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Introduction

Newton's cradle is a nonlinear mechanical system consisting of a chain of identical beads suspended from a bar by inelastic strings (see figure 1). All beads behave like pendula in the absence of contact with nearest neighbors, i.e. they perform time-periodic oscillations in a local confining potential Φ(x) = 1 2 x 2 +O(x 4 ) 1 due to gravity. More generally, the local potential Φ may account for different types of stiff attachments [START_REF] James | Breathers in oscillator chains with Hertzian interactions[END_REF] or an elastic matrix surrounding the beads [START_REF] Lavigne | Wave propagation in one dimensional confined granular media[END_REF][START_REF] Hasan | Primary pulse transmission in coupled steel granular chains embedded in PDMS matrix: experiment and modeling[END_REF]. Mechanical constraints between touching beads can be described by the Hertzian interaction potential V (r) = k 1+α (-r) α+1 + , where (a) + = max(a, 0), k depends on the ball radius and material and α = 3/2. The dynamical equations read in dimensionless form [START_REF] Hutzler | Rocking Newton's cradle[END_REF] (1.1) ẍn + Φ ′ (x n ) = V ′ (x n+1 -x n ) -V ′ (x n -x n-1 ), n ∈ Z,

x n being the horizontal displacement of the nth bead from its equilibrium position at which the pendulum is vertical. Contact interactions between beads induce a nonlinear coupling, which can lead to complex dynamical phenomena like the propagation of solitary waves [Nes01, FW94, Mac99, EP05, SK12, JKC13], modulational instabilities [Jam11, JKC13, BTJKPD10] and the excitation of spatially localized stationary (timeperiodic) or moving breathers [TBKJPD10, Jam11, SHVM12, JCK12, JKC13]. For small amplitude oscillations, it has been recently argued that such dynamical phenomena can be captured by the discrete p-Schrödinger (DpS) equation

(1.2) 2iτ 0 Ȧn = (A n+1 -A n ) |A n+1 -A n | α-1 -(A n -A n-1 ) |A n -A n-1 | α-1 ,
with some time constant τ 0 depending on α. More precisely, static breather solutions to (1.1) were numerically computed in [START_REF] James | Breathers in oscillator chains with Hertzian interactions[END_REF] and compared to approximate solutions of the form

(1.3) x app n (t) = 2 ε Re [ A n (ε α-1 t) e it ],
where ε ≪ 1 and A n denotes a breather solution to the DpS equation (1.2), which depends on the slow time variable τ = ε α-1 t. For small amplitudes, the Ansatz (1.3) was found to approximate breather solutions to (1.1) with good accuracy [START_REF] James | Breathers in oscillator chains with Hertzian interactions[END_REF], and the same property was established in [START_REF] James | Nonlinear waves in Newton's cradle and the discrete p-Schrödinger equation[END_REF] for periodic traveling waves. Moreover, a small amplitude velocity perturbation at the boundary of a semi-infinite chain (1.1) generates a traveling breather whose profile is qualitatively close to (1.3), where A n corresponds to a traveling breather solution of the DpS equation [START_REF] Starosvetsky | Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations[END_REF][START_REF] James | Breathers in oscillator chains with Hertzian interactions[END_REF].

In this paper, we put the relation between the original lattice (1.1) and the DpS equation onto a rigorous footing. Our main result can be stated as follows (a more precise statement extended to more general potentials is given in theorem 2.15, section 2.6). Given a smooth (C 2 ) solution A = (A n (τ )) n∈Z to (1.2) defined for τ ∈ [0, T ], if an initial condition for (1.1) is O(ε α )-close to the Ansatz (1.3) at t = 0, then the corresponding solution to (1.1) remains O(ε α )-close to the approximation (1.3) on O(ε 1-α ) time scales. These error estimates hold in the usual sequence spaces ℓ p with 1 ≤ p ≤ +∞. In addition, if A is a global and bounded solution to (1.2) in ℓ p (Z) and δ ∈ (1, α) is fixed, then the same procedure yields O(| ln ε| ε δ )-close approximate solutions up to times t = O(| ln ε| ε 1-α ) (theorem 2.20). Moreover, similar estimates allow one to approximate the evolution of all sufficiently small initial data to (1.1) in (ℓ p (Z)) 2 (theorems 2.19 and 2.21).

Two applications of the above error estimates are presented. Firstly, for all nontrivial solutions A of the DpS equation in ℓ 2 (Z) we demonstrate that inf τ ∈R A(τ ) ∞ > 0, i.e. solutions associated with localized (square-summable) initial conditions do not completely disperse. Using this result and the above error bounds, we estimate the maximal decay of small amplitude solutions to (1.1) over long times for a large class of localized initial conditions. Secondly, from a breather existence theorem proved in [START_REF] James | Breather solutions of the discrete p-Schrödinger equation[END_REF] for the DpS equation, we deduce the existence of stable small amplitude "long-lived" breather solutions to equation (1.1), which remain close to time-periodic and spatially localized oscillations over long times. This result completes a previous existence theorem for stationary breather solutions of (1.1) proved in [START_REF] James | Breathers and surface modes in oscillator chains with Hertzian interactions[END_REF], which was restricted to anharmonic on-site potentials Φ and small values of the coupling constant k. More generally, the present justification of the DpS equation is also useful in the context of numerical simulations of granular chains. Indeed, the DpS system is much easier to simulate than equation (1.1) due to the fact that fast local oscillations have been averaged, which allows to perform larger numerical integration steps.

Our results are in the same spirit as rigorous derivations of the continuum cubic nonlinear Schrödinger or Davey-Stewartson equations, which approximate the evolution of the envelope of slowly modulated normal modes in a large class of nonlinear lattices [GM04, GM06, BCP09, Sch10] and hyperbolic systems [DJMR95, JMR98, Sch98, Col02, CL04]. In addition, our extension of the error bounds up to times τ growing logarithmically in ε (theorem 2.20) is reminiscent of refined approximations of nonlinear geometric optics derived in [START_REF] Lannes | Validity of nonlinear geometric optics with times growing logarithmically[END_REF]. A specificity of our result is the spatially discrete character of the amplitude equation (1.2), which allows one to describe nonlinear waves with rather general spatial behaviors (see theorem 2.19 and 2.21). Another particular feature of our study is the fact that potentials and nonlinearities can have limited smoothness, so that high-order corrections seem hardly available.

The outline of the paper is as follows. In section 2.1, we introduce a generalized version of system (1.1) involving more general potentials, which is reformulated as a first order differential equation in (ℓ p (Z)) 2 . Section 2.2 presents elementary properties of periodic solutions to the linearized evolution problem, which will be used in the subsequent analysis. The well-posedness of the Cauchy problem for the nonlinear evolution equation is established in section 2.3. In section 2.4, we perform a formal multiple-scale analysis, yielding approximate solutions to (1.1) consisting of slow modulations of periodic solutions. In this approximation, the leading term (1.3) is supplemented by a higher-order corrector. Some qualitative properties of the amplitude equation are detailed in section 2.5, including well-posedness and the study of spatially localized solutions. The main results on the justification of the multiple-scale analysis from error bounds are stated in section 2.6. The error bounds are derived in sections 2.6 and 3 (the later contains the proof of theorems 2.15 and 2.20, which are mainly based on Gronwall estimates). Section 4 provides a discussion of the above results and points out some open problems, and some technical results are detailed in the appendix.

2 Dynamical equations and multiple-scale analysis

Nonlinear lattice model

We first introduce a more general version of system (1.1) incorporating a larger class of potentials. We consider an interaction potential

V ∈ C 2 (R, R) of the form V = V α + W , where (2.1) V α (r) = k- 1+α |r| α+1 for r ≤ 0, k+ 1+α r α+1 for r ≥ 0,
and α > 1, (k -, k + ) = (0, 0). In addition, W is a higher order correction satisfying

(2.2) W ′ (0) = 0, W ′′ (r) = O(|r| α-1+β ) as r → 0,
for some constant β > 0. We can therefore write W ′ (r) = |r| α ρ(r) where ρ(r) = O(|r| β ) as r → 0. Under the above assumptions, the principal part of V satisfies V ′ α (λ r) = λ α V ′ α (r) for all r ∈ R and λ > 0. Note that one recovers the classical Hertzian potential by fixing k -= k > 0, k + = 0 and W = 0. The case k -= k + and W = 0 corresponds to an homogeneous even interaction potential.

In addition, the local potential Φ is assumed of the form Φ

(x) = 1 2 x 2 + φ(x), where φ ∈ C 2 (R, R) satisfies (2.3) φ ′ (0) = 0, φ ′′ (x) = O(|x| α-1+γ ) as x → 0,
for some constant γ > 0. We have therefore φ

′ (x) = |x| α χ(x) with χ(x) = O(|x| γ ) as x → 0.
The particular case of an harmonic on-site potential Φ is obtained by fixing φ = 0. The dynamical equations read

(2.4) ẍn + x n = F (x) n , n ∈ Z,
where

F (x) n = V ′ (x n+1 -x n ) -V ′ (x n -x n-1 ) -φ ′ (x n ), n ∈ Z.
From the above assumptions, the leading order nonlinear terms of (2.4) originate from the interaction potential V α . We denote x = (x n ) n∈Z and address solutions x(t) ∈ ℓ p ≡ ℓ p (Z, R). Throughout the paper we assume p ∈ [1, ∞] unless explicitly stated.

In what follows we reformulate equation (2.4) as a first order differential equation governing the X = (x, ẋ) T variable where X(t) ∈ ℓ 2 p . This equation reads

(2.5) Ẋ = J X + G(X),
where

J = 0 Id -Id 0 , G(X 1 , X 2 ) = 0 F (X 1 ) ,
and Id is the identity map in ℓ p . Using the usual difference operators (δ + x) n = x n+1 -x n and (δ -x) n = x n -x n-1 , we can write F in a compact form:

F (x) = δ + V ′ (δ -x) -φ ′ (x).
The Banach spaces ℓ 2 p are equipped with the following norms (2.6)

X p = n∈Z (x 2 n + ẋ2 n ) p/2 1/p if 1 ≤ p < ∞, X ∞ = sup n∈Z (x 2 n + ẋ2 n ) 1/2 .
The map G is smooth and fully-nonlinear in ℓ 2 p , as shown by the following lemma. Below and in the rest of the paper, we use the abbreviations c.n.d.f. for continuous non-decreasing functions and c.n.i.f. for continuous non-increasing functions.

Lemma 2.1. The map G ∈ C 1 (ℓ 2 p , ℓ 2 p ) satisfies

(2.7) G(X) p = O( X α p ), DG(X) L(ℓ 2 p ) = O( X α-1 p )
when X → 0 in ℓ 2 p . Moreover, G and DG are bounded on bounded sets in ℓ 2 p , and there exist c.n.d.f. C G , C D such that for all

X ∈ ℓ 2 p (2.8) G(X) p ≤ C G ( X ∞ ) X p , DG(X) L(ℓ 2 p ) ≤ C D ( X ∞ ).
Proof. It is a classical result that the functions f = V ′ or f = φ ′ can be viewed as smooth operators on ℓ p (Z, R) via (f (x))

n def = f (x n ).
The property V ′ ∈ C 1 (ℓ p , ℓ p ) follows from the continuous embedding ℓ p ⊂ ℓ ∞ , the fact that V ′ ∈ C 1 (R), V ′ (0) = 0 and V ′′ is uniformly continuous on compact intervals. The property φ ′ ∈ C 1 (ℓ p , ℓ p ) follows from the same arguments. These properties imply that F ∈ C 1 (ℓ p , ℓ p ) and G ∈ C 1 (ℓ 2 p , ℓ 2 p ).

Moreover, standard estimates yield the following inequalities for f = V ′ , φ ′ and all x ∈ ℓ p , (2.9)

Df (x) L(ℓp) ≤ M f ( x ∞ ), f (x) p ≤ M f ( x ∞ ) x p ,
where M f (d) = sup [0,d] |f ′ | defines a c.n.d.f. of d ∈ R + . These estimates yield the bounds (2.8), hence G and DG are bounded on bounded sets in ℓ 2 p due to the continuous embedding ℓ p ⊂ ℓ ∞ . Moreover, (2.7) follows by combining (2.9) with the bounds

M V ′ (r) = O(r α-1 ), M φ ′ (r) = O(r α-1+γ ), r → 0 + ,
which originate from properties (2.1), (2.2) and (2.3).

In section 2.3, we prove the local well-posedness in ℓ 2 p of the Cauchy problem associated with (2.5), and its global well-posedness for 1 ≤ p ≤ 2 when V ≥ 0 and φ ≥ 0. To obtain global solutions, we use the fact that the Hamiltonian (2.10)

H = n∈Z 1 2 ẋ2 n + 1 2 x 2 n + φ(x n ) + V (x n+1 -x n )
is a conserved quantity of (2.4).

Periodic solutions to the linearized equation

In this section, we consider the time-periodic solutions to the linearized dynamical equations which constitute the basic pattern slowly modulated in section 2.4. We present some elementary properties of these solutions, solve the nonhomogeneous linearized equations and compute the associated solvability conditions. This result will be used in section 2.4 to derive the amplitude equation (1.2) as a solvability condition and obtain the expression of a higher-order corrector to approximation (1.3), following a usual multiple-scale perturbation scheme (see e.g. [SS99], section 1.1.3).

Equation (2.4) linearized at x n = 0 reads (2.11) ẍn + x n = 0, n ∈ Z, or equivalently

(2.12)

X ′ = J X.
Its solutions are 2π-periodic and take the form

x n (t) ẋn (t) = a n e it e 1 + c.c.,
where c.c. denotes the complex conjugate, e ±1 = (1/ √ 2)(1, ±i) T and a n = (x n (0) -i ẋn (0))/ √ 2. Moreover, assuming X(0) ∈ ℓ 2 p corresponds to imposing (a n ) n∈Z ∈ ℓ p (Z, C). In a more compact form, the solution X = (x, ẋ) T to equation (2.12) with initial condition X(0) = X 0 = (x 0 , ẋ0 ) T reads

X(t) = e Jt X 0 = cos t sin t -sin t cos t X 0 (2.13) = (π 1 X 0 ) e it e 1 + (π -1 X 0 ) e -it e -1 (2.14)
where π ±1 ∈ L(ℓ 2 p , ℓ p (Z, C)) are defined by

π ±1 x ẋ = 1 √ 2 (x ∓ i ẋ), so that π 1 X 0 = (a n ) n∈Z .
Remark 2.2. One can notice that x 2 n + ẋ2 n is a conserved quantity of (2.11) for all n ∈ Z. With the choice of norm (2.6), X(t) p is conserved along evolution for solutions to (2.12) and it follows that e Jt L(ℓ 2 p ) = 1 for all t ∈ R. Moreover we have X(t) p = X 0 p = √ 2 π ±1 X 0 p . In what follows we consider the nonhomogeneous linearized equation

(2.15) Ẋ = J X + U,
where U : R → ℓ 2 p is 2π-periodic, and derive compatibility conditions on U allowing for the existence of 2π-periodic solutions to (2.15). We denote S 1 = R/2πZ the periodic interval [0, 2π] and consider the function spaces Proof. Given U ∈ C 0 (R, ℓ 2 p ), the differential equation (2.15) with initial condition X(0) = X 0 ∈ ℓ 2 p has a unique solution X ∈ C 1 (R, ℓ 2 p ) given by the Duhamel integral (2.17)

X 0 = C 0 (S 1 , ℓ 2 p ) and X 1 = C 1 (S 1 , ℓ 2 p ) endowed
X(t) = e Jt X 0 + t 0 e J(t-s) U (s) ds. Now let us assume U ∈ X 0 . In this case, X is 2π-periodic iff X(2π) = X(0). Since e J2π = Id, this condition is realized when 2π 0 e -Js U (s) ds = 0, which is equivalent to condition (2.18) π ±1 2π 0 e ∓it U (t) dt = 0
due to identity (2.14). Since U is real and π 1 z = π -1 z, condition (2.18) reduces simply to (2.16).

The above results yield the following splitting of X 0 .

Lemma 2.4. The operator ∂ t -J maps X 1 to X 0 , and we have the splitting

X 0 = ker(∂ t -J) ⊕ range(∂ t -J). The corresponding projector P on ker(∂ t -J) along range(∂ t -J) reads P X = ζ(X)e it e 1 + ζ(X)e -it e -1 , where ζ ∈ L(X 0 , ℓ p (Z, C)) is defined by ζ(X) = 1 2π 2π 0 e -it π 1 X(t) dt.
Proof. It is clear that P ∈ L(X 0 ) defines a projection and range P = ker(∂ t -J) by identity (2.14). Moreover, condition (2.16) shows that ker

P = range(∂ t -J), hence X 0 = range P ⊕ ker P = ker(∂ t -J) ⊕ range(∂ t -J).
Now one can deduce the following result from expression (2.17) and lemma 2.4.

Lemma 2.5. For all U ∈ X 0 satisfying (2.18) (or equivalently

P U = 0), equation (2.15) has a unique solution in X 1 ∩ range(∂ t -J) given by (2.19) X(t) = (K U )(t) = (I -P ) t 0 e J(t-s) U (s) ds.
Moreover, the linear operator

K def = K (I -P ) : X 0 → X 1 is bounded.

Well-posedness of the nonlinear evolution problem

The following result ensures the local well-posedness of the Cauchy problem for (2.5) in ℓ 2 p , and its global well-posedness for positive potentials when 1 ≤ p ≤ 2. In addition we derive a crude lower bound on the maximal existence times for small initial data (estimate (2.20)).

Lemma 2.6. For all initial condition X(0) = X 0 ∈ ℓ 2 p , equation (2.5) admits a unique solution X ∈ C 2 ((t -, t + ), ℓ 2 p ), defined on a maximal interval of existence (t -, t + ) depending a priori on X 0 (with t -< 0 < t + ). In addition, there exists T 0 > 0 such that for X(0) p small enough

(2.20) t + > T 0 X(0) 1-α p , t -< -T 0 X(0) 1-α p . Moreover, for p ∈ [1, 2], if V ≥ 0 and φ ≥ 0 then (t -, t + ) = R and X ∈ L ∞ (R, ℓ 2 2 ). Proof. Since G is C 1 in ℓ 2
p , it follows that the Cauchy problem for (2.5) is locally well-posed in ℓ 2 p (see e.g. [START_REF] Zeidler | Applied Functional Analysis. Main Principles and their Applications[END_REF], section 4.9). More precisely, for all initial condition X(0) = X 0 ∈ ℓ 2 p , equation (2.5) admits a unique solution X ∈ C 1 ((t -, t + ), ℓ 2 p ), defined on a maximal interval of existence (t -, t + ) depending a priori on X 0 (with t -< 0 < t + ). Then a bootstrap argument yields X ∈ C 2 ((t -, t + ), ℓ 2 p ). Now let us prove (2.20) by Gronwall-type estimates. Equation (2.5) can be expressed in Duhamel form (2.21)

X(t) = e Jt X(0) + t 0 e J(t-s) G(X(s)) ds,
where we recall that e Jt L(ℓ 2 p ) = 1. In addition, by lemma 2.1 there exist R, λ > 0 such that

(2.22) G(X) p ≤ λ X α p for all X ∈ ℓ 2 p with X p ≤ R.
Denote by ε a small parameter and fix X(0) p = ε. From the above properties we deduce

X(t) p ≤ ε + λ t 0 X(s) α p ds, 0 ≤ t ≤ t 1 ,
where

t 1 = sup{ t ≥ 0, X(t) p ≤ R }. This yields the estimate (2.23) X(t) p ≤ ̺ ε,λ (t), 0 ≤ t ≤ t 1 ,
where ̺ ε,λ is the solution to the differential equation

(2.24) ̺ ′ = λ ̺ α , ̺(0) = ε whose explicit form is (2.25) ̺ ε,λ (t) = ε [ 1 -(α -1) λ ε α-1 t ] 1 1-α .
We note that ̺ ε,λ blows up at t = ε 1-α [λ (α -1)] -1 . Consequently, we fix θ ∈ (0, 1) and introduce

t ε = T 0 ε 1-α with T 0 = (1 -θ) [λ (α -1)] -1
, and hence for all t ∈ [0, t ε ] we have 

(2.26) ̺ ε,λ (t) ≤ ̺ ε,λ (t ε ) = ε θ 1 1-α . Now let us assume X(0) p = ε ≤ θ 1 α-1 R.
X(t) p ≤ θ 1 1-α ε for |t| ≤ t ε ,
where the estimate for t ≤ 0 is the same as for t ≥ 0 due to the time-reversibility of (2.5) inherited from (2.4). Consequently, X(t) is defined and

O(ε) in ℓ 2 p at least for t ∈ [-t ε , t ε ], which proves (2.20).
In addition, the existence of a global solution to (2.5) in ℓ 2 2 can be proved when V ≥ 0 and φ ≥ 0, using the fact that the Hamiltonian (2.10) is a conserved quantity of (2.4). Indeed, for all initial condition X(0) = X 0 ∈ ℓ 2 2 and for all t ∈ (t -, t + ) we have in that case (2.28)

X(t) 2 2 ≤ 2H = X 0 2 2 + 2 n∈Z φ(x n (0)) + V (x n+1 (0) -x n (0)) ,
and thus X ∈ L ∞ (R, ℓ 2 2 ). Lemma 2.1 ensures that G and DG are bounded on bounded sets in ℓ 2 2 . Together with the uniform bound (2.28) on the solution X, this property implies that (t -, t + ) = R (see e.g. [START_REF] Reed | Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness[END_REF], theorem X.74).

Similar arguments can be used for global well-posedness in ℓ 2 p with p ∈ [1, 2), except one uses the fact that X(t) p is bounded on bounded time intervals. Indeed, the following estimate follows from equation (2.21) and lemma 2.1

X(t) p ≤ X(0) p + t 0 C G ( X(s) ∞ ) X(s) p ds,
where C G is a c.n.d.f. Then using the continuous embedding ℓ 2 ⊂ ℓ ∞ and estimate (2.28), we find

X(t) p ≤ X(0) p + C G ( √ 2H) t 0 X(s) p ds,
hence by Gronwall's lemma

X(t) p ≤ e CG( √ 2H) t X(0) p .
This shows that X(t) p is bounded on bounded time intervals, which completes the proof.

Multiple-scale expansion

In this section, we perform a multiple-scale analysis in order to obtain approximate solutions to equation (2.5). These approximations consist of slow time modulations of small 2π-periodic solutions to the previously analyzed linearized equation (2.12).

To determine the relevant time scales, we denote by ε a small parameter and fix X(0) p = ε. As previously seen in the proof of lemma 2.6, the solution X(t) of (2.5) is defined and O(ε) in ℓ 2 p at least on long time scales t ∈ [-t ε , t ε ] with t ε = T 0 ε 1-α . Considering the Duhamel form (2.21) of (2.5) when t ≈ t ε , the integral term at the right side of (2.21) is O(t ε ε α ), so that both terms are O(ε) and contribute "equally" to X(t).

We therefore consider the slow time τ = ε α-1 t in addition to the fast time variable t, and look for slowly modulated periodic solutions involving these two time scales:

X(t) = εY (τ, t) |τ =ε α-1 t ,
Y being 2π-periodic in the fast variable t. Injecting this Ansatz in Equation (2.5), we obtain

(2.29) (∂ t -J)Y - 1 ε G(εY ) + ε α-1 ∂ τ Y = 0.
Considering the class of potentials described in section 2.1, one can write

(2.30) 1 ε W ′ (εx) = ε α-1 r ε (x), 1 ε φ ′ (εx) = ε α-1 η ε (x), with r ε (x) = |x| α ρ(εx) = O(ε β |x| α+β ) and η ε (x) = |x| α χ(εx) = O(ε γ |x| α+γ )
when ε → 0. Hence we can split the nonlinear terms of (2.29) in the following way,

(2.31) 1 ε G(εY ) ≡ ε α-1 G α (Y ) + ε α-1 R ε (Y ),
where for all

Y = (Y 1 , Y 2 ) T , G α (Y ) = 0 δ + V ′ α (δ -Y 1 ) , R ε (Y ) = 0 δ + r ε (δ -Y 1 ) -η ε (Y 1 )
.

Moreover, for all Y ∈ ℓ 2 p we have lim ε→0 R ε (Y ) = 0 thanks to the assumptions made on r ε and η ε (see definition (2.30) and properties (2.2) and (2.3)). More precisely, using the second estimate of (2.9), there exist C > 0 and a c.n.i.f. ε 0 such that for all Y ∈ ℓ 2 p and ε

< ε 0 ( Y ∞ ), (2.32) R ε (Y ) p ≤ C ε min(β,γ) Y α p ( Y β p + Y γ p ). Now let us consider Y(τ ) = Y (τ, .) ∈ X 1 , rewrite equation (2.29) as (2.33) (∂ t -J)Y = ε α-1 [ G α (Y) -∂ τ Y + R ε (Y) ]
and look for approximate solutions to (2.33) of the form

(2.34) Y = Y 0 + ε α-1 Y 1 + o(ε α-1 ),
where Y j (τ ) ∈ X 1 , j = 0, 1. Inserting expansion (2.34) in equation (2.33) yields at leading order in ε

(2.35) (∂ t -J)Y 0 = 0, i.e. Y 0 (τ ) ∈ ker(∂ t -J).
Consequently, the principal part of the approximate solution takes the form

(2.36) (Y 0 (τ ))(t) = a(τ )e it e 1 + ā(τ )e -it e -1 ,
where a(τ ) ∈ ℓ p (Z, C). Similarly, identification at order ε α-1 yields (2.37)

(∂ t -J)Y 1 = G α (Y 0 ) -∂ τ Y 0 .
According to lemma 2.5, this nonhomogeneous equation can be solved under the compatibility condition

P [ G α (Y 0 ) -∂ τ Y 0 ] = 0, i.e. Y 0 must satisfy the amplitude equation (2.38) ∂ τ Y 0 = P G α (Y 0 ).
Then equation (2.37) becomes

(2.39) (∂ t -J)Y 1 = (I -P ) G α (Y 0 ),
which determines Y 1 (τ ) as a function of Y 0 (τ ), up to an element of ker(∂ t -J).

At our level of approximation, we can arbitrarily fix Y 1 (τ ) ∈ range(∂ t -J), which yields according to lemma 2.5

(2.40)

Y 1 (τ ) = K G α (Y 0 (τ )).
As a conclusion, we have obtained an approximate solution to equation (2.5),

(2.41)

X ε app (t) = ε[Y 0 (ε α-1 t)](t) + ε α [Y 1 (ε α-1 t)](t),
where Y 0 denotes a solution to the amplitude equation (2.38) taking the form (2.36) and the corrector Y 1 is defined by (2.40).

In section 3 we justify the above formal multiple-scale analysis by obtaining a suitable error bound on the approximate solutions. The overall strategy is based on the following ideas. In section 3.1, we check that the approximate solution (2.41) solves (2.5) up to an error that remains O(ε α+η ) for t ∈ [0, t m ], with t m = T ε 1-α (T > 0 fixed) and η = min(α -1, β, γ) > 0 (this corresponds to the orders of the terms of (2.33) neglected in the above analysis). From this result and Gronwall's inequality, we get the error estimate

X ε app (t) -X(t) L ∞ ([0,tm],ℓ 2 p ) = O(t m ε α+η ), provided X ε app (0) -X(0) p = O(t m ε α+η ) (section 3.2).
Consequently, if t m were bounded then both terms of approximation (2.41) would be relevant for t ∈ [0, t m ]. However, in our case t m diverges for ε → 0, hence we get a larger error

X ε app (t) -X(t) L ∞ ([0,tm],ℓ 2 p ) = O(ε 1+η
). As a result, only the lowest-order term of approximation (2.41) is relevant on O(ε 1-α ) times, which finally yields the approximate solution to (2.5)

(2.42) X ε a (t) = ε[Y 0 (ε α-1 t)](t) = εa(ε α-1 t)e it e 1 + εā(ε α-1 t)e -it e -1 .
Let us examine more closely the amplitude equation satisfied by a(τ ) ∈ ℓ p (Z, C). The nonlinear term of (2.38) can be explicitly computed following the lines of [START_REF] James | Nonlinear waves in Newton's cradle and the discrete p-Schrödinger equation[END_REF]; see the appendix for details. More precisely, we have

(2.43) i∂ τ a = δ + f (δ -a), where (f (a)) n = ω 0 a n |a n | α-1 , ω 0 = (k -+ k + ) 2 α-3 2 α Γ( α 2 ) √ π(α + 1)Γ( α+1 2 )
and Γ(x) =

+∞ 0 e -t t x-1 dt denotes Euler's Gamma function. Equation (2.43) reads component-wise

(2.44) i ∂a n ∂τ = ω 0 (∆ α+1 a) n , n ∈ Z,
where the nonlinear difference operator

(∆ α+1 a) n = (a n+1 -a n ) |a n+1 -a n | α-1 -(a n -a n-1 ) |a n -a n-1 | α-1
is the discrete (α + 1)-Laplacian.

Qualitative properties of the amplitude equation

In this section we establish the well-posedness of the differential equation (2.44), point out some invariances and conserved quantities yielding global existence results, and study the existence of spatially localized solutions which do not decay when τ → +∞.

Conserved quantities and well-posedness

Let a ∈ C 1 ((T min , T max ), ℓ α+1 (Z, C)) denote a solution to (2.43) defined on some time interval (T min , T max ). One can readily check that the quantity

δ + a α+1 α+1 = n∈Z |a n+1 -a n | α+1
is conserved along evolution. This property is linked with the Hamiltonian structure of equation (2.44), which can be formally written (2.45)

∂a n ∂τ = i ∂H ∂ā n , n ∈ Z, with H = 2ω 0 α + 1 δ + a α+1 α+1 .
More precisely, setting

a = π 1 q p = 1 √ 2 (q -ip),
the solutions a ∈ C 1 ((T min , T max ), ℓ 2 (Z, C)) of (2.43) correspond to solutions (q, p) ∈ C 1 ((T min , T max ), ℓ 2 2 ) of the Hamiltonian system q ṗ = J ∇H(q, p),

where

H(q, p) = 2ω 0 α + 1 n∈Z q n+1 -q n √ 2 2 + p n+1 -p n √ 2 2 α+1 2
is defined on the real Hilbert space ℓ 2 2 .

Equation (2.44) admits the gauge invariance a n → a n e iϕ , the translational invariance a n → a n + c and a scale invariance, since any solution (a n ) n∈Z of (2.44) generates a one-parameter family of solutions ε a n (|ε| α-1 τ ) n∈Z , ε ∈ R. Several conserved quantities of (2.44) can be associated to these invariances via Noether's theorem. The scale invariance and the invariance by time translation correspond to the conservation of H. The gauge invariance yields the conserved quantity

a 2 2 = n∈Z |a n | 2 whenever a ∈ C 1 ((T min , T max ), ℓ 2 (Z, C)).
In the same way, the translational invariance yields the additional conserved quantity

P = n∈Z a n provided a ∈ C 1 ((T min , T max ), ℓ 1 (Z, C)).
In the sequel we use the notation ℓ p = ℓ p (Z, C). The following lemma ensures the local well-posedness of equation (2.44) in ℓ p for p ∈ [1, +∞] and its global well-posedness for p ∈ [1, 1 + α] (in particular for p = 2).

Lemma 2.7. Let a 0 ∈ ℓ p . Equation (2.44) with initial data a(0) = a 0 admits a unique solution a ∈ C 2 ((T min , T max ), ℓ p ), defined on a maximal interval of existence (T min , T max ) depending a priori on a 0 (with T min < 0 < T max ). One has in addition

(2.46) T max ≥ T 1 a 0 1-α p , T min ≤ -T 1 a 0 1-α p , with T 1 = [(α -1) 2 α+1 ω 0 ] -1 . Moreover, (T min , T max ) = R if p ∈ [1, α + 1].
Proof. Since α > 1 we have ∆ α+1 ∈ C 1 (ℓ p , ℓ p ) and thus the Cauchy problem for (2.44) is locally well-posed in ℓ p . Therefore, for all initial condition a 0 ∈ ℓ p , equation (2.44) admits a unique maximal solution a ∈ C 1 ((T min , T max ), ℓ p ), and a bootstrap argument yields then a ∈ C 2 ((T min , T max ), ℓ p ).

To prove estimates (2.46), we rewrite (2.44) in the form

(2.47) ia(τ ) = ia 0 + δ + τ 0 f (δ -a(s)) ds. Since f (a) p ≤ ω 0 a α p , we get a(τ ) p ≤ a 0 p + 2 α+1 ω 0 τ 0 a(s) α p ds, 0 ≤ τ < T max .
As in the proof of lemma 2.6, a Gronwall-type estimate yields then

(2.48) a(τ ) p ≤ ̺ ε,λ (τ ), 0 ≤ τ < ε 1-α T 1 ,
for the parameter choice ε = a 0 p and λ = 2 α+1 ω 0 , where ̺ ε,λ (τ ) is the solution to the differential equation (2.24) with explicit form (2.25) defined up to τ = ε 1-α T 1 . Consequently, bound (2.48) yields the first estimate of (2.46), and the estimate for τ ≤ 0 is the same as for τ ≥ 0 owing to the invariance a(τ ) → ā(-τ ) of (2.44).

Global well-posedness in ℓ p for p ∈ [1, α + 1] follows from the fact that ∆ α+1 , D∆ α+1 are bounded on bounded sets in ℓ p and a(τ ) p is bounded on bounded time intervals. To prove this second property, we deduce from (2.47)

a(τ ) p ≤ a 0 p + 2 ω 0 τ 0 δ -a(s) p δ -a(s) α-1 ∞ ds, ≤ a 0 p + 2 ω 0 τ 0 δ -a(s) p δ -a(s) α-1 α+1 ds, ≤ a 0 p + 4 ω 0 δ -a 0 α-1 α+1 τ 0 a(s) p ds,
where we have used the fact that f (a) p ≤ ω 0 a p a α-1 ∞ and δ -a(τ ) α+1 is conserved. Now we have by Gronwall's lemma (2.49) a(τ ) p ≤ e σ τ a 0 p , σ = 2 α+1 ω a 0 α-1 α+1 , and the proof is complete.

Remark 2.8. The bound (2.49) can be improved for p = 2 and p = α + 1, since a(τ ) 2 = a 0 2 is bounded and a sharper estimate can be deduced from (2.47) : a(τ ) α+1 ≤ a 0 α+1 + 2ω 0 τ δ -a 0 α α+1 .

Spatially localized solutions

Another important feature of equation (2.44) is the absence of scattering for square-summable solutions. More precisely, the following result ensures that all (nontrivial) solutions to (2.44) in ℓ 2 satisfy inf τ ∈R a(τ ) ∞ > 0, which implies that they do not completely disperse. The proof is based on the conservation of ℓ 2 norm and energy, an idea introduced in [START_REF] Kopidakis | Absence of wave packet diffusion in disordered nonlinear systems[END_REF] in the context of the disordered discrete nonlinear Schrödinger equation.

Lemma 2.9. Let a 0 ∈ ℓ 2 with a 0 = 0 and a ∈ C 1 (R, ℓ 2 ) denote the solution to (2.44) with a(0) = a 0 . Then we have

∀τ ∈ R, a(τ ) ∞ ≥ 1 2 δ + a 0 α+1 α+1 a 0 2 2 1 α-1 .
Proof. Simply use the conserved quantities δ + a α+1 and a 2 from section 2.5.1, and estimate thanks to the triangle and interpolation inequalities:

δ + a 0 α+1 = δ + a(τ ) α+1 ≤ 2 a(τ ) α+1 ≤ 2 a(τ ) 1-2 α+1 ∞ a(τ ) 2 α+1 2 = 2 a(τ ) 1-2 α+1 ∞ a 0 2 α+1 2 .
When a 0 is restricted to some subset C of ℓ 2 , the following result provides a simpler estimate involving the constant (2.50)

I(C) = inf {Q α (a), a ∈ C, a = 0} , where (2.51) Q α (a) = δ + a α+1 a 2 .
Corollary 2.10. Keep the notations of lemma 2.9 and assume a 0 ∈ C ⊂ ℓ 2 . Then we have

(2.52) ∀τ ∈ R, a(τ ) ∞ ≥ 1 2 I(C) α+1 α-1 a 0 2 .
Proof. Use lemma 2.9 and the identity

1 2 δ + a 0 α+1 α+1 a 0 2 2 1 α-1 = a 0 2 1 2 Q α (a 0 ) α+1 α-1 .
Remark 2.11. The above result is useless for C = ℓ 2 since I(ℓ 2 ) = 0. Indeed, considering the sequence a N = ½ {1,...,N } (with ½ denoting the indicator function) one can check that Q α (a N ) = 2 1 α+1 N -1/2 → 0 as N → +∞. Remark 2.12. If C is a finite-dimensional linear subspace of ℓ 2 , then I(C) > 0 (Q α is the ratio of two equivalent norms on C). Moreover, if I(C) > 0 on some subspace C of ℓ 2 then the norms ∞ and 2 are equivalent on C (this follows from the case τ = 0 of (2.52) and the continuous embedding ℓ 2 ⊂ ℓ ∞ ). Lemma 2.9 and corollary 2.10 show that all square-summable localized solutions do not decay as τ → ±∞. One of the simplest type of localized solutions to (2.44) corresponds to time-periodic oscillations (discrete breathers), which have been studied in a number of works (see [START_REF] James | Breather solutions of the discrete p-Schrödinger equation[END_REF] and references therein). Equation (2.44) admits time-periodic solutions of the form (2.53)

a n (τ ) = ε v n e i ω0 |ε| α-1 τ , where v = (v n ) n∈Z is a real sequence and ε ∈ R an arbitrary constant, if and only if v satisfies (2.54) v n = -(∆ α+1 v) n , n ∈ Z.
In particular, nontrivial solutions to (2.54) satisfying lim n→±∞ v n = 0 correspond to breather solutions to (2.44) given by (2.53). The following existence theorem for spatially symmetric breathers has been proved in [START_REF] James | Breather solutions of the discrete p-Schrödinger equation[END_REF] using a reformulation of (2.54) as a two-dimensional mapping.

Theorem 2.13. The stationary DpS equation (2.54) admits solutions v i n (i = 1, 2) satisfying lim

n→±∞ v i n = 0, (-1) n v i n > 0, |v i n | > |v i n-1 | for all n ≤ 0, and v 1 n = v 1 -n , v 2 n = -v 2 -n+1
, for all n ∈ Z.

Furthermore, for all q ∈ (0, 1), there exists n 0 ∈ N such that the above-mentioned solutions v i n satisfy, for i = 1, 2:

∀n ≥ n 0 , |v i n | ≤ q 1+α n-n 0 .
Remark 2.14. These solutions are thus doubly exponentially decaying, so that they belong to ℓ p for all p ∈ [1, ∞].

One may wonder if results analogous to lemma 2.9 and theorem 2.13 hold true for the original lattice (2.4). The proofs of the above results heavily rely on the gauge invariance of (2.44) which implies the conservation of a(τ ) 2 . Such properties are not available for system (2.4), hence the same methodology cannot be directly applied to Newton's cradle. These problems will be solved in the next section through the justification of approximation (2.42) on long time scales.

Error bounds and applications

In this section, we give several error bounds in order to justify the expansions of section 2.4, for small amplitude solutions and long (but finite) time intervals. From these error bounds, we also infer stability results for long-lived breather solutions to the original lattice model, as well as lower bounds for the amplitudes of small solutions valid over long times (see section 2.6.3).

2.6.1

Asymptotics for times O(1/ε α-1 )

In theorem 2.15 below, one considers any solution a ∈ C 2 ([0, T ], ℓ p ) to equation (2.43) and constructs a family X ε a of approximate solutions to (2.5), whose amplitudes are O(ε) and determined by a and ε. These approximate solutions are O(ε 1+η )-close to exact solutions for some constant η > 0 specified below and t ∈ [0, T /ε α-1 ]. The proof of theorem 2.15 is detailed in section 3.2.

Theorem 2.15. Let η = min(α-1, β, γ) and fix two constants C i , T > 0. There exist a c.n.i.f. ε T > 0 and a c.n.d.f. C T ≥ C i such that the following holds:

For all solution a ∈ C 2 ([0, T ], ℓ p ) to equation (2.43) with N def = a L ∞ ([0,T ],ℓp)
and for all ε ≤ ε T (N ), we define

(2.55) X ε a (t) = ε √ 2 a(ε α-1 t) e it 1 i + c.c.
Then, for all X 0 ∈ ℓ 2 p satisfying

X 0 -X ε a (0) p ≤ C i ε 1+η ,
the solution X(t) ∈ ℓ 2 p of equation (2.5) with X(0) = X 0 is defined at least for t ∈ [0, T /ε α-1 ] and satisfies

(2.56) X(t) -X ε a (t) p ≤ C T (N ) ε 1+η for all t ∈ [0, T /ε α-1 ].
Remark 2.16. The case φ = 0 of equation (2.4) (harmonic on-site potential Φ) corresponds to fixing γ = +∞, which yields η = min(α -1, β). Similarly, the case W = 0 (pure Hertzian-type interaction potential V = V α ) is obtained with β = +∞ and η = min(α -1, γ).

Remark 2.17. By lemma 2.6, the solution X of equation (2.5) satisfies

X = (x, ẋ) T ∈ C 2 ([0, T /ε α-1 ], ℓ 2 p ), hence x ∈ C 3 ([0, T /ε α-1 ], ℓ p ). Moreover, it fol- lows from lemma 2.7 that X ε a = (x ε a , y ε a ) T ∈ C 2 ([0, T /ε α-1 ], ℓ 2 p ), hence x ε a ∈ C 2 ([0, T /ε α-1 ], ℓ p ).
Consequently, the exact solution x of (2.4) is generally more regular than its approximation x ε a , which is an unusual property in the context of modulation equations.

Example 2.18. In the case α = 3/2 (as for the classical Hertz force), if W and φ are C 3 at both sides of the origin, then β, γ ≥ 1/2 in (2.2) and (2.3) and we have by theorem 2.15

X(t) -X ε a (t) p ≤ C T (N ) ε 3/2 for all t ∈ [0, T ε -1/2 ].
As a corollary of theorem 2.15 and previous estimates on the solutions to the amplitude equation (2.43), one obtains theorem 2.19 below. Roughly speaking, for all sufficiently small initial data X 0 ∈ ℓ p , this theorem provides an approximation X A of the solution to (2.5) (with amplitude given by a solution to (2.43)) valid on O( X 0 1-α p ) time scales.

Theorem 2.19. Let η = min(α-1, β, γ) and C i > 0. There exists T m ∈ (0, +∞] such that for all T ∈ (0, T m ), there exist εT > 0 and CT ≥ C i such that the following properties hold. For all

X * = (x * , y * ) T ∈ ℓ 2 p such that 0 < ε def = X * p ≤ εT , for all X 0 ∈ ℓ 2 p satisfying X 0 -X * p ≤ C i ε 1+η , the solution X(t) ∈ ℓ 2 p to equation (2.5) with X(0) = X 0 is defined at least for t ∈ [0, T ε 1-α ]. This solution satisfies (2.57) X(t) -X A (t) p ≤ CT ε 1+η for all t ∈ [0, T ε 1-α ],
where

X A (t) = 1 √ 2 A(t) e it 1 i + c.c., and 
A ∈ C 2 ([0, T ε 1-α ], ℓ p ) is the solution to equation (2.43) with O(ε) initial condition A(0) = (x * -i y * )/ √ 2. Moreover, if p ∈ [1, 1 + α] then T m = +∞.
Proof. By lemma 2.7, there exists a unique maximal solution A of (2.43) with initial condition A(0) defined as above from X * . Due to the scale invariance of (2.43), the initial condition a(0) = ε -1 A(0) yields the solution a(τ ) = ε -1 A(ε 1-α τ ). Since a(0) p = √ 2/2 by construction, lemma 2.7 ensures that a(τ ) is defined and bounded in ℓ p for τ ∈ [0, T ] whenever T < T 1 2 (α-1)/2 . In addition this property is true for all T ∈ (0, +∞) when p ∈ [1, 1 + α]. This leads us to define T m = T 1 2 (α-1)/2 for p > 1 + α and T m = +∞ for p ∈ [1, 1 + α]. Now let us consider T < T m being fixed, so that A(t) is defined and bounded in ℓ p for t ∈ [0, T ε 1-α ]. Using either bounds (2.48) or (2.49) (the latter being valid for p ∈ [1, 1 + α]), there exists M T > 0 independent of X * such that

N def = a L ∞ ([0,T ],ℓp) ≤ M T .
With the above remarks one can apply theorem 2.15 for ε ≤ ε T (M T ) = εT . Noticing that X A (t) = X ε a (t), one obtains estimate (2.57) with CT = C T (M T ), which proves theorem 2.19.

2.6.2

Asymptotics for times O(| ln ε| ε 1-α ) Theorem 2.20 below provides a different kind of error estimate, where the multiple-scale approximation is controlled on longer O(| ln ε| ε 1-α ) time scales, at the expense of lowering the precision of (2.56). These estimates are valid when the Ansatz

X ε a (t) ∈ ℓ 2 p is bounded for t ∈ R + , i.e. X ε a is constructed from a solution a ∈ L ∞ (R + , ℓ p ) of (2.43). The proof of this result is detailed in section 3.3. Theorem 2.20. Let η = min(α -1, β, γ), µ ∈ (0, η) and C i > 0. Fix a ∈ L ∞ (R + , ℓ p ) solution to equation (2.43) with a L ∞ (R + ,ℓp) = N and consider X ε a (t) = ε √ 2 a(ε α-1 t)e it 1 i + c.c.
There exist positive constants ε 0 (µ, C i , N ), C l (C i , N ) and a c.n.i.f. ν(N ) such that for all ε ≤ ε 0 , if

X 0 ∈ ℓ 2 p satisfies X 0 -X ε a (0) p ≤ C i | ln ε|ε 1+η , then the solution X(t) ∈ ℓ 2 p to equation (2.5) with X(0) = X 0 is defined for t ∈ [0, µ ν | ln ε| ε 1-α ] and satisfies (2.58) X(t) -X ε a (t) p ≤ C l | ln ε| ε 1+η-µ , t ∈ 0, µ ν | ln ε| ε 1-α .
In the same way as theorem 2.19 was deduced from theorem 2.15, theorem 2.21 below follows directly from theorem 2.20. The proof requires all solutions to (2.43) to be global and bounded in ℓ p (due to the same assumption made on a in theorem 2.20), hence we have to restrict to p = 2.

Theorem 2.21. Let η = min(α -1, β, γ), µ ∈ (0, η) and C i > 0. There exist positive constants ε 0 (µ, C i ), C l (C i ) and ν such that the following holds. For any

X * = (x * , y * ) T ∈ ℓ 2 2 such that ε def = X * 2 ≤ ε 0 , we consider the solution A ∈ C 2 (R, ℓ 2 ) to equation (2.43) with O(ε) initial condition A(0) = (x * -i y * )/
√ 2, and we define

X A (t) = 1 √ 2 A(t) e it 1 i + c.c.
Then, for all

X 0 ∈ ℓ 2 2 satisfying X 0 -X * 2 ≤ C i | ln ε|ε 1+η , the solution X(t) ∈ ℓ 2 p to equation (2.5) with X(0) = X 0 is defined for t ∈ [0, µ ν | ln ε| ε 1-α ] and satisfies (2.59) X(t) -X A (t) 2 ≤ C l | ln ε| ε 1+η-µ , t ∈ 0, µ ν | ln ε| ε 1-α .
Proof. We proceed exactly as in the proof of theorem 2.19 for p = 2, except the solutions A, a of (2.43) are now global in time,

N def = a L ∞ (R + ,ℓ2) = a(0) 2 = √
2/2, and we use theorem 2.20 instead of theorem 2.15.

Long-lived localized solutions

We can apply theorem 2.13 to generate breather solutions to the amplitude DpS equation (2.44) which provide approximate solutions for theorems 2.15, 2.19, 2.20 and 2.21. Hence, we obtain stable exact solutions to the original nonlinear lattice (2.4), close to breathers, over the corresponding time scales.

Theorem 2.22. Let η = min(α -1, β, γ) and fix two constants C i , T > 0.

Consider a solution v i = (v i n ) n∈Z (i = 1, 2) of the stationary DpS equation (2.54) described in theorem 2.13. There exist ε T , C T > 0 such that for all ε ∈ (0, ε T ], for all X 0 ∈ ℓ 2 p satisfying

(2.60)

X 0 -( √ 2εv i , 0) T p ≤ C i ε 1+η , the solution X(t) ∈ ℓ 2 p to equation (2.5) with X(0) = X 0 is defined at least for t ∈ [0, T ε 1-α ] and satisfies (2.61) X(t) -X ε b (t) p ≤ C T ε 1+η for all t ∈ [0, T ε 1-α ]
, where

X ε b (t) = √ 2 ε (v i cos (Ω t), -v i sin (Ω t)) T , Ω = 1 + ω 0 ε α-1 .
Proof. Consider the breather solution of (2.44) given by (2.53) with v = v i , ε = 1, and apply theorem 2.15.

As a result of estimate (2.61), the initial condition X(0) = ( √ 2εv i , 0) T generates long-lived breather solutions Xε b defined for t ∈ [0, T ε 1-α ] and taking the form Xε b

(t) = X ε b (t) + O(ε 1+η
). These solutions are stable in ℓ 2 p on the corresponding time scale since condition (2.60) implies

X(t) -Xε b (t) p ≤ 2 C T ε 1+η for all t ∈ [0, T ε 1-α
] (this follows by using (2.61) and the triangle inequality).

Using theorem 2.21 and corollary 2.10, we also obtain lower bounds for the amplitudes of small localized solutions over long times. This result is valid for all initial data in subsets C of ℓ 2 2 such that I(C) > 0, where I(C) is defined as in (2.50)-(2.51) with the choice of norms (2.6) (for which the canonical isomorphism between (ℓ p (Z, R))

2 and ℓ p (Z, C) is an isometry). As already noticed in remark 2.12, one has I(C) > 0 whenever C is a finite-dimensional linear subspace of ℓ 2 2 .

Then we deduce from the Gronwall estimate (2.27)

X(t) ∞ ≥ X 0 ∞ -t λ θ α 1-α X 0 α ∞ ,
from which the result follows easily.

Estimate (2.63) differs from (2.62) in the sense that it involves only the ℓ ∞ norm and holds true for all sufficiently small initial data in ℓ 2 ∞ . In addition it is valid on time scales of order X 0 1-α ∞ , whereas (2.62) holds true on longer time scales of order | ln ( X 0 2 )| X 0 1-α 2 .

Error bounds via Gronwall estimates

In this section we prove theorems 2.15 and 2.20. For this purpose, we check in section 3.1 the consistency of the Ansatz X ε app defined by (2.41) and conclude using Gronwall estimates (sections 3.2 and 3.3).

Estimate of the residual

In the sequel we consider solutions a(τ ) to equation (2.44) such that a ∈ L ∞ (I, ℓ p ) for some closed time interval I. By lemma 2.7, this can be achieved for all initial condition a(0) = a 0 ∈ ℓ p (Z, C) by choosing I = [0, T ] ⊂ (T min , T max ) in the general case, or I = [0, +∞) in the particular case p = 2. The amplitude a determines the approximate solution X ε app to equation (2.5) introduced in section 2.4. Following equation (2.41), we recall that

X ε app (t) = εY ε (τ, t), τ = ε α-1 t,
where

Y ε = Y 0 + ε α-1 Y 1 and Y k (τ, t) = (Y k (τ ))(t) for k = 0, 1.
In this section we check that X ε app solves equation (2.5) up to the residual (3.1)

E ε = Ẋε app -J X ε app -G(X ε app )
that remains o(ε α ) when ε α-1 t ∈ I.

To this aim, we first prove the following lemma providing bounds on the approximate solutions Y 0 and the correctors Y 1 derived from the amplitudes a(τ ). Below we denote by C k b (I, X 1 ) the Banach space of C k functions from I into X 1 with bounded derivatives up to order k, equipped with the usual supremum norm (see section 2.2 for the definition of function spaces X k ).

Lemma 3.1. Consider any solution a ∈ L ∞ (I, ℓ p ) to equation (2.44), the associated leading order solution Y 0 of (2.33) defined by (2.36), and its corrector Y 1 defined by (2.40). There exist M 0 , M 1 > 0 such that

(3.2) Y 0 C 1 b (I,X 1 ) ≤ M 0 ( a L ∞ (I,ℓp) + a α L ∞ (I,ℓp) ), (3.3) Y 1 C 1 b (I,X 1 ) ≤ M 1 ( a α L ∞ (I,ℓp) + a 2α-1 L ∞ (I,ℓp) ).
Proof. We immediately deduce from Lemma 2.7 that Y 0 ∈ C 2 b (I, X 1 ) and

(3.4) Y 0 L ∞ (I,X k ) ≤ (1 + k) √ 2 a L ∞ (I,ℓp) , k = 0, 1.
In what follows we estimate G α (Y 0 ), in order to estimate ∂ τ Y 0 from equation (2.38) and Y 1 from equation (2.40). Since G α ∈ C 1 (ℓ 2 p , ℓ 2 p ) we have also G α ∈ C 1 (X 0 , X 0 ) by the omega-lemma (see [START_REF] Abraham | Manifolds, tensor analysis, and applications[END_REF], lemma 2.4.18). Moreover, standard estimates yield for all X ∈ ℓ 2

p (3.5) G α (X) p ≤ M 3 X α p , DG α (X) L(ℓ 2 p ) ≤ M 4 X α-1 p , which implies for all X ∈ X 0 G α (X) X 0 ≤ M 3 X α X 0 , DG α (X) L(X 0 ) ≤ M 4 X α-1 X 0 .
We have then

G α (Y 0 ) L ∞ (I,X 0 ) ≤ M 3 Y 0 α L ∞ (I,X 0 ) , ∂ τ Y 0 L ∞ (I,X 0 ) ≤ P L(X 0 ) G α (Y 0 ) L ∞ (I,X 0 ) ≤ M 3 Y 0 α L ∞ (I,X 0 ) , ∂ τ G α (Y 0 ) L ∞ (I,X 0 ) ≤ M 4 Y 0 α-1 L ∞ (I,X 0 ) ∂ τ Y 0 L ∞ (I,X 0 ) ≤ M 3 M 4 Y 0 2α-1 L ∞ (I,X 0 )
(the estimate of ∂ τ Y 0 follows from equation (2.38) and P L(X 0 ) = 1). From these estimates and (3.4), there exists M 5 > 0 such that

(3.6) ∂ τ Y 0 L ∞ (I,X 1 ) ≤ M 5 a α L ∞ (I,ℓp) , (3.7) G α (Y 0 ) L ∞ (I,X 0 ) ≤ M 5 a α L ∞ (I,ℓp) , (3.8) ∂ τ G α (Y 0 ) L ∞ (I,X 0 ) ≤ M 5 a 2α-1 L ∞ (I,ℓp) .
Consequently, estimate (3.2) is established thanks to (3.4) and (3.6). Furthermore, using the fact that K ∈ L(X 0 , X 1 ), we obtain

Y 1 = KG α (Y 0 ) ∈ C 1 b (I, X 1 ) and Y 1 C 1 b (I,X 1 ) ≤ K L(X 0 ,X 1 ) M 5 ( a α L ∞ (I,ℓp) + a 2α-1 L ∞ (I,ℓp)
), which establishes estimate (3.3). Now we prove the main result of this section. The subsequent estimates will involve c.n.d.f. of various norms which we will denote by C k . Lemma 3.2. There exist a c.n.i.f. ε 1 and a c.n.d.f. C E such that for all a ∈ L ∞ (I, ℓ p ) solution to equation (2.44) and ε ≤ ε 1 ( a L ∞ (I,ℓp) ), the residual E ε defined by (3.1) satisfies (3.9) sup

ε α-1 t∈I E ε (t) p ≤ C E ( a L ∞ (I,ℓp) )ε α+η ,
where η = min(α -1, β, γ).

Proof. Let us compute E ε . Using identities (2.41), (2.35), (2.37) and (2.31), one obtains after some elementary computations

E ε (t) = ε α [G α (Y 0 (ε α-1 t, t)) -G α (Y ε (ε α-1 t, t))] (3.10) + ε 2α-1 ∂ τ Y 1 (ε α-1 t, t) -ε α R ε (Y ε (ε α-1 t, t)).
Let us estimate each term of (3.10) separately. From lemma 3.1 we already know a c.n.d.f. C 1 such that (3.11) sup

ε α-1 t∈I ∂ τ Y 1 (ε α-1 t, t) p ≤ C 1 ( a L ∞ (I,ℓp) ).
Moreover, by estimate (2.32) and lemma 3.1, there exists a c.n.i.f. ε 1 and a c.n.d.f. C 2 such that for ε ≤ ε 1 ( a L ∞ (I,ℓp) )

(3.12) sup

ε α-1 t∈I R ε (Y ε (ε α-1 t, t)) p ≤ ε min(β,γ) C 2 ( a L ∞ (I,ℓp) ).
Let us impose ε 1 ≤ 1 without loss of generality. The first term at the right side of (3.10) can be estimated as follows for ε α-1 t ∈ I, using estimate (3.5) and lemma 3.1 :

G α (Y 0 (ε α-1 t, t)) -G α (Y ε (ε α-1 t, t)) p = ε α-1 1 0 DG α (Y 0 (ε α-1 t, t) + θε α-1 Y 1 (ε α-1 t, t)) dθ • Y 1 (ε α-1 t, t) p ≤ ε α-1 1 0 DG α (Y 0 (ε α-1 t, t) + θε α-1 Y 1 (ε α-1 t, t)) L(ℓ 2 p ) Y 1 (ε α-1 t, t) p ≤ ε α-1 C 3 ( Y 0 (ε α-1 t, t) p + Y 1 (ε α-1 t, t) p ) Y 1 (ε α-1 t, t) p ≤ ε α-1 C 4 ( a L ∞ (I,ℓp) ).
Combining this estimate with (3.11) and (3.12) yields the final estimate (3.9).

Example 3.3. In the case α = 3/2 (as for the classical Hertz force), if W and φ are C 3 at both sides of the origin, then β, γ ≥ 1/2 in (2.2) and (2.3), and we have by lemma 3.2 sup

ε 1/2 t∈I E ε (t) p ≤ C E ( a L ∞ (I,ℓp) )ε 2 .

Proof of theorem 2.15

To prove theorem 2.15, we first estimate the error between the approximate solution X ε app constructed from a given a(0) = a 0 ∈ ℓ p (Z, C) (equation (2.41)) and the exact solution X to equation (2.5) for X(0) ≈ X ε app (0), in the case when ε ≈ 0 and on O(ε 1-α ) time scales. This result will follow in a rather standard way from Gronwall estimates. In a second step, we check on these time scales the validity of the leading-order approximate solution X ε a (equation (2.42)).

By lemma 2.7, for all initial condition a 0 ∈ ℓ p (Z, C) equation (2.44) admits a unique maximal solution a defined for τ ∈ (T min , T max ). Let us fix T ∈ (0, T max ) and restrict a to [0, T ], so that a ∈ L ∞ ([0, T ], ℓ p ). From lemma 3.1 it follows that X ε app ∈ L ∞ ([0, t m (ε)], ℓ 2 p ) with t m (ε) = T /ε α-1 , and we have

E ε ∈ L ∞ ([0, t m (ε)], ℓ 2 p ) by lemma 3.2. Let Z = X -X ε app and Z 0 ≡ X(0) -X ε app (0). Then Z is solution to Ż -J Z = G(X ε app + Z) -G(X ε app ) -E ε , Z(0) = Z 0 , or equivalently (3.13) Z(t) = e Jt Z 0 + t 0 e J(t-s) [G(X ε app + Z) -G(X ε app ) -E ε ](s) ds.
By Cauchy-Lipschitz theorem, the solution Z ∈ C 1 ([0, t max (ε)], ℓ 2 p ) to this equation is defined up to some maximal existence time t max (ε) ≤ t m (ε), depending a priori on Z 0 . Remark 3.4. In fact we prove below that t max (ε) = t m (ε) when ε and Z 0 p are small enough. This will provide a solution X to (2.5) defined at least for t ∈ [0, t m (ε)].

We have already estimated the residual E ε in the previous section. We now need to estimate the difference G(X ε app + Z) -G(X ε app ). For this purpose we assume Z 0 p < ε and define

t ε (Z 0 ) = sup{t ∈ [0, t max ], Z(t) p ≤ ε}.
Remark 3.5. Since Z p ∈ C 0 ([0, t max ]), we have either t ε = t max or t ε < t max and Z(t ε ) p = ε. Lemma 3.6. There exists a c.n.i.f. ε 2 and a c.n.d.f. C L such that for all solution a ∈ L

∞ ([0, T ], ℓ p ) to equation (2.44), ε ≤ ε 2 ( a L ∞ ([0,T ],ℓp) ), Z 0 ∈ ℓ 2 p with Z 0 p < ε and t ∈ [0, t ε (Z 0 )], (3.14) G(X ε app (t) + Z(t)) -G(X ε app (t)) p ≤ ε α-1 C L ( a L ∞ ([0,T ],ℓp) ) Z(t) p . Proof. We first estimate (3.15) G(X ε app (t)+Z(t))-G(X ε app (t)) p ≤ 1 0 DG(X ε app (t)+θZ(t)) L(ℓ 2 p ) dθ Z(t) p .
By estimate (2.7), there exists µ, C > 0 such that for all U ∈ ℓ 2 p with U p ≤ µ, we have

(3.16) DG(U ) L(ℓ 2 p ) ≤ C U α-1 p .
From definition (2.41) and lemma 3.1, assuming ε 2 ≤ 1, there exists a c.n.d.f.

C 5 such that sup t∈[0,tm(ε)] X ε app (t) p ≤ ε C 5 ( a L ∞ ([0,T ],ℓp) ) for all ε ∈ (0, ε 2 ],
Now let us set C 0 = (C i + C 1 )/T in assumption 3.7, where C i > 0 is a fixed constant, and make the assumption X 0 -X ε a (0) p ≤ C i ε 1+η of theorem 2.15. Recalling that ε ≤ 1, η + 1 ≤ α, and using (3.21)-(3.22), one can check that assumption 3.7 is satisfied and thus estimate (3.20) holds. Then using (3.21)-(3.22) again, there exists a c.n.d.f.

C T = C R + C 1 such that for all t ∈ [0, T /ε α-1 ], X(t) -X ε a (t) p ≤ C T ( a L ∞ ([0,T ],ℓp ) ε 1+η
. This completes the proof of theorem 2.15.

Proof of theorem 2.20

Theorem 2.20 consists of a different kind of error estimate, where the multiplescale approximation is controlled on O(| ln ε| ε 1-α ) time scales going beyond ε 1-α , at the expense of lowering the precision of (2.56). To obtain this result, we adapt the proof of theorem 2.15 by allowing T to grow logarithmically in ε. Theorem 2.20 is valid when the Ansatz X ε a (t) ∈ ℓ 2 p is bounded for t ∈ R + . In that case, all estimates of sections 3.1 and 3.2 involving constants depending only on a L ∞ ([0,T ],ℓp) can be made uniform w.r. Consequently, for ε small enough we have Z(t) p < ε for all t ∈ [0, t ε ], which implies t ε = t max = T ε 1-α as shown in section 3.2. Now, as previously observed in section 3.2, the error bound (3.24) yields an estimate of the same type for the leading order approximate solution X ε a (t), thanks to the estimate (3.25)

Y 1 (ε α-1 t, t) p ≤ C1 , t ∈ [0, T /ε α-1 ],

with C1 = C 1 ( a L ∞ ([0,∞),ℓp ). Indeed, let us further assume ε ≤ e -1 and make the assumption X 0 -X ε a (0) p ≤ C i | ln ε| ε 1+η of theorem 2.20 for some fixed constant C i . Using identity (3.21) and the bounds given above, one obtains 

Conclusion

We have shown that small amplitude oscillations in Newton's cradle are described by the DpS equation (1.2) over long times. From this result, we have estimated on long time scales the maximal decay of small amplitude localized solutions and proved the existence of stable long-lived breather states in Newton's cradle.

The justification of the DpS equation and the associated estimates of maximal decay extend straightforwardly to generalizations of (2.4) and (1.2) to arbitrary space dimensions (i.e. for n ∈ Z d and d ≥ 1) when x n (t) defines a scalar field. However, generalizing our construction of long-lived breather states would require an existence theorem for discrete breather solutions of the d-dimensional DpS equation, which is not yet available for d ≥ 2. Other possible extensions of this work concern the generalization and justification of the DpS equation when small spatial inhomogeneities are present in the original lattice (2.4), as well as the addition of dissipative terms in (2.4) and (1.2). Considering these effects is particularly important from a physical point of view when system (2.4) describes a granular chain [START_REF] James | Breathers in oscillator chains with Hertzian interactions[END_REF].

Other open problems concern the qualitative analysis of the DpS equation. In particular, excitations generated from a localized disturbance and reminiscent of traveling breather solutions have been numerically studied in [START_REF] James | Breathers in oscillator chains with Hertzian interactions[END_REF][START_REF] Starosvetsky | Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations[END_REF], both for the DpS equation and Newton's cradle. The existence of exact traveling breather solutions of (1.2) is an open problem, and would imply (in the case of small amplitude waves) the existence of similar excitations in Newton's cradle on long time scales. More generally, understanding in system (1.2) the complex mechanisms of fully nonlinear energy propagation from a localized disturbance is a challenging open problem [START_REF] James | Breathers in oscillator chains with Hertzian interactions[END_REF]. This would allow in particular to analyze the propagation of nonlinear acoustic waves after an impact in granular chains with local potentials, thanks to the connection we have established between (1.2) and (1.1).
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 1 Figure 1: Schematic representation of Newton's cradle.

  t. T , which allows one to set T = O(| ln ε|) when ε → 0.In what follows we use the notations and definitions introduced in section 3.2. Let us consider a solution a ∈ L ∞ ([0, +∞), ℓ p ) of the amplitude equation (2.43), a fixed constant µ ∈ (0, η) and setT = µ CL | ln ε|,where CL = C L ( a L ∞ ([0,+∞),ℓp) ) and ε ≤ 1. The initial error Z 0 is set to satisfy assumption 3.7 with C 0 = M , M being a fixed constant that will be subsequently determined. It follows thatZ 0 p = O(| ln ε| ε 1+η ) < ε provided ε is small enough. Assuming in addition ε ≤ ε2 = ε 2 ( a L ∞ ([0,+∞),ℓp) ), estimate (3.19) ensures that (3.23) Z(t) p ≤ (M + CE ) T exp( CL T ) ε 1+η , t ∈ [0, t ε ],where CE = C E ( a L ∞ ([0,+∞),ℓp) ). Our choice of T yields exactly exp( CL T ) = ε -µ , hence estimate (3.23) becomes (3.24) Z(t) p ≤ M + CE CL µ | ln ε| ε 1+η-µ , t ∈ [0, t ε ].

X

  0 -X ε app (0) p ≤ (C i + C1 ) | ln ε| ε 1+η (we recall that η ≤ α -1). Consequently, assumption 3.7 is satisfied with the choice C 0 = M = (C i + C1 ) CL /µ and estimate (3.24) holds true for all t ∈ [0, T ε 1-α ]. Then using (3.21)-(3.25) and the definition of T , we get for allt ∈ [0, µ C-1 L | ln ε| ε 1-α ] X(t) -X ε a (t) p ≤ C l | ln ε| ε 1+η-µ , with C l = C i + 2 C1 + η CE / CL ,which proves estimate (2.58) for ν = C-1 L . This ends the proof of theorem 2.20.
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Proposition 2.23. Keep the notations of theorem 2.21. Let C denote a subset of ℓ 2 2 such that I(C) > 0. There exists ε 1 (µ, C i , I(C)) > 0 such that for all ε ∈ (0, ε 1 ] and X 0 ∈ C with X 0 2 = ε, the solution X to equation (2.5) given by theorem 2.21 is bounded from below, namely:

Proof. Fix X 0 = X * in theorem 2.21 and note that

Now, estimating X A (t) ∞ thanks to corollary 2.10 and X(t) -X A (t) 2 with theorem 2.21 gives

Example 2.24. Consider solutions x = (x n ) n∈Z to (2.4) with unperturbed initial positions, and with a group of N consecutive particles having the same initial velocity v i (N ≥ 1 being fixed). This corresponds to fixing 

This yields for all ε ∈ (0, ε 1 ] and t ∈ 0, µ ν | ln ε| ε 1-α :

To interpret estimate (2.62), it is interesting to recall that X(t) ∞ is conserved along evolution for solutions to the linearized equation (2.12) (see remark 2.2), hence the bound (2.62) estimates the maximal decay of X ∞ that could occur over long times due to purely nonlinear effects. This estimate can be compared with the classical Gronwall estimate given below.

Lemma 2.25. Keep the notations of lemma 2.6. There exists a constant ε1 > 0 such that the following property holds true. For all δ ∈ (0, 1), there exists

Proof. Using the triangle inequality in the Duhamel form (2.21), the timeinvariance of e Jt X 0 ∞ and estimate (2.22), one finds

Consequently, there exists a c.n.i.f. ε 2 ≤ 1 such that for all ε ≤ ε 2 ( a L ∞ ([0,T ],ℓp) ), θ ∈ [0, 1] and t ∈ [0, t ε (Z 0 )] we have X ε app (t) + θZ(t) p ≤ µ. Then one obtains estimate (3.14) using bounds (3.16) and (3.17) in conjunction with estimate (3.15). Now let us apply lemmas 3.2 and 3.6 to the Duhamel formulation (3.13) for Z(t). This yields for all

We now fix a c.n.d.f. C 0 > 0 and make the following stronger assumption on the initial distance between exact and approximate solutions.

Assumption 3.7 implies Z 0 p < ε as soon as ε < ε 3 = (C 0 T ) -1/η , and then estimate (3.18) applies for ε < min(ε 2 , ε 3 ). This yields

where

) we have Z(t) p < ε for all t ∈ [0, t ε ], which implies t ε = t max (see remark 3.5). Now estimate (3.19) allows to bound Z(t) p for t ∈ [0, t max ]. Consequently, for all ε < ε T ( a L ∞ ([0,T ],ℓp) ) and Z 0 satisfying assumption 3.7 we have t max (ε) = t m (ε) and

With the error estimate (3.20) at hand, one can recover an estimate of the same type for the leading order approximate solution X ε a (t) = εY 0 (ε α-1 t, t).

From lemma 3.1, we already know a c.n.d.f. C 1 such that for all t ∈ [0, T /ε α-1 ],

Appendix

Simplified form of the amplitude equation

This section provides an explicit computation of the nonlinear term of the amplitude equation (2.38). Given the form (2.36) of Y 0 and recalling that P (X) = ζ(X)e it e 1 + c.c. (see lemma 2.4), the amplitude a(τ ) ∈ ℓ p (Z, C) satisfies the differential equation

or more explicitly

where

Below we compute the map f explicitly.

Setting a = r e iθ and using the change of variable s = t + θ in the integral defining f , one obtains Γ( 1 2 )Γ( α 2 + 1) Γ( α+1 2 + 1) (see [START_REF]Handbook of Mathematical Functions[END_REF], formula 6.2.1 and 6.2.2, p. 258). Since Γ(1/2) = √ π and Γ(a + 1) = a Γ(a), we obtain finally

.