕ<0}

(1 + ϕ(y))N − 1

N
dHN−1.

By observing that

(1 + t)N+1 − 1

N + 1
≤ t+

N

2
t2, t ∈ R and

(1 + t)N − 1

N
≥ t+

N − 1

4
t2, |t| ≤ 3

2 (N − 2)
,

we obtain the estimate. �

This is the main result of this section.

Theorem 4.3. For every R ≥ 2, there exist two constants σ̂ = σ̂(N,R) > 0 and ε̂ = ε̂(N,R) > 0
such that

(4.4) E(Ω)− E(B1) ≥ σ̂ α(Ω),

for all sets Ω contained in BR with |Ω| = |B1| and α(Ω) ≤ ε̂.

In order to prove Theorem 4.3, we argue by contradiction. Up to rename σ, we assume that

there exists a sequence of sets Ω̃j ⊂ BR such that

(4.5) |Ω̃j | = |B1|, εj := α(Ω̃j) → 0 while E(Ω̃j)− E(B1) ≤ σ4εj ,

where σ < 1 is a suitably small parameter that will be chosen later3. The key ingredient is given
by the following.

Proposition 4.4 (Selection Principle). Let R ≥ 2 then there exists σ̃ = σ̃(N,R) > 0 such that if

σ ≤ σ̃(N,R) and Ω̃j are as in (4.5), then we can find a sequence of smooth open sets Uj ⊂ BR

satisfying:

(i) |Uj | = |B1|;
(ii) xUj = 0;

(iii) ∂Uj are converging to ∂B1 in Ck for every k;

3We put σ4 just to simplify some of the computations below.
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(iv) there holds

(4.6) lim sup
j→∞

E(Uj)− E(B1)

α(Uj)
≤ C̃ σ,

for some constant C̃ = C̃(N,R).

The proof of the Selection Principle is quite involved and will occupy the rest of the section. By
combining this result and the stability estimate for nearly spherical sets, we can conclude the proof
of Theorem 4.3.

Proof of Theorem 4.3. As above, arguing by contradiction we can exhibit a sequence of sets {Uj}
smoothly converging to the ball B1 and having the properties expressed by Proposition 4.4. In
particular, for j ∈ N large enough each Uj is a nearly spherical set of class C2,γ , satisfying the
hypotheses of Theorem 3.3. The latter, Lemma 4.2 (iii) and Proposition 4.4 (iv) then give

1

32N2C3
≤ lim sup

j→∞

E(Uj)− E(B1)

α(Uj)
≤ C̃ σ.

By choosing σ suitably small, we get the desired contradiction. �

4.2. Proof of the Selection Principle: a penalized minimum problem. In order to prove
Proposition 4.4 above, we would like to use the local regularity theory for free boundary-type
problem. As explained in the Introduction, we need to get rid of the volume constraint |Ω| = |B1|.
To this end we introduce the following function (see [2])

fη(s) =

{
η(s− ωN ) if s ≤ ωN ,

(s− ωN )/η if s ≥ ωN .

Notice that the function fη defined above satisfies the following key property

(4.7) η (s1 − s2) ≤ fη(s1)− fη(s2) ≤
1

η
(s1 − s2),

for every 0 ≤ s2 ≤ s1.

Lemma 4.5. For every R ≥ 2 there exists a η̂ = η̂(R) such that, up to translation, B1 is a

minimizer of

(4.8) Fη̂(Ω) = E(Ω) + fη̂(|Ω|),
among all sets contained in BR. Moreover, there exists a costant C4 = C4(N,R) > 0 such that for

any other ball Br with 0 ≤ r ≤ R, there holds

(4.9) Fη̂(Br)−Fη̂(B1) ≥
|r − 1|
C4

.

Proof. By using the Pólya-Szegő principle (1.2) it is easily seen that among minimizers of Fη there
is a ball of radius r(η) ≤ R. Let us show that we can choose η such that r = 1. To this aim, we
introduce

g(r) = Fη(Br) = rN+2E(B1) + fη(ωNr
N ).

Assume that 1 < r ≤ R, then

g′(r) = rN−1

(
(N + 2) r2E(B1) +

NωN

η

)
≥ rN−1

(
−(N + 2)R2 |E(B1)|+

NωN

η

)
> 0,

if η is small enough. For r ≤ 1 we notice that we can easily choose η ≪ 1 such that

r 7→ g(r), 0 < r ≤ 1,
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admits a minimum in r = 1. Moreover it is easy to see that with the above choice of η there exists
a constant C = C(N,R) such that

lim
r→1−

g′(r) ≤ −1/C lim
r→1+

g′(r) ≥ 1/C,

from which (4.9) follows. �

Up to a translation and a (small) dilation the sets Uj constructed in Proposition 4.4 are given
by the family of minimizers of the following penalized problems

(4.10) min
{
Gη̂,j(Ω) : Ω ⊂ BR

}
.

Here the functionals Gη̂,j are given by

Gη̂,j(Ω) = Fη̂(Ω) +
√
ε2j + σ2(α(Ω)− εj)2.

Following a by now classical approach, in order to find a minimizer to (4.10), we need to extend
the functionals Gη̂,j to the class of quasi-open sets. Referring to [14, Chapter 4] for a complete
account on the theory of these sets, we simply recall here the main facts needed in the sequel.

A Borel set U is said quasi-open if there is a W 1,2(RN ) function u such that

U = {x : ũ(x) > 0},
where ũ is the precise representative of u, uniquely defined outside a set of zero capacity, see [18,
Section 4.8]. Given a quasi-open set U we can define

W 1,2
0 (U) =

{
v ∈W 1,2(RN ) : Capacity

(
{v 6= 0} ∩ (RN \ U)

)
= 0
}
,

which is a strongly closed and convex subset of W 1,2 (hence also weakly closed). Then for a
quasi-open set U its energy is still defined as

(4.11) E(U) = inf
v∈W 1,2

0
(U)

1

2

∫

U
|∇v|2 dx−

∫

U
v dx.

The function uU achieving the above infimum is still called the energy function of U . The following
“minimum principle” is easily seen to holds true

(4.12) U = {x : ũU (x) > 0}.
We are now ready to prove the following.

Lemma 4.6. There exists σ1 = σ1(N,R) > 0 such that if σ ≤ σ1 then the infimum (4.10) is

attained by a quasi-open set Ωj. Moreover the perimeter of Ωj is bounded independently on j.

Proof. Let {Ok}k∈N ⊂ BR be a minimizing sequence satisfying

Gη̂,j(Ok) ≤ inf Gη̂,j +
1

k
, k ∈ N.

Denoting with uk = ũOk
the precise representative of the energy function of Ok, (4.12) yields

(4.13) Ok = {x : uk(x) > 0}.
Let us set tk = 1/

√
k, then we define

Vk = {x : uk(x) > tk}.
Notice that the function vk = (uk − tk)+ is the energy function for Vk. By this and by

Gη̂,j(Ok) ≤ Gη̂,j(Vk) + 1/k,
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we infer

1

2

∫
|∇uk|2 dx−

∫
uk dx+ fη̂(|{uk > 0}|) +

√
ε2j + σ2 (α({uk > 0})− εj)2

≤ 1

2

∫

{uk>tk}
|∇uk|2 dx−

∫

{uk>tk}
(uk − tk)+ dx

+ fη̂(|{uk > tk}|) +
√
ε2j + σ2 (α({uk > tk})− εj)2 +

1

k
.

Using (4.7), the Lipschitz character of the function t 7→
√
ε2j + σ2 (t− εj)2 and Lemma 4.2 (ii) we

obtain

1

2

∫

{0<uk<tk}
|∇uk|2 dx+ η̂ |{0 < uk < tk}| ≤ tk |{uk > 0}|+ σ |α({uk > 0})− α({uk > tk})|+

1

k

≤ tk |{uk > 0}|+ C2 σ |{0 < uk < tk}|+
1

k
.

Choosing σ such that C2 σ ≤ η̂/2 we obtain

1

2

∫

{0<uk<tk}
|∇uk|2 dx+

η̂

2
|{0 < uk < tk}| ≤ |BR| tk +

1

k
.

By co-area formula, Cauchy-Schwarz inequality and recalling that η̂ < 1, we infer

η̂

∫ tk

0
P ({uk > s}) ds = η̂

∫

{0<uk<tk}
|∇uk| dx

≤ η̂

2

∫

{0<uk<tk}
|∇uk|2 dx+

η̂

2
|{0 < uk < tk}|

≤ |BR| tk +
1

k
.

By recalling that tk = 1/
√
k, we can find a level 0 ≤ sk ≤ 1/

√
k such that the sets

Wk = {x : uk(x) > sk},
satisfy

P (Wk) ≤
2 η̂

η̂ tk

∫ tk

0
P ({uk > s}) ds ≤ 2|BR|

η̂
+

2

η̂ tkk
= C(N,R) +

2

η̂
√
k
.(4.14)

We claim that Wk is still a minimizing sequence. Indeed, using (4.7) and Lemma 4.2 (ii), for σ
such that C2 σ ≤ η̂/2 we have

Gη̂,j(Wk) =

∫

{uk>sk}
|∇uk|2 dx−

∫

{uk>sk}
(uk − sk)+ dx

+ fη̂(|{uk > sk}|) +
√
ε2j + σ2 (α({uk > sk})− εj)2

≤ Gη̂,j(Ok) + sk |{uk > 0}|+ fη̂(|{uk > sk}|)− fη̂(|{uk > 0}|)
+ σ

∣∣α({uk > sk})− α({uk > 0})
∣∣

≤ Gη̂,j(Ok) + |BR|/
√
k − (η̂ − C2 σ) |{0 < uk < sk}| ≤ Gη̂,j(Ok) + |BR|/

√
k,

(4.15)

where we used again that (uk − sk)+ is the energy function of Wk.
By compactness of sets with equi-bounded perimeter, (4.14) implies the existence of a Borel set

W∞ such that

1Wk
→ 1W∞ in L1(BR) and P (W∞) ≤ C(N,R).
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Setting wk = (uk− sk)+, it is immediate to see that this is an equi-bounded sequence in W 1,2
0 (BR),

thus up to subsequences we can infer the existence of w ∈W 1,2
0 (BR) such that

lim
k→∞

‖wk − w‖L2 = 0.

If we set W = {x : w̃(x) > 0}, then
1W (x) ≤ lim inf

k→∞
1Wk

(x) = 1W∞(x), for a.e. x ∈ BR,

which implies |W \W∞| = 0. By the semicontinuity of the Dirichlet integral and the continuity of
α(·) with respect to the L1 convergence of sets, passing to the limit as k goes to ∞ in (4.15), we
get

E(W ) + fη̂(|W∞|) +
√
ε2j + σ2(α(W∞)− εj)2

≤ 1

2

∫
|∇w|2 dx−

∫
w dx+ fη̂(|W∞|) +

√
ε2j + σ2(α(W∞)− εj)2

≤ inf Gη̂,j ≤ E(W ) + fη̂(|W |) +
√
ε2j + σ2(α(W )− εj)2.

This in turn gives

fη̂(|W∞|)− fη̂(|W |) ≤ σ |α(W )− α(W∞)|
which together with Lemma 4.2 (ii), (4.7) and |W \W∞| = 0 yields

η̂ |W∞ \W | ≤ C2 σ |W∞ \W |.
Since C2 σ ≤ η̂/2, this implies that |W∆W∞| = 0, so that W is the desired minimizer Ωj . �

4.3. Proof of the Selection Principle: properties of the minimizers.

Lemma 4.7 (Properties of minimizers, Part I). The sequence of minimizers {Ωj}j found in Lemma

4.6 satisfies the following properties:

(i) |α(Ωj)− εj | ≤ 3σ εj and
∣∣|Ωj | − |B1|

∣∣ ≤ C5 σ
4 εj, where C5 = C5(R,N);

(ii) up to translations Ωj → B1 in L1;

(iii) the following inequality holds true

(4.16) 0 ≤ Fη̂(Ωj)−Fη̂(B1) ≤ σ4εj .

Proof. We start noticing that by the minimality property of Ωj and by the definition (4.5) of Ω̃j

Fη̂(Ωj) + εj ≤ Fη̂(Ωj) +
√
ε2j + σ2(α(Ωj)− εj)2

= Gη̂,j(Ωj) ≤ Gη̂,j(Ω̃j) = Fη̂(Ω̃j) + εj ≤ Fη̂(B1) + (1 + σ4) εj ,
(4.17)

from which we obtain (4.16). Moreover, since B1 minimizes Fη̂, from the previous we deduce that
√
ε2j + σ2(α(Ωj)− εj)2 ≤ εj (1 + σ4),

which implies, since σ < 1,

ε2j + σ2(α(Ωj)− εj)
2 ≤ ε2j (1 + σ4)2 ≤ ε2j (1 + 3σ4).

From this we obtain the first part of point (i). To obtain the second we notice that if BΩj is a ball
of the same measure as Ωj , then by the Pòlya-Szegő principle

Fη̂(BΩj ) ≤ Fη̂(Ωj),

hence, by (4.16) and (4.9), ∣∣∣|Ωj |1/N − |B1|1/N
∣∣∣ ≤ C4 ω

1/N
N σ4εj .
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To prove point (ii) we notice that, up to translations, we can assume that xΩ = 0. By Lemma 4.6
the sets Ωj have equi-bounded perimeter hence they are pre-compact in L1(BR). By the continuity
of α(·), with respect to the L1 convergence, and point (i) we see that any limit set Ω∞ satisfies
α(Ω∞) = 0, from which point (ii) follows. �

We now start studying the regularity of the sets Ωj . In order to do this we recall that by (4.12)

Ωj = {uj > 0} where uj = uΩj is the energy function of Ωj . If v ∈W 1,2
0 (BR), testing the minimality

of Ωj with {v > 0} and recalling the definition of energy (4.11), we immediately see that uj satisfies
the following minimum property

1

2

∫
|∇uj |2 dx−

∫
uj dx+ fη̂(|{uj > 0}|) +

√
ε2j + σ2 (α({uj > 0})− εj)2

≤ 1

2

∫
|∇v|2 dx−

∫
v dx+ fη̂(|{v > 0}|) +

√
ε2j + σ2 (α({v > 0})− εj)2.

(4.18)

Using Lemma 4.2, we obtain that uj behaves like a perturbed minimum of the free boundary-type
problem, more precisely

1

2

∫
|∇uj |2 dx−

∫
uj dx+ fη̂(|{uj > 0}|)

≤ 1

2

∫
|∇v|2 dx−

∫
v dx+ fη̂(|{v > 0}|) + C2 σ

∣∣{uj > 0}∆{v > 0}
∣∣,

(4.19)

for all v ∈W 1,2
0 (BR).

Remark 4.8. The above two equations are the starting point to study the regularity of ∂Ωj =
∂{uj > 0} using the techniques of Alt and Caffarelli, [3]. We remark that (4.19) can be summarized
by saying the uj is a quasi-minimizer of the free boundary problem, in the spirit of perimeter quasi-

minimizers, see [29, Part 3]. However in this kind of problems this notion can not provide too
much regularity of ∂{uj > 0}, indeed in general the volume term appearing in the right-hand side
of (4.19) is not lower order. To obtain our results we have to take advantage that the parameter σ
multiplying such a term can be taken much smaller than η̂.

After [3] it is by now well understood that the first step in order to prove regularity for solutions
of (4.18) is to show that

uj(x) ∼ dist (x, ∂{uj > 0}) , x ∈ {uj > 0},
in some integral sense. This will be done in the next two Lemmas, which are the analogous of [3,
Lemma 3.4] and [3, Lemma 3.2].

Lemma 4.9. Let uj be as above. There exists σ2 = σ2(N,R) > 0 such that for every κ ∈ (0, 1) one
can find positive constants m, ̺0 depending only on κ, R and the dimension, such that, if σ ≤ σ2,
̺ ≤ ̺0, x0 ∈ BR and ∫

∂B̺(x0)∩BR

uj dHN−1 ≤ m̺,

then u = 0 in Bκ̺(x0) ∩BR.

Proof. Being j fixed for notational simplicity we drop the subscript. Morever, being x0 fixed we
simply write B̺ for B̺(x0).

It is well known that u (extended to 0 outside BR) satisfies −∆u ≤ 1 in the weak sense, hence
the function

u(x) +
|x− x0|2 − ̺2

2N
,
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is subharmonic in B̺(x0). Therefore for every κ ∈ (0, 1) there is C = C(κ,N) such that

δ̺ := sup
B√

κ̺

u ≤ C
(∫

∂B̺

u dHN−1 + ̺2
)
≤ C (m̺+ ̺2).(4.20)

Let w be the solution of 



−∆w = 1 in B√
κ̺ \Bκ̺,

w = δ̺ on ∂B√
κ̺,

w = 0 on Bκ̺.

Since w ≥ u on ∂B√
κ̺, the function

v =

{
u on R

N \B√
κ̺

min{u,w} on B√
κ̺,

satisfies

{v > 0} ⊂ {u > 0} and {v > 0} \B√
κ ̺ = {u > 0} \B√

κ ̺.

In particular v ∈W 1,2
0 (BR) and (4.19) gives

1

2

∫

B√
κ̺

|∇u|2 dx−
∫

B√
κ̺

u dx+ fη̂(|{u > 0}|)

≤ 1

2

∫

B√
κ̺

|∇v|2 dx−
∫

B√
κ̺

v dx+ fη̂(|{v > 0}|) + C2 σ
∣∣({u > 0} \ {v > 0}) ∩B√

κ̺

∣∣.

Since v = 0 in Bκ̺,

|{u > 0} ∩Bκ̺| ≤ |({u > 0} \ {v > 0}) ∩B√
κ̺|.

Using (4.7) and choosing σ > 0 such that C2 σ ≤ η̂/2, the above two equations and the definition
of v give

1

2

∫

Bκ̺

|∇u|2 dx−
∫

Bκ̺

u dx+
η̂

2
|{u > 0} ∩Bκ̺|

≤ 1

2

∫

Bκ̺

|∇u|2 dx−
∫

Bκ̺

u dx+
η̂

2
|({u > 0} \ {v > 0}) ∩B√

κ̺|

≤ 1

2

∫

B√
κ̺\Bκ̺

(
|∇v|2 − |∇u|2

)
dx−

∫

B√
κ̺\Bκ̺

(v − u) dx

≤
∫

(B√
κ̺\Bκ̺)∩{u>w}

(
|∇w|2 −∇u · ∇w

)
dx−

∫

(B√
κ̺\Bκ̺)∩{u>w}

(w − u) dx.

(4.21)

Multiplying the equation satisfied by w by (u− w)+, integrating over B√
κ̺ \Bκ̺ we obtain

(4.22)

∫

(B√
κ̺\Bκ̺)∩{u>w}

(
|∇w|2−∇u·∇w

)
dx−

∫

(B√
κ̺\Bκ̺)∩{u>w}

(u−w) dx =

∫

∂Bκ̺

∂w

∂ν
u dHN−1,

since w ≡ 0 on ∂Bκ̺ and w ≥ u on ∂B√
κ̺. An explicit computation gives

∣∣∣∣
∂w

∂ν

∣∣∣∣ ≤ C(N, κ)
δ̺ + ̺2

̺
on ∂Bκ̺,

and combining (4.21) and (4.22) we get

(4.23)
1

2

∫

Bκ̺

|∇u|2 dx−
∫

Bκ̺

u dx+
η̂

2
|{u > 0} ∩Bκ̺| ≤ C

δ̺ + ̺2

̺

∫

∂Bκ̺

u dHN−1.
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Now the classical trace inequality in W 1,1, (4.20) and Cauchy-Schwarz inequality imply

∫

∂Bκ̺

u dHN−1 ≤ C(N, κ)

(
1

̺

∫

Bκ̺

u dx+

∫

Bκ̺

|∇u| dx
)

≤ C(N, κ)

((δ̺
̺

+
1

2

) ∣∣{u > 0} ∩Bκ̺

∣∣+ 1

2

∫

Bκ̺

|∇u|2 dx
)
.

Combining the above estimate with (4.23), recalling (4.20) and choosing m and ̺0 such that
(m+ ̺)C(N, κ) ≤ η̂/4, we obtain

η̂

2

(∫

Bκ̺

|∇u|2 dx+ |{u > 0} ∩Bκ̺|
)

≤ (m+ ̺)C

(∫

Bκ̺

|∇u|2 dx+ |{u > 0} ∩Bκ̺|
)

≤ η̂

4

(∫

Bκ̺

|∇u|2 dx+ |{u > 0} ∩Bκ̺|
)
.

This clearly implies u = 0 on Bκ̺. �

Lemma 4.10. Let uj be as in Lemma 4.9. There exists a constant M depending only on the

dimension and on R, such that if x0 ∈ BR and

(4.24)

∫

∂B̺(x0)∩BR

uj dHN−1 ≥M̺,

then u > 0 in B̺(x0).

Proof. Again we drop the subscript j. First notice that if M is large enough and (4.24) holds true
then necessarily B̺(x0) ⊂ BR. Indeed, remember that −∆u ≤ 1 in BR, then by the maximum
principle

u(x) ≤ R2 − |x|2
2N

x ∈ BR.

Thus, if B̺(x0) ∩ ∂BR 6= ∅ then
∫

∂B̺(x0)∩BR

u dHN−1 ≤ C(N,R) ̺,

for some constant depending only on R and N and this would contradict (4.24) if M > C(N,R).

Then we can always assume that B̺(x0) ⊂ BR. Let us now define v ∈W 1,2
0 (BR) as

{
−∆v = 1 on B̺

v = u in R
N \B̺,

where we simply write B̺ for B̺(x0), since x0 is fixed. Of course, by the maximum principle there
holds v > 0 in B̺ and since u = v in the complementary of B̺, we get

{u > 0}∆{v > 0} = {u = 0} ∩B̺.

Using this, (4.19) and (4.7) we get

1

2

∫

B̺

|∇u|2 dx−
∫

B̺

u dx ≤ 1

2

∫

B̺

|∇v|2 dx−
∫

B̺

v dx+

(
1

η̂
+ C2 σ

)
|{u = 0} ∩B̺|.

By appealing to the equation satisfied by v and the fact σ < 1 < 1/η̂, the above equation becomes

(4.25)
1

2

∫

B̺

|∇u−∇v|2 dx ≤ C2 + 1

η̂

∣∣{u = 0} ∩B̺

∣∣.
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yi

ψi(θ)

yi + ζi(θ) θ

Figure 4.1. The geometric construction of Lemma 4.10

Through the scaling

u(x) 7→ 1

̺
u(x0 + ̺ x),

we can assume that ̺ = 1. We want to bound the left-hand side of (4.25) from below by a multiple
of the right-hand side. In order to do this we fix two points y1 and y2 in B1/4 such that B1/8(y1)

and B1/8(y2) are disjoint and contained in B1/2. For i = 1, 2, let ζi : S
N−1 → R

+ be such that

(4.26) ∂B1 = {yi + ζi(θ) θ : θ ∈ S
N−1}.

Let us define

ψi(θ) = yi + ri(θ) θ

where

ri(θ) = inf

{
1

8
≤ r ≤ ζi(θ) : u(yi + r θ) = 0

}
.

and we set the above infimum to be ζi(θ) if no such r exists. That is ψi(θ) is the first point outside
B1/8 and lying on the segment joining yi to yi + ζi(θ) θ where u vanishes. Hence

v(ψi(θ)) = v(ψi(θ))− u(ψi(θ))

≤
∫ ζi(θ)

ri(θ)
|∇u−∇v|(yi + r θ) dr

≤
√
ζi(θ)− ri(θ)

(∫ ζi(θ)

ri(θ)
|∇u−∇v|2(yi + r θ)| dr

)1/2

.

(4.27)

By the maximum principle v is above the harmonic function sharing the same boundary data of u,
hence, by the Poisson representation formula it follows that

v(ψi(θ)) ≥ c(N)
(
1− |ψi(θ)|

) ∫

∂B1

u dHN−1.(4.28)

By elementary geometric considerations (see Figure 4.1),

1− |ψi(θ)| ≥ c |ζi(θ)− ri(θ)|,
and by construction

|ζi(θ)− ri(θ)| ≥ H1
(
{r ∈ [1/8, ζi(θ)] : u(yi + r θ) = 0}

)
.
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Then integrating over θ ∈ S
N−1 and using that ri(θ) ≥ 1/8, (4.27), (4.28), (4.25) and our assump-

tion (recall that we have set ̺ = 1) imply

M2
∣∣{u = 0} ∩ (B1 \B1/8(yi))

∣∣ ≤ C(N,R)
∣∣{u = 0} ∩B1

∣∣.
Since the balls B1/8(y1) and B1/8(y2) are disjoint, this gives

M2

2
|{u = 0} ∩B1| ≤ C(N,R) |{u = 0} ∩B1|.

By choosing M large enough, the previous implies that |{u = 0} ∩B1| = 0. �

From Lemma 4.9 and 4.10, exactly as in [3, Section 3], we obtain the following.

Lemma 4.11 (Properties of minimizers, Part II). Let uj be as above, then Ωj = {uj > 0} is an

open set. Moreover there exists a constant C6 = C6(N,R) and a radius ̺0 = ̺0(N,R) such that

(i) For every x ∈ Ωj it holds

(4.29)
1

C6
dist(x, ∂Ωj) ≤ uj(x) ≤ C6 dist(x, ∂Ωj);

(ii) the functions uj are equi-Lipschitz ‖∇uj‖L∞(BR) ≤ C6;

(iii) for every x ∈ ∂Ωj and every ̺ ≤ ̺0

(4.30)
1

C6
≤ |Ωj ∩B̺(x)|

|B̺(x)|
≤ C6.

As in [3, Theorem 4.5] we also have the following.

Lemma 4.12. Let uj as above, then there exists a Borel function quj such that

(4.31) −∆uj = 1Ωj − quj HN−1
x∂∗Ωj .

In addition 0 < c ≤ quj ≤ C, where c and C depends only on N and R and

HN−1
(
∂Ωj \ ∂∗Ωj

)
= 0.

In the above Lemma ∂∗Ωj denotes the reduced boundary of the set of finite perimeter Ωj = {uj >
0}. We recall (see [29, Chapter 15]) that for every x̄ ∈ ∂∗{uj > 0}, there exists a unit vector νuj (x̄)
such that

(4.32)
{uj > 0} − x̄

̺
→
{
x : x · νuj (x̄) ≥ 0

}
, in L1

loc(R
N ).

Moreover for HN−1 almost every4 x̄ ∈ ∂∗{uj > 0}, it holds

(4.33) u̺j (x) :=
uj(x̄+ ̺x)

̺
→ quj (x̄)

(
x · νuj (x̄)

)
+
, in W 1,p

loc (R
N ) for every p ∈ [1,+∞).

For the proofs of this last fact we refer to [3, Theorem 4.8]. The following simple Lemma is a
standard consequence of Lemma 4.7 (ii) and of the density estimates (4.30).

Lemma 4.13. Every limit point Ω∞ of Ωj with respect to the L1 convergence is a ball of radius 1
and center x∞ ∈ BR. Moreover

∂Ωj → ∂B1(x∞) in the Kuratowski sense5 as j → ∞.

4More precisely, in every Lebesgue point of quj
with respect to HN−1

x∂∗{uj > 0}.
5We recall that a sequence of sets Sk converges to a set S in the Kuratowski sense if

• for every sequence of points xk ∈ Sk any limit point belongs to S;
• for every point x ∈ S there is a sequence of point xk ∈ Sk such that xk → x.
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In particular for every δ > 0 there exists a jδ ∈ N such that

(4.34) B1−δ(xj) ⊂ Ωj ⊂ B1+δ(xj), for all j ≥ jδ,

where xj ∈ BR.

We are now in position to address higher regularity of ∂{uj > 0}. Since uj is a weak solution for
quj in the sense of [3, Section 5] and [22, Section 3]. To apply their results we have to show that quj

is continuous. To identify quj we try to write down the Euler-Lagrange equations for the problem
(4.18). In order to do this we first have to show that Ωj = {uj > 0} is minimal with respect to
every (small) perturbation. This will be done in the next Lemma, where by Nδ(A) we denote the
δ neighborhood of a generic set A.

Lemma 4.14. Let R ≥ 2, then for every 0 < 2 δ < R− 1 there exists jδ ∈ N such that for j ≥ jδ,
the energy function uj satisfies (4.18) for every v ∈W 1,2

0

(
Nδ(Ωj)

)
.

Proof. Let δ be as in the statement, thanks to (4.34) we can assume that for j ≥ jδ we have
Ωj ⊂ B1+δ(xj) for some xj ∈ BR. The translated sets Uj = Ωj − xj are such that

Uj ⊂ B1+δ(0) ⊂ BR,

so that Nδ(Uj) ⊂ BR. Moreover, we have Gη̂,j(Ωj) = Gη̂,j(Uj), as the functional is translation
invariant. Translating back this proves the claim. �

It is not difficult to see that the formal optimality condition for (4.18) reads as

∣∣∣∣∣
∂uj(x)

∂ν

∣∣∣∣∣

2

− σ2(α(Ωj)− εj)√
ε2j + σ2(α(Ωj)− εj)2

[
|x− xΩj | −

(∫

Ωj

y − xΩj

|y − xΩj |
dy

)
· x
]
= Λj ,

for some constant Λj . The goal of next Lemma is to show that this is actually the case, at least
for HN−1

x∂∗Ωj almost every point.

Lemma 4.15. Let R ≥ 2 and uj be as in Lemma 4.7. There exists j = j(R) such that if j ≥ j,
the following holds:

(
quj (x1)

)2 − σ2(α(Ωj)− εj)√
ε2j + σ2(α(Ωj)− εj)2

[
|x1 − xΩj | −

(∫

Ωj

y − xΩj

|y − xΩj |
dy

)
· x1
]

=
(
quj (x2)

)2 − σ2(α(Ωj)− εj)√
ε2j + σ2(α(Ωj)− εj)2

[
|x2 − xΩj | −

(∫

Ωj

y − xΩj

|y − xΩj |
dy

)
· x2
]
,

(4.35)

for every two points x1 and x2 in ∂∗{uj > 0} such that (4.32) and (4.33) hold true.

Proof. We choose δ = (R − 1)/4 and fix j ≥ jδ, where jδ is as in Lemma 4.14. Being j fixed we
drop the subscript and, for notational simplicity, we assume that xΩ = 0.

Let us assume by contradiction that there are two points x1 and x2 satisfying (4.32) and (4.33)
such that the left-hand side of (4.35) is strictly smaller than the right-hand side.

Following [2] we are going to construct a small variation of Ω = {u > 0} which preserves the
volume to the first order and which contradicts (4.18). In order to do this let us take a smooth
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radial symmetric function φ(y) = φ(|y|) compactly supported in B1 and let us define, for τ, ̺ small

(4.36) Φ̺
τ (x) =





x+ τ̺ φ

(∣∣∣x− x1
̺

∣∣∣
)
νu(x1), x ∈ B̺(x1),

x− τ̺ φ

(∣∣∣x− x2
̺

∣∣∣
)
νu(x2), x ∈ B̺(x2),

x, otherwise.

For τ small and independent of ̺, Φ̺
τ is easily seen to be a diffeomorphism. Moreover, still for τ

small, thanks to Lemma 4.14 the function

u̺τ := u ◦
(
Φ̺
τ

)−1
,

is an admissible competitor for testing the minimality of u, notice that

Ω̺
τ := {x : u̺τ (x) > 0} = Φ̺

τ (Ω).

We now start computing the variations of all the terms involved in the definition of Gη̂,j .

• Volume term. We compute

|Ω̺
τ | − |Ω|
̺N

=
1

̺N

∫

Ω
[det∇Φ̺

τ − 1] dx

=
τ

̺N

(∫

Ω∩B̺(x1)
φ′
(∣∣∣x− x1

̺

∣∣∣
)
(x− x1) · νu(x1)

|x− x1|
dx

−
∫

Ω∩B̺(x2)
φ′
(∣∣∣x− x2

̺

∣∣∣
)
(x− x2) · νu(x2)

|x− x2|
dx

)
+ o(τ),

where o(τ) is independent on ̺. Hence, recalling (4.32), changing variables and applying the
Divergence Theorem in the last step

lim
̺→0

|Ω̺
τ | − |Ω|
̺N

= τ

(∫

{y·νu(x1)≥0}∩B1

φ′(|y|) y · νu(x1)|y| −
∫

{y·νu(x2)≥0}∩B1

φ′(|y|)y · νu(x2)|y|

)
+ o(τ)

= −τ
(∫

{y·νu(x1)=0}∩B1

φ(|y|)−
∫

{y·νu(x2)=0}∩B1

φ(|y|)
)

+ o(τ) = o(τ),

(4.37)

where we used that the integrals are equal due to the radial symmetry of φ.

• Dirichlet integral and L1 norm. By changing variables,

1

̺N

(∫
|∇u̺τ |2 −

∫
|∇u|2

)

=
1

̺N

(∫

Ω∩B̺(x1)

[
|(∇Φ̺

τ )
−1∇u|2 det∇Φ̺

τ − |∇u|2
]
+

∫

Ω∩B̺(x2)

[
|(∇Φ̺

τ )
−1∇u|2 det∇Φ̺

τ − |∇u|2
])

=
τ

̺N

(∫

Ω−x1
̺

∩B1

|∇u(x1 + ̺y)|2φ′(|y|)νu(x1) · y|y| − 2φ′(|y|)(∇u(x1 + ̺y) · y)(∇u(x1 + ̺y) · νu(x1))
|y|

−
∫

Ω−x2
̺

∩B1

|∇u(x2 + ̺y)|2φ′(|y|)νu(x2) · y|y| − 2φ′(|y|)(∇u(x2 + ̺y) · y)(∇u(x2 + ̺y) · νu(x2))
|y|

)
+ o(τ),
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with o(τ) independent on ̺. Hence, recalling (4.33) and (4.32), thanks to the Divergence Theorem
we obtain

lim
̺→0

1

̺N

(∫
|∇u̺τ |2 −

∫
|∇u|2

)
= τ

[(
qu(x1)

)2 −
(
qu(x2)

)2]
∫

{y1=0}∩B1

φ(|y|) + o(τ).(4.38)

With a similar computation and recalling (4.33),

(4.39) lim
̺→0

1

̺N

(∫
u̺τ −

∫
u

)
= o(τ).

• Barycenter. First of all, recall that we have set xΩ = 0. So we only have to compute

xΩ̺
τ

̺N
=

1

̺N

(
1

|Ω̺
τ |

∫

Ω
Φ̺
τ (x) det∇Φ̺

τ (x)−
1

|Ω|

∫

Ω
x

)

=
1

̺N

(
1

|Ω|

∫

Ω
Φ̺
τ (x) det∇Φ̺

τ (x)−
1

|Ω|

∫

Ω
x

)
+ o̺(1) + o(τ),

where we have taken into account (4.37) in the second equality and o̺(1) tends to 0 in ̺ for fixed
τ , while o(τ) is independent on ̺. Arguing as above, one checks that thanks to (4.32),

lim
̺→0

xΩ̺
τ

̺N
= lim

̺→0

1

̺N

(
1

|Ω|

∫

Ω
Φ̺
τ (x) det∇Φ̺

τ (x)−
1

|Ω|

∫

Ω
x

)
+ o(τ)

= −τ (x1 − x2)

|Ω|

(∫

{y1=0}∩B1

φ(|y|)
)

+ o(τ).

(4.40)

• Asymmetry. Recalling (4.2) and that we have set xΩ = 0,

α(Ω̺
τ )− α(Ω)

̺N
=

1

̺N

(∫

Ω∩B̺(x1)

[
|Φ̺

τ (x)| det∇Φ̺
τ (x)− |x|

]

+

∫

Ω∩B̺(x2)

[
|Φ̺

τ (x)| det∇Φ̺
τ (x)− |x|

]
−
[∫

Ω

y

|y|

]
· xΩ̺

τ

)

+ o̺(1) + o(τ)

where we used (4.37) and (4.40). Here again o̺(1) tends to 0 in ̺ for fixed τ , while o(τ) is
independent on ̺. With a computation similar to the previous ones

(4.41) lim
̺→0

1

̺N

(∫

Ω∩B̺(xi)
|Φ̺

τ (x)| det∇Φ̺
τ (x)− |x|

)
= τ(−1)i |xi|

∫

{y1=0}∩B1

φ(|y|) + o(τ).

for i = 1, 2. Hence we finally get

(4.42) lim
̺→0

α(Ω̺
τ )− α(Ω)

̺N
= −τ

(∫

{y1=0}∩B1

φ(|y|)
) (

|x1| − |x2|+
[∫

Ω

y

|y|

]
· x1 − x2

|Ω|

)
+ o(τ).

• Expansion of Gη̂,j . By (4.37) and (4.7), we get

1

̺N

∣∣∣fη̂(|Ω̺
τ |)− fη̂(|Ω|)

∣∣∣ ≤ 1

η̂

∣∣∣∣∣
|Ω̺

τ | − |Ω|
̺N

∣∣∣∣∣ = o̺(1) + o(τ).
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Thus by using (4.38), (4.39), (4.40) and (4.42) we can infer
(∫

{y1=0}∩B1

φ(|y|)
)−1Gη̂,j(Ω

̺
τ )− Gη̂,j(Ω)

̺N

≤ τ

(
(
qu(x1)

)2 − σ2(α(Ω)− ε)√
ε2 + σ2(α(Ω)− ε)2

[
|x1| −

(∫

Ω

y

|y|dy
)
· x1
]

−
(
qu(x2)

)2
+

σ2(α(Ω)− ε)√
ε2 + σ2(α(Ω)− ε)2

[
|x2| −

(∫

Ω

y

|y|dy
)
· x2
])

+ o̺(1) + o(τ),

which contradicts the minimality of Ω for ̺, τ small. �

Lemma 4.16. There exist σ3 = σ3(N,R) > 0, ĵ = ĵ(N,R) and δ̂ = δ̂(N,R) > 0 such that for

every j ≥ ĵ and every σ ≤ σ3 the functions quj are in C∞(N
δ̂
(∂Ωj)). Moreover

‖quj‖Ck(N
δ̂
(∂Ωj)) ≤ C(k,N,R), for every j ≥ ĵ.

Proof. From Lemma 4.15 we see that, for j large there exists Λj ∈ R such that

(4.43) quj (x)
2 = Λj +

σ2(α(Ωj)− εj)√
ε2j + σ2(α(Ωj)− εj)2

[
|x− xΩj | −

(∫

Ωj

y − xΩj

|y − xΩj |
dy

)
· x
]
,

for HN−1-almost every x ∈ ∂{uj > 0}. Since
∣∣∣∣∣∣

σ2(α(Ωj)− εj)√
ε2j + σ2(α(Ωj)− εj)2

[
|x− xΩj | −

(∫

Ωj

y − xΩj

|y − xΩj |
dy

)
· x
]∣∣∣∣∣∣

≤ C(N,R)σ,

and by Lemma 4.12 quj is bounded from above and below independently on j, there exists a
σ3 = σ3(N,R) such that for σ ≤ σ3 we have that Λj is also bounded from above and below
independently on j. Thanks to (4.34)

|x− xΩj | ≥
1

2
, for every j large.

Hence we can find δ̂ = δ̂(N,R) such that

quj (x) =


Λj +

σ2(α(Ωj)− εj)√
ε2j + σ2(α(Ωj)− εj)2

[
|x− xΩj | −

(∫

Ωj

y − xΩj

|y − xΩj |
dy

)
· x
]


1/2

is smooth in the neighborhood N
δ̂
(∂Ωj) and all its Ck norms are bounded, independently of j. �

We are in the position to apply the results6 of Sections 7 and 8 of [3]. We start recalling the
following definition, see [3, Definition 7.1].

Definition 4.17. Let µ−, µ+ ∈ (0, 1], κ > 0. A weak solution u of (4.31) is said to be of class
F (µ−, µ+, κ) in B̺(x0) with respect to a direction ν ∈ S

N−1 if (see Figure 4.2)

(a) x0 ∈ ∂{u > 0} and

u = 0 for (x− x0) · ν ≤ −µ−̺,
u(x) ≥ qu(x0)

[
(x− x0) · ν − µ+̺

]
for (x− x0) · ν ≥ µ+̺.

(b) |∇u(x0)| ≤ qu(x0)(1 + κ) in B̺(x0) and oscB̺(x0) qu ≤ κ qu(x0).

6See also [22, Appendix], where it is sketched how to modify the proofs in [3] to deal with the case in which the
function u has bounded laplacian on {u > 0}.
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ν

x0

B�(x0)

(x− x0) · ν ≤ −µ
−
"(x− x0) · ν ≥ µ+"

Figure 4.2. A weak solution of (4.31) of class F (µ−, µ+, κ) in B̺(x0) with respect
to the direction ν.

With this definition we can state the main Theorem of [3], which states that if the free boundary
is flat enough, then it is smooth.

Theorem 4.18. [3, Theorem 8.1][26, Theorem 2]. Let u be a weak solution of (4.31) in BR and

assume that qu is Lipschitz continuous. There are constants γ, µ̄, κ̄ and C depending only on min qu,
max qu, Lip(qu), R and the dimension N such that:

If u is of class F (µ, 1,+∞) in B4̺(x0) with respect to some direction ν ∈ S
N−1 with µ ≤ µ̄ and

̺ ≤ κ̄ µ2, then there exists a C1,γ function f : RN−1 → R with ‖f‖C1,γ ≤ Cµ, such that, if we

define

graphνf =
{
x ∈ R

N : x · ν = f(x− (x · ν)ν)
}
,

then

∂{u > 0} ∩B̺(x0) =
(
x0 + graphνf

)
∩B̺(x0).

Moreover if qu ∈ Ck,γ of some δ−neighborhood of {uj > 0}, then f ∈ Ck+1,γ and ‖f‖Ck+1,γ ≤
C
(
N,R, ‖qu‖Ck,γ

)
.

4.4. Proof of the Selection Principle. With the aid of Theorem 4.18, we can now prove Propo-
sition 4.4.

Proof of Proposition 4.4. Let Ωj = {uj > 0} be the solutions of (4.10) and assume, up to trans-
lations, that xΩj = 0. Let µ̄ be as in Theorem 4.18 and let µ ≪ µ̄ to be fixed later. By the
smoothness of ∂B1, there exists a ̺(µ) such that for every ̺ ≤ ̺(µ), x̄ ∈ ∂B1

∂B1 ∩B5̺(x̄) ⊂
{
x : |(x− x̄) · νx̄| ≤ µ̺

}
,

where νx is the interior normal to ∂B1 at x̄. We can also assume that ̺(µ) ≤ τ̄ µ2 where τ̄ is
as in Theorem 4.18. Since, up to translation, by Lemma 4.13 ∂Ωj are converging in the sense of
Kuratowski to ∂B1, for j large (depending on µ) there exists a point x0 ∈ ∂Ωj ∩ Bµ̺(µ)(x̄) such
that

∂Ωj ∩B4̺(µ)(x0) ⊂ Nµ̺(µ)

(
∂B1 ∩B5̺(µ)(x̄)

)
⊂
{
x : |(x− x0) · νx̄| ≤ 4µ̺(µ)

}
.

This means that uj is of class F (µ, 1,+∞) in B4̺(µ)(x0) with respect to the direction νx̄ and hence,
by our assumptions on µ and ̺(µ), Lemma 4.16 and Theorem 4.18, ∂Ωj ∩B̺(µ)(x0) is the graph of
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νx

x

5!(µ)

4!(µ)

∂Ωj

x0

(x− x0) · νx ≥ 4µ"(µ) (x− x0) · νx ≤ −4µ"(µ)

Figure 4.3. The local construction for the proof of Proposition 4.4.

a smooth function with respect to νx̄. Choosing µ smaller we see that there exist smooth functions
gx̄j with uniformly bounded Ck norms such that

∂Ωj ∩B̺(µ)(x̄) =
{
x+ gx̄j (x)x : x ∈ ∂B1

}
∩B̺(µ)(x̄).

Since the balls {B̺(µ)(x̄)}x∈∂B1
cover ∂B1, it is not difficult to see that the above representations

holds globally, i.e. for some functions gj with uniformly bounded Ck norms

(4.44) ∂Ωj =
{
x+ gj(x)x : x ∈ ∂B1

}
.

Hence by the Ascoli-Arzelà Theorem and (4.34) we obtain gj → 0 in Ck−1(∂B1).
We now define Uj = λj Ωj where λNj = |B1|/|Ωj |. Clearly Uj still satisfies xUj = 0 and |Uj | =

|B1|. Moreover, by Lemma 4.7 (i) we get |λj − 1| ≤ C σ4 εj . Hence they are smoothly converging
to B1. In order to verify (4.6), we use Lemma 4.2 (ii) and Lemma 4.7 (i) to infer

|α(Uj)− εj | ≤ |α(Ωj)− εj |+ |α(Uj)− α(Ωj)| ≤ C(σ + σ4) εj ≤ C σ εj .

Moreover, by the equation (4.7) and Lemma 4.7 (iii)

Fη̂(Uj)−Fη̂(B1) ≤ (1 + C σ4 εj)Fη̂(Ωj)−Fη̂(B1) ≤ C σ4 εj ,

from which (4.6) immediately follows, since |Uj | = |B1| implies

Fη̂(Uj) = E(Uj).

This concludes the proof of the Selection Principle. �

5. Final step: proof of the Main Theorem

In this section we remove the restrictions in Theorem 4.3 and we give the proof of the Main
Theorem. For this we need two preliminary results. The first one is an L∞ estimate of the energy
function outside a ball in terms of the measure of Ω outside a smaller ball, based on a De Giorgi-
type iteration technique. The second one is a sub-optimal version of (2.7) whose proof can be found
in [21].
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Lemma 5.1. Let Ω with be an open set with |Ω| = |B1| and let uΩ ∈W 1,2
0 (Ω) be its energy function.

Then there exists a dimensional constant C7 such that for every R ≥ 1 we have

(5.1) ‖uΩ‖L∞(Ω\BR+1) ≤ C7 |Ω \BR|1/N .
Proof. Notice that (5.1) trivially holds if |Ω \BR| = 0, hence we assume that |Ω \BR| > 0. Let us
define

Rk = R+ 1− 2−k, k ∈ N,

so that R0 = R and limk→∞Rk = R + 1 and let us consider the following family of radial cut-off
functions ϕk(x) = φk(|x|), where φk = 0 on [0, Rk−1], φk = 1 on [Rk,+∞) and it is linear in
between. Let us also define the following family of levels

sk =M |Ω \BR|1/N (1− 2−k),

where M is a constant which will be choosen later. Since uΩ satisfies∫
∇uΩ · ∇v dx =

∫
v dx for every v ∈W 1,2

0 (Ω),

by inserting the test function vk = ϕ2
k (uΩ − sk)+ ∈W 1,2

0 (Ω) standard computations lead

(5.2)

∫ ∣∣∇(ϕk(uΩ − sk)+)
∣∣2 dx =

∫
ϕ2
k (uΩ − sk)+ dx+

∫
|∇ϕk|2 (uΩ − sk)

2
+ dx.

By [37, Theorem 1], we have

(5.3) ‖uΩ‖L∞(Ω) ≤ ‖uB1
‖L∞(B1) ≤ C(N).

Since |∇ϕk| ≤ 2k and 0 ≤ ϕk ≤ 1, by applying Sobolev inequality (5.2) and (5.3) we infer
∫ (

ϕk(uΩ − sk)+
)2
dx ≤ C

∣∣{ϕk(uΩ − sk)+ > 0
}∣∣2/N

∫ ∣∣∇(ϕk(uΩ − sk)+)
∣∣2 dx

≤ C
∣∣{ϕk(uΩ − sk)+ > 0

}∣∣2/N
(∫

ϕ2
k(uΩ − sk)+ dx

+

∫
|∇ϕk|2(uΩ − sk)

2
+ dx

)

≤ C 4k
∣∣{ϕk(uΩ − sk)+ > 0

}∣∣1+2/N
,

(5.4)

where C depends only on N . Since
{
(uΩ − sk+1)+ > 0

}
∩ (Ω \BRk

) ⊂
{
(uΩ − sk)+ > sk+1 − sk

}
∩ (Ω \BRk

),

and sk+1 − sk =M |Ω \BR|1/N 2−(k+1), we obtain from (5.4)

∣∣{(uΩ − sk+1)+ > 0
}
∩ (Ω \BRk

)
∣∣ ≤ 4k+1 (sk+1 − sk)

2

M2|Ω \BR|2/N
∣∣{(uΩ − sk)+ > sk+1 − sk

}
∩ (Ω \BRk

)
∣∣

≤ 4k+1

M2|Ω \BR|2/N
∫
ϕ2
k(uΩ − sk)

2
+ dx

≤ C
16k

M2|Ω \BR|2/N
∣∣{(uΩ − sk)+ > 0

}
∩ (Ω \BRk−1

)
∣∣1+2/N

.

By defining

ak =

∣∣{(uΩ − sk)+ > 0
}
∩ (Ω \BRk−1

)
∣∣

|Ω \BR|
≤ 1, k ∈ N,

we obtain the following non-linear recursive equation for ak:

ak+1 ≤
C

M2
16k a

1+2/N
k k ≥ 1.
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Choosing M such that C/M2 = 16−N one easily sees by induction that

ak ≤
(

1

16N/2

)k−1

, k ∈ N,

which clearly implies that limk→∞ ak = 0. By using the definition of ak, this gives

|{(u− s∞)+ > 0} ∩ (Ω \BR+1)| = 0,

with s∞ =M |Ω \BR|1/N = C1/2 4N |Ω \BR|1/N . This gives the desired estimate (5.1). �

Lemma 5.2. There exists a constant C8 = C8(N) such that for every open set Ω ⊂ R
N with finite

measure, there holds

(5.5) E(Ω) |Ω|−N+2

N − E(B) |B|−N+2

N ≥ 1

C8
A(Ω)4.

Proof. Recalling that

E(Ω) = −1

2

1

λ2,1(Ω)
,

where λ2,1(Ω) is defined in (1.6), this result corresponds to taking p = 2 and q = 1 in [21, Theorem
1]. �

In what follows, we set

(5.6) D(Ω) = E(Ω) |Ω|−N+2

N − E(B) |B|−N+2

N ,

for notational simplicity.

Lemma 5.3. There exist constants C9 = C9(N), δ = δ(N) > 0 and d = d(N) such that for every

open set Ω with |Ω| = |B1| and D(Ω) ≤ δ(N), we can find another open set Ω̃ with |Ω̃| = |B1|,
diam(Ω̃) ≤ d and such that

(5.7) A(Ω) ≤ A(Ω̃) + C9D(Ω) and D(Ω̃) ≤ C9D(Ω).

Proof. Let us assume that the ball achieving the asymmetry is given by B1. By using this and the
quantitative information (5.5) we have, choosing δ(N) sufficiently small,

(5.8)
|Ω \B1|
|B1|

≤ A(Ω) ≤ C
1/4
8 D(Ω)1/4 ≤ C

1/4
8 δ(N)1/4 < 1.

Let us now estimate the energy of Ω ∩ Bk+2 for k ≥ 0. For every k ∈ N, let ϕk be the cut-off
function defined by

ϕk(x) = min{1, (k + 2− |x|)+}, x ∈ R
N ,

which is supported in Bk+2 and is equal to 1 in Bk+1. Then clearly

uk = ϕk uΩ ∈W 1,2
0 (Ω ∩Bk+2).

Hence, by using the equation satisfied by u and recalling that by (2.3),

E(Ω) = −1

2

∫
uΩ dx,
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we get

E(Ω ∩Bk+2) ≤
1

2

∫
|∇uk|2 −

∫
uk =

1

2

∫
∇uΩ · ∇(uΩ ϕ

2
k) dx+

1

2

∫
|∇ϕk|2u2 −

∫
ϕkuΩ

=
1

2

∫
uΩ ϕ

2
k dx+

1

2

∫
|∇ϕk|2 u2Ω dx−

∫
ϕk uΩ dx

= −1

2

∫
uΩ +

1

2

∫
(1− ϕk)

2 uΩ dx+
1

2

∫
|∇ϕk|2u2Ω dx

≤ E(Ω) +
1

2
|Ω \Bk+1 |

[
sup

Ω\Bk+1

uΩ + sup
Ω\Bk+1

u2Ω

]
.

(5.9)

By setting

(5.10) bk =
|Ω \Bk|
|B1|

, for every k ≥ 1,

we have bk ≤ 1 and of course bk+1 ≤ bk. Hence by recalling (5.1) we get

E(Ω ∩Bk+2) ≤ E(Ω) + C bk+1

[
b
1/N
k + b

2/N
k

]

≤ E(Ω) + C b
1+ 1

N
k .

(5.11)

Using the definition of bk and the Saint-Venant inequality (2.5), equation (5.11) implies

E(B1)
(
1− bk+2)

N+2

N = E(B1) |B1|−
N+2

N |Ω ∩Bk+2|
N+2

N

≤ E(Ω ∩Bk+2) ≤ E(Ω) + C b
1+ 1

N
k

= E(B1) +D(Ω) + C b
1+1/N
k ,

where in the last estimate we used the very definition of deficit. Hence, recalling that E(B1) < 0,
and assuming δ(N) sufficiently small we finally get

(5.12) bk+2 ≤
2N

N + 2

(
1− (1− bk+2)

N+2

N

)
≤ Ĉ

(
D(Ω) + b

1+1/N
k

)
,

for a suitable constant Ĉ depending only on the dimension N . Let us now define

(5.13) K = max{k ∈ N : such that bk ≥ 2 Ĉ D(Ω)},
which exists since bk → 0 as k → ∞. We claim that if we choose δ(N) sufficiently small then

(5.14) K ≤ K(N),

for some K(N) depending only on N . By noticing that for k + 2 ≤ K, (5.12) and (5.8) give

bk+2 ≤ 2 (bk+2 − Ĉ D(Ω)) ≤ 2 Ĉ b
1+1/N
k ≤ b

1+1/2N
k ,

if δ(N) ≪ 1. Now, by iteration one easily notices that, as long as 2 ≤ k ≤ K,

bk ≤ b
1+ k

2N
1 .

Hence, by (5.8) and (5.13), we deduce

2 Ĉ D(Ω) ≤ bK ≤ b
1+ K

2N
1 ≤

(
C D(Ω)

) 1

4
+ K

8N ,

which gives the desired estimate (5.14).
By the definition of K, (5.13), and recalling the definition of bk, we immediately see that

(5.15) |Ω ∩BK+3| ≥ |B1|(1− bK+1) ≥ |B1| − Ĉ |B1|D(Ω),
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while (5.11) gives

(5.16) E(Ω ∩BK+3) ≤ E(Ω) + C b
1+ 1

N

K+1
≤ E(Ω) + C D(Ω)1+1/N .

Let us set

Ω̃ =
Ω ∩BK+3

r
, where r =

(∣∣Ω ∩BK+3

∣∣
|B1|

) 1

N

.

Clearly |Ω̃| = |B1|, moreover equation (5.15) implies

(5.17) 1− Ĉ D(Ω) ≤ rN ≤ 1.

Hence (5.14), (5.16) and (5.17) give

diam(Ω̃) ≤ d(N) and D(Ω̃) ≤ CD(Ω).

In order to conclude the proof we only have to show that the estimate on the asymmetry in

(5.7) holds true. For this let B1(x0) be the optimal ball for Ω̃ and let r be as above, so that

|Br(x0)| = |Ω ∩BK+3|. By using (5.17) and that bK+3 < 2 Ĉ D(Ω) by definition of K, we obtain

|B1| A(Ω) ≤ |Ω∆B1(x0/r)|
≤ |(Ω ∩BK+3)∆Ω|+ |(Ω ∩BK+3)∆Br(x0/r)|+ |Br(x0/r)∆B1(x0/r)|
≤ C |B1|D(Ω) + rN |Ω̃∆B1(x0)|+ ωN (1− rN )

≤ |B1| A(Ω̃) + C D(Ω),

which concludes the proof of the Lemma. �

We can finally prove the Main Theorem.

Proof of the Main Theorem. By Proposition 2.1 it is enough to show that there exists a dimensional
constant σE such that

E(Ω) |Ω|−N+2

N − E(B) |B|−N+2

N ≥ σE A(Ω)2 for all sets Ω.

Also, since the above inequality is scaling invariant, we can assume that |Ω| = |B1|, without loss of
generality. For notational simplicity, we keep on using the notation D introduced in (5.6).

Let δ(N) ≤ 1 be the constant appearing in Lemma 5.3. If D(Ω) ≥ δ(N), then since A(Ω) < 2
we get

D(Ω) ≥ δ(N)

4
A(Ω)2.

Thus we can suppose that D(Ω) < δ(N). Thanks to Lemma 5.3, we can construct a new open

set Ω̃ with diam(Ω̃) ≤ d(N) and |Ω̃| = |B1|, which satisfies (5.7). Up to a translation we have

Ω̃ ⊂ Bd(N), then by applying Theorem 4.3 with R = d(N) we have

D(Ω̃) ≥ σ̂(d(N))α(Ω̃), if α(Ω̃) ≤ ε̂(d(N)).

By appealing to Lemma 4.2 (i) and to the very definition of Fraenkel asymmetry, the previous
implies

(5.18) D(Ω̃) ≥ σ̂(d(N)) |B1|2
C1

A(Ω̃)2, if α(Ω̃) ≤ ε̂(d(N)).

On the other hand, in the case α(Ω̃) > ε̂(d(N)), let B be the ball (of radius 1) such that A(Ω̃) =

|Ω̃∆B|/|B|. Since Ω̃ ⊂ Bd(N) it is immediate to check that B ⊂ Bd(N)+3, hence Lemma (4.2) (ii)
and α(B) = 0 give

ε̂(d(N))

C2(d(N) + 3) |B1|
<

α(Ω̃)

C2(d(N) + 3) |B1|
≤ |Ω̃∆B|

|B1|
= A(Ω̃).
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Estimate (5.5) now implies7

(5.19) D(Ω̃) ≥ A(Ω̃)4

C8
≥
(

ε̂(d(N))

C2(d(N) + 3) |B1|

)2 A(Ω̃)2

C8
, if α(Ω̃) > ε̂(d(N)).

Setting

c = min

{
σ̂(d(N)) |B1|2

C1
,

1

C8

(
ε̂(d(N))

C2(d(N) + 3) |B1|

)2
}
,

thanks to (5.7), (5.18) and (5.19) and since δ(N) ≤ 1 we get

c

2
A(Ω) ≤ c

2

(
A(Ω̃) + C9D(Ω)

)2
≤ cA(Ω̃)2 + cC2

9 D(Ω)2

≤ D(Ω̃) + cC2
9 D(Ω)2 ≤ C9D(Ω) + cC2

9 D(Ω)2 ≤ C9 (1 + cC9)D(Ω).

If we now define

σE = min

{
c

2C9 (1 + cC9)
,
δ(N)

4

}
,

we get the desired conclusion. �

Appendix A. Proof of Lemma 3.4

In this Appendix we briefly sketch the proof of Lemma 3.4, referring to [16] for more details. We
start with the following:

Lemma A.1. Given γ ∈ (0, 1] there exists δ4 = δ4(N, γ) > 0 and a modulus of continuity ω̂ such

that for every nearly spherical set Ω parametrized by ϕ with ‖ϕ‖C2,γ(∂B1) ≤ δ4 and |Ω| = |B1|, we
can find an autonomous vector field Xϕ for which the following holds true:

(i) divXϕ = 0 in a δ4-neighborhood of ∂B1;

(ii) if Φt := Φ(t, x) is the flow of Xϕ, i.e.

∂tΦt = Xϕ(Φt) Φ0(x) = x,

then Φ1(∂B1) = ∂Ω and |Φt(B1)| = |B1| for all t ∈ [0, 1].
(iii) We have

(A.1)
∥∥Φt − Id

∥∥
C2,γ ≤ ω̂

(
‖ϕ‖C2,γ(∂B1)

)
for every t ∈ [0, 1],

(A.2)
∥∥ϕ− (Xϕ · νB1

)
∥∥
H1/2(∂B1)

≤ ω̂
(
‖ϕ‖L∞(∂B1)

)
‖ϕ‖H1/2(∂B1)

.

and

(A.3) (X · θ) ◦ Φt −X · νB1
= (X · νB1

)ψt on ∂B1

with ‖ψt‖C2,γ(∂B1) ≤ ω̂(‖ϕ‖C2,γ(∂B1)).

Proof. The construction is general and can be done in the neighborhood of every sufficiently smooth
set, see [16, Proposition 1] and [1, Theorem 3.7]. In the case of the ball we can however give an
explicit expression for Xϕ and for its flow Φt in a neighborhoodd of ∂B1. More precisely in polar
coordinates, x = ̺ θ, ̺ = |x|, θ = x/|x| ∈ ∂B1, we define for |̺− 1| ≤ δ4 ≪ 1,

(A.4) Xϕ(ρ, θ) =

(
1 + ϕ(θ)

)N − 1

NρN−1
θ Φt(ρ, θ) =

[
ρN + t

((
1 + ϕ(θ)

)N − 1
)]1/N

θ,

7We note that in this part of the argument it is not really need the power law relation between D(Ω) and A(Ω)
given by (5.5), it would be sufficient to know that A(Ω) → 0 as D(Ω) → 0.
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and we globally extend the vectorfield (and hence the flow) in order to satisfy (A.1). In this way
points (i) (ii) and equations (A.1) and (A.3) follow by direct computation. For equation (A.2)
notice that, on ∂B1

ϕ−Xϕ · ν∂B1
=

1

N

N∑

h=2

(
N

h

)
ϕh.

Since harmonic functions minimize the Dirichlet energy with respect to their own boundary data
we get (recalling the notations of Definition 3.2)

∫

B1

∣∣∣∇H
(
ϕh
)∣∣∣

2
dx ≤

∫

B1

∣∣∣∇
(
H(ϕ)

)h∣∣∣
2
dx for every h ≥ 1.

Hence, a straightforward computation gives
∥∥ϕ− (Xϕ · ν∂B1

)
∥∥
H1/2(∂B1)

≤ C(N)
(
‖H(ϕ)‖L∞(B1) + ‖ϕ‖L∞(∂B1)

)
‖ϕ‖H1/2(∂B1)

.

Since, by the maximum principle, ‖H(ϕ)‖L∞(B1) ≤ ‖ϕ‖L∞(∂B1), we conclude the proof. �

With Φt and Xϕ as above, we now set Ωt = Φt(B1) and

e(t) := E(Ωt) = −1

2

∫

Ωt

|∇ut|2 dx,

where ut = uΩt is the energy function of Ωt, i.e.

(A.5)

{
−∆ut = 1 in Ωt

ut = 0 on ∂Ωt.

We want to compute e′(t) and e′′(t). For this we recall that the map t 7→ ut is differentiable, see
for instance [25, Theorem 5.3.1], and that its derivative u̇t satisfies

(A.6)

{
−∆u̇t = 0 in Ωt

u̇t = −∇ut ·Xϕ on ∂Ωt.

Recalling Hadamard formula (see [25, Section 5.2]), for every f sufficiently smooth

d

dt

∫

Ωt

f(t, x) dx =

∫

Ωt

∂tf(t, x) dx+

∫

∂Ωt

f(t, x)(Xϕ · ν∂Ωt) dHN−1,

we can now compute (dropping the subscript ϕ for notational simplicity)

e′(t) = −
∫

Ωt

∇ut · ∇u̇t dx− 1

2

∫

∂Ωt

|∇ut|2(X · νΩt) dHN−1

= −1

2

∫

∂Ωt

|∇ut|2(X · νΩt) dHN−1 = −1

2

∫

Ωt

div
(
|∇ut|2X

)
dx,

(A.7)

where we have used that since u̇t is harmonic and ut ∈W 1.2
0 (Ωt), their gradient are L

2 orthogonal.
Differentiating again, using Hadamard formula and that X is autonomous we get

e′′(t) =−
∫

∂Ωt

(
∇ut · ∇u̇t

)(
X · νΩt

)
dHN−1 − 1

2

∫

∂Ωt

div
(
|∇ut|2X

)(
X · νΩt

)
dHN−1.(A.8)

Since ut is positive and vanishes on ∂Ωt,

(A.9) ∇ut = −|∇ut|νΩt on ∂Ωt,

hence

∇ut · ∇u̇t = −|∇ut| · (∇u̇t · νΩt

)
.
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Moreover, by (A.6) and (A.9), u̇t = |∇ut|
(
X · νΩt

)
, so that equation (A.8) becomes

e′′(t) =
∫

∂Ωt

u̇t ∂ν u̇t dHN−1 −
∫

∂Ωt

(
X · νΩt

)(
∇2ut[∇ut] ·X

)
dHN−1 − 1

2

∫

∂Ωt

|∇ut|2div(X)
(
X · νΩt

)

=

∫

∂Ωt

u̇t ∂ν u̇t dHN−1 −
∫

∂Ωt

(
X · νΩt

)(
∇2ut[∇ut] ·X

)
dHN−1

(A.10)

where ∂ν u̇t = ∇u̇t · νΩt is the normal derivative of u̇t and we have used that divX = 0 in a
neighborhood of ∂B1 (where ∂Ωt is contained). Since on ∂Ωt = {ut = 0} we have

−1 = ∆ut = −|∇u|H∂Ωt +∇2ut[ν∂Ωt ] · ν∂Ωt

where H∂Ωt is the mean curvature of ∂Ωt computed with respect to the exterior normal. Hence, we
finally get, taking also into account (A.9) and defining Xτ = X−(X ·ν) ν the tangential component
of X,

e′′(t) =
∫

∂Ωt

u̇t ∂ν u̇t dHN−1 +

∫

∂Ωt

|∇ut|
(
X · νΩt

)2(∇2ut[ν∂Ωt ] · ν∂Ωt

)
dHN−1

−
∫

∂Ωt

(
X · νΩt

)(
∇2ut[∇ut] ·Xτ

)
dHN−1

=

∫

Ωt

|∇u̇t|2 dx−
∫

∂Ωt

(
X · νΩt

)2|∇ut| dHN−1 +

∫

∂Ωt

(
X · νΩt

)2|∇ut|2H∂Ωt dHN−1

−
∫

∂Ωt

(
X · νΩt

)(
∇2ut[∇ut] ·Xτ

)
dHN−1.

(A.11)

Notice that in the last equality we have used Green formula in the first term (recall the u̇t is
harmonic). We now observe that H∂B1

= (N − 1), Xτ = 0 on ∂B1,

u0 = uB1
=

1− |x|2
2N

in B1,

and that8 u̇0 = H(X · ∇u0). By using these facts in equation (A.11) at t = 0, we get

e′′(0) =
∫

B1

|∇H(X · ∇u0)|2 dx+

∫

∂B1

[
(N − 1) |∇u0| − 1

]
|∇u0|

(
X · νB1

)2 dHN−1

=
1

N2

(∫

B1

|∇H(X · νB1
)|2 dx−

∫

B1

(
X · νB1

)2 dHN−1

)
.

(A.12)

Lemma A.2. Let γ ∈ (0, 1], there exist δ5 = δ5(N, γ) and a modulus of continuity ω̃ such that if

Ω, ϕ, Xϕ and Φt are as in Lemma A.1 and ‖ϕ‖C2,γ ≤ δ5, then

(A.13) |e′′(t)− e′′(0)| ≤ ω̃
(
‖ϕ‖C2,γ

)∥∥Xϕ · νB1
‖2
H1/2(∂B1)

.

Proof. We start from (A.11) and pull it back on B1 through Φt:

e′′(t) =
∫

B1

∣∣∇u̇t
∣∣2 ◦ Φt det∇Φt dx

−
∫

∂B1

{(
X · νΩt

)2|∇ut| −
(
X · νΩt

)2|∇ut|2 H∂Ωt

}
◦ Φt J

∂B1Φt dHN−1

−
∫

∂B1

{(
X · νΩt

)(
∇2ut[∇ut] ·Xτ

)}
◦ Φt J

∂B1Φt dHN−1

:= I1(t) + I2(t) + I3(t),

(A.14)

8Here we are using the notations of Definition 3.2



34 BRASCO, DE PHILIPPIS, AND VELICHKOV

where J∂B1Φt is the tangential Jacobian of Φt (see [29, Section 11.1]) and we have dropped the
subscript ϕ for notational simplicity. By (A.1) we get

(A.15)
∥∥H∂Ωt ◦Φt−H∂B1

∥∥
L∞(∂B1)

+
∥∥J∂B1Φt− 1

∥∥
L∞(∂B1)

+
∥∥ det∇Φt− 1

∥∥
L∞(B1)

≤ ω
(
‖ϕ‖C2,γ

)
.

where here and in the following ω will just denote a modulus of continuity whose precise expression
will change line by line. Moreover pulling back to B1 the equation satisfied by ut, i.e. considering
the equation satisfyied by ut ◦ Φt on B1, Schauder estimates give

(A.16) ‖u− ut ◦ Φt‖C2,γ(B1)
≤ ω

(
‖ϕ‖C2,γ

)
.

By Lemma A.1 (i), X is parallel to θ = x/|x| in neighborhood of ∂B1, hence

∣∣(X · νΩt) ◦ Φt −X · νB1

∣∣ =
∣∣((X · θ) ◦ Φt

) (
(θ · νΩt) ◦ Φt

)
−X · νB1

∣∣

≤
∣∣(X · θ) ◦ Φt

∣∣ ∣∣(θ · νΩt) ◦ Φt − 1
∣∣+
∣∣(X · θ) ◦ Φt −X · νB1

∣∣

≤ ω
(
‖ϕ‖C2,γ

)
|X · νB1

|.
(A.17)

where in the last inequality we have used (A.3). With the same computations we also get,

(A.18) |Xτ ◦ Φt| ≤ ω
(
‖ϕ‖C2,γ

)
|X · νB1

|.

By (A.15)–(A.18) we deduce

(A.19)
∣∣I2(t)− I2(0)

∣∣+
∣∣I3(t)

∣∣ ≤ ω
(
‖ϕ‖C2,γ

) ∥∥X · νB1

∥∥2
L2(∂B1)

.

Since I3(0) = 0, we are left to estimate I1(t) − I1(0). Defining vt = u̇t ◦ Φt we have ∇vt =
(∇Φt)

T ∇ut ◦ Φt, where M
T denotes the transposition of a matrix M . Hence, taking into account

(A.1) and (A.15), it is an easy computation to see that the proof of the Lemma will be concluded
once we have shown that

(A.20)
∣∣∣
∫

B1

|∇vt|2 − |∇u̇0|2 dx
∣∣∣ ≤ ω

(
‖ϕ‖C2,γ

)∥∥X · νB1

∥∥2
H1/2(∂B1)

.

Now, from (A.6), we see that vt solves the linear elliptic problem

{
div
(
Mt∇vt

)
= 0 in B1,

vt = −(∇ut ·X) ◦ Φt on ∂B1,

where Mt is the symmetric positive definite matrix given by

Mt = det∇Φt

(
(∇Φt)

−1
)T

(∇Φt)
−1.

Hence, classical elliptic estimates together with (A.1) give

∥∥∇vt −∇u̇0
∥∥
L2(B1)

≤ C(N)
(∥∥(Mt − Id

)
∇vt

∥∥
L2(B1)

+
∥∥(∇ut ·X) ◦ Φt −∇u0 ·X

∥∥
H1/2(∂B1)

)

≤ ω
(
‖ϕ‖C2,γ

) ∥∥∇vt
∥∥
L2(B1)

+ C(N)
∥∥(∇ut ·X) ◦ Φt −∇u0 ·X

∥∥
H1/2(∂B1)

.

(A.21)
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Now by Lemma A.1 (i) X = (X · θ) θ, where θ = x/|x|. Since ∇u0 = −|∇u0| θ on ∂B1, by using
(A.3) and (A.16) we get

∥∥(∇ut ·X) ◦ Φt −∇u0 ·X
∥∥
H1/2(∂B1)

≤
∥∥{(∇ut · θ) ◦ Φt − (∇u0 · θ)

}
(X · θ) ◦ Φt

∥∥
H1/2(∂B1)

+
∥∥|∇u0|

(
(X · θ) ◦ Φt −X · νB1

)∥∥
H1/2(∂B1)

≤
∥∥{(∇ut ◦ Φt −∇(ut ◦ Φt)

)
· (θ ◦ Φt)

}
(X · θ) ◦ Φt

∥∥
H1/2(∂B1)

+
∥∥{∇(ut ◦ Φt) · (θ ◦ Φt)− (∇u0 · θ)

}
(X · θ) ◦ Φt

∥∥
H1/2(∂B1)

+
∥∥|∇u0|

(
(X · θ) ◦ Φt −X · νB1

)∥∥
H1/2(∂B1)

≤ ω
(
‖ϕ‖C2,γ

)∥∥∇u0 ·X
∥∥
H1/2(∂B1)

.

(A.22)

Equations (A.21) and (A.22) imply
∥∥∇vt −∇u̇0

∥∥
L2(B1)

≤ ω
(
‖ϕ‖C2,γ

) (∥∥∇vt
∥∥
L2(B1)

+
∥∥∇u0 ·X

∥∥
H1/2(∂B1)

)

≤ ω
(
‖ϕ‖C2,γ

) (∥∥∇vt −∇u̇0
∥∥
L2(B1)

+
∥∥∇u̇0

∥∥
L2(B1)

+
∥∥∇u0 ·X

∥∥
H1/2(∂B1)

)

≤ ω
(
‖ϕ‖C2,γ

) (∥∥∇vt −∇u̇0
∥∥
L2(B1)

+ 2
∥∥∇u0 ·X

∥∥
H1/2(∂B1)

)
,

(A.23)

where in the last inequality we have used Definition 3.2, since u̇0 = −H(∇u0 ·X). Choosing δ5 so
that ω

(
‖ϕ‖C2,γ

)
≤ 1/2, we finally get

(A.24) ‖∇vt −∇u̇0‖L2(B1)
≤ 4ω

(
‖ϕ‖C2,γ

)∥∥∇u0 ·X
∥∥
H1/2(∂B1)

.

Since, clearly
∣∣∣
∫

B1

|∇vt|2 − |∇u̇0|2 dx
∣∣∣ ≤ ‖∇vt −∇u̇0‖L2(B1)‖∇vt +∇u̇0‖L2(B1)

≤ 2 ‖∇u̇0‖L2(B1) ‖∇vt −∇u̇0‖L2(B1) + ‖∇vt −∇u̇0‖2L2(B1)
,

equation (A.20) follows from (A.24) and our definition of H1/2 norm. �

We can now prove Lemma 3.4.

Proof of Lemma 3.4. By Taylor formula,

(A.25) E(Ω) = E(B1) + e′(0) +
1

2
e′′(0) +

∫ 1

0
(1− s)

(
e′′(s)− e(0)

)
ds.

Since |Ωt| = |B1|, by the Saint-Venant inequality we have e′(0) = 0. Equation (A.12) gives

e′′(0) =
1

N2

(∫

B1

|∇H(X · νB1
)|2 dx−

∫

B1

(
X · νB1

)2 dHN−1
)

= ∂2E(B1)
[
X · νB1

, X · νB1

]
.

Since,
∣∣∣∂2E(B1)

[
X · νB1

, X · νB1

]
− ∂2E(B1)

[
ϕ,ϕ

]∣∣∣ ≤ ‖X · νB1
− ϕ‖H1/2(∂B1)

‖X · νB1
+ ϕ‖H1/2(∂B1)

equation (3.4) follows by (A.2), (A.25) and (A.13). �
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Joliot Curie, 13453 Marseille Cedex 13, France

E-mail address: lorenzo.brasco@univ-amu.fr

G. D. P. Hausdorff Center for Mathematics, Endenicher Allee 62, D-53115 Bonn, Germany

E-mail address: guido.de.philippis@hcm.uni-bonn.de

B. V. Scuola Normale Superiore di Pisa Piazza dei Cavalieri 7, 56126 Pisa, Italy

E-mail address: b.velichkov@sns.it


