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Conformal Geometry for Viewpoint Change
Representation

Ghina El Mir, Christophe Saint-Jean and Michel Berthier

Abstract. We propose in this paper a new model for image representa-
tion based on the conformal geometry and its powerfulness to encode
perspective distortions through bases of the Minkowski space R1,1. This
approach allows us to describe an image as a scalar valued function de-
fined on a horosphere corresponding to an embedding of the Euclidean
plane into R3,1 encoding the latitude angle and the rotation parameter
of the camera. This is obtained through a generalization of the confor-
mal model such that it includes representations of perspective planes.
In this setting, we describe every viewpoint change as a mapping be-
tween two horospheres of the space R3,1, each one of these encoding a
perspective plane.

Computer Vision, Pinhole Camera, Conformal Geometry, Image Rep-
resentation, Perspective Distortions, Geometric Algebra, Perspective Plane.

1. Introduction

In computer vision, the search for viewpoint invariant detectors and descrip-
tors is still an important problem mainly for strong differences in the view-
points. An interesting solution relies on representing all the viewpoint changes
by one useful topological group:

• There are well defined viewpoint invariants in the case where a generic
group acts on the set of images, see [11].
• Some authors already used this setting and found invariants to the ac-

tions of some particular groups such as the group of planar motions, see
[1].

In order to achieve this goal, a fundamental step needs to be accomplished
first: the construction of a powerful image representation leading to an ef-
ficient modeling of every viewpoint change. This requires a unified mathe-
matical framework allowing useful computations of well defined viewpoint
invariants (see for instance [11]).
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The most common image representation is the pinhole camera model which
relies on the perspective projection of points in the 3-D space onto the image
plane. This is represented even by 3×4 matrices within matrix algebra, or by
the meet of a bivector with a trivector within projective geometric algebra.
However, these two representations are useful for a 3-D reconstruction of a
scene not for a viewpoint invariance modeling.
We propose in this work to make use of more powerful mathematical tool, the
conformal geometric algebra, and to describe an image and a single viewpoint
change within the conformal model. For this, we introduce a generalization of
the conformal model of the Euclidean plane preserving its properties and ex-
tending it to encode the perspective planes that will be defined in this paper.
This leads us to describe a new conformal image representation correspond-
ing to an embedding of R2 into the space R3,1 encoding the latitude angle
of the camera (which is the parameter that produces the main deformation
of the planar object), as well as the parameter of the rotation of the camera
about its optical axis. Thus an image is defined as a mapping on a horosphere
with a given such embedding. Within this setting, the 8 parameters of the ho-
mography of the real projective plane that describes a viewpoint change will
be explicitly modeled through a mapping between two horospheres. This can
particularly be applied to encode the pinhole model of acquisition of an image
by modeling the viewpoint change between this image and the reflectance of
the planar object.

We will discuss in a future work how to consider these representations
in order to construct a subgroup of the linear conformal group of R3,1 that
models all possible viewpoint changes. This will allow us to introduce the
action of this subgroup on the set of conformal image representations in
order to define viewpoint change invariants.

The rest of this paper is organized as follows. Section 2 gives some def-
initions and background on projective geometry, geometric algebra and the
conformal space. The aim in section 3 is to represent the camera extrinsic
parameters as well as every viewpoint change in projective geometry. In sec-
tion 4 we deal with the conformal model and define an extension to this one
enabling us to represent perspective planes. This is used to construct an im-
age representation within conformal geometry leading to conformal viewpoint
change modeling. In the end of this section, we apply the previous viewpoint
change representation to describe the pinhole camera in conformal geometry.

2. Preliminaries and basic definitions

Projective geometry has been used since a long time ago in computer vision
(see [2], [8]). It is one of the main geometries that are used to represent the
pinhole camera model. In this setting, two images of a planar object from
different viewpoints are related by a homography of the real projective plane
P2(R). At first sight, this may look useful for the search of viewpoint invari-
ants, since the cross ratio of four collinear points is the scalar valued function
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that is preserved under homographies of P2(R) (see [8]). However, this func-
tion is not efficient as an invariant image descriptor for several reasons: it
depends on four points, which must belong to the same line and must be
sorted. This suggests to restrict the search to some special kinds of homo-
graphies of P2(R), such as affine transformations (see [12]) and dilations (see
[7]). Nevertheless, since these transformations can’t approximate or represent
generic homographies of P2(R), the ensuing algorithms fail to be robust to
strong viewpoint changes.

2.1. Projective geometry within geometric algebra

We first review some definitions and background. For further details about
geometric algebra, the reader is referred to [3], [4] and [5].

The geometric algebra associated with a real vector space E, of finite
dimension n, equipped with a quadratic form Q, is an associative algebra
that contains R as a sub-algebra and E as a subspace, and in which:

v2 = Q(v) (1)

for all v in E. If Q is a quadratic form of signature (p, q) on Rn, where
p+ q = n, we denote by Rp,q the corresponding vector space and by Rp,q its
geometric algebra. Particularly, the Euclidean space is denoted by Rn and its
geometric algebra by Rn. The outer product of two vectors u and v, is the
element of Rp,q defined by:

u ∧ v := uv − u · v (2)

An isotropic blade A (see [3]) is a blade that squares to zero: A2 = 0.

Definition 2.1. Let Ar be an r-blade that is not isotropic, and X be a vector
in Rp,q. The projection PAr (X) of X onto the sub-space of Ar is defined by

PAr (X) = (X ·Ar)A−1r (3)

and the orthogonal rejection P⊥Ar (X) of X from the sub-space of Ar is

P⊥Ar (X) = (X ∧Ar)A−1r . (4)

A k-versor is a multivector that can be factorized into the geometric
product of k unit vectors. The set of all versors is a group under the geometric
product and more precisely a double covering of the orthogonal group of Rp,q.
A spinor is an even versor, i.e a versor with an even k.

Definition 2.2. Let M and N be two blades such that grade(M) + grade

(N) ≥ n. The dual M̃ of M is defined by:

M̃ = MI−1n , (5)

where In is the unit pseudoscalar (see [3]). Furthermore, if M and N satisfy:

M̂ + N̂ = Rp,q, (6)

where M̂ and N̂ denote the two sub-spaces of Rp,q represented by M and N
respectively (see [3]), then the meet M ∨N of M and N is given by:

M ∨N = (M̃ ∧ Ñ)In. (7)
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In his Ph.D thesis [9], Perwass embeds the Euclidean plane R2 into the
real projective plane of the same dimension. An extra dimension enables to
homogenize the Euclidean plane through the operation:

R2 −→ R3

x 7−→ X = x+ e3 (8)

In other words, the affine plane of R3 given by the set

{X ∈ R3 ; X = x+ e3 and x ∈ R2}, (9)

constitutes the homogeneous representation of the Euclidean plane. Then,
the space R3 is embedded into its Euclidean geometric algebra R3 in order
to do some representations of geometric objects and operations.

Since the meet represents the intersection operation, the pinhole camera
model is interpreted by an algebraic identity instead of using matrices. That
is, the image of a homogeneous point X is the meet of a bivector with a
trivector. The bivector represents the line through X and the optical center
of the camera, while the trivector represents the image plane. Nevertheless,
this representation is used to make a 3-D reconstruction of a scene not for a
group-modeling of the viewpoint changes.

2.2. The conformal geometry

The conformal model realizes an embedding of the Euclidean plane R2 in a
4-dimensional vector space (for details see [10] and [6]). This embedding is
obtained as follows:

R̂2 ≡︸︷︷︸
P−1

S2 ↪→︸︷︷︸
hom

R3,1 (10)

where R̂2 denotes the Riemann sphere, P represents the stereographic pro-
jection and hom is the homogenization (see [10] pages 54 to 58). Let the two
isotropic vectors of R1,1 :

e∞,α = (α, α) (11)

e0, 1α =
1

2
(− 1

α
,

1

α
),

where e∞,α · e0, 1α = −1, for all α 6= 0. Then the set {e+,α, e−,α} given by:

e∞,α = e+,α + e−,α (12)

e0, 1α = (e−,α − e+,α)/2

is an orthonormal basis of R1,1. In fact, these two bases satisfy the following:
(e0, 1α )2 = 0 = (e∞,α)2 and e∞,α · e0, 1α = −1 if and only if {e+,α, e−,α}
is an orthonormal basis of R1,1. The previous isotropic vectors are of great
importance in the conformal model, as well as for the image representation
described below. They will be used to encode the extrinsic parameter of the
camera which is difficult to deal with in the projective space : the latitude
angle, that is the parameter corresponding to the perspective distortion of
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an image (see Sec. 4). The space R3,1 can be decomposed into the following
direct sum:

R3,1 = R2 ⊕ R1,1 (13)

called a conformal split, where {e1, e2} denotes an orthonormal basis of R2.
This decomposition is uniquely determined by the pseudoscalar

E = e∞,α ∧ e0, 1α = e+,α ∧ e−,α (14)

which is independent of the scalar α (see equation (11)): let the vector

Xα = x1e1 + x2e2 + x∞e∞,α + x0e0, 1α (15)

in the space R3,1, then

Xα = P⊥E (Xα) + PE(Xα) (16)

where
P⊥E (Xα) = (Xα ∧ E)E = x1e1 + x2e2 (17)

is the rejection of Xα from the E-plane and

PE(Xα) = (Xα · E)E = x∞e∞,α + x0e0, 1α (18)

is the projection of Xα onto the E-plane.
Through the previous embedding of R2 in the space R3,1 (equation (10)),

the conformal representation of the Euclidean space, called horosphere, is
defined as follows:

Definition 2.3. The horosphere denoted by Hα is the conformal model of R2

associated with the basis {e∞,α, e0, 1α } and is the following set of normalized

isotropic vectors of R3,1:

Hα = {Xα ∈ R3,1; X2
α = 0 and Xα · e∞,α = −1}. (19)

It’s given by Hα = ϕα(R2) where ϕα is the bijection ϕα : R2 −→ Hα that
sends x1e1 + x2e2 to

Xα = ϕα(x1e1 + x2e2) = x1e1 + x2e2 +
1

2
(x1

2 + x2
2)e∞,α + e0, 1α . (20)

One of the most important results of this model is that every Möbius
transform of the Euclidean plane is linearized by the embedding (see [6] for
instance). First, we remind the definition of a Möbius transformation of R2.

Definition 2.4. Let A, B, C and D be versors in R2 satisfying:

AB†, BD†, CD†, AC† ∈ R2 (21)

AD† −BC† 6= 0, (22)

where † denotes the reversion of the Clifford algebra. Then the Möbius trans-
formation f of R2 represented by the matrix

[G] =

(
A B
C D

)
is given by:

f(x) = (Ax+B)(Cx+D)−1, (23)
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for all x ∈ R2. The matrix [G] is known as Vahlen matrix.

We have the following linearization result. The reader is referred to see
[6] for all the details about the representations of the basic particular Möbius
transformations.

Theorem 2.1. Let f be a Möbius transformation of R2 given by the Vahlen
matrix [G]. The versor

Gα = e∞,α(−e0, 1αA+B)− e0, 1α (C + e∞,αD) (24)

satisfies for all x ∈ R2:

Gα(x+
1

2
x2e∞,α + e0, 1α )(G∗α)−1 = σf (x)[f(x) +

1

2
[f(x)]2e∞,α + e0, 1α ], (25)

where
σf (x) = (Cx+D)(C∗x+D∗)† (26)

is a scalar valued function and ∗ denotes the main involution of the Clifford
algebra.

Proposition 2.1 (Horospheres intersection). Let Hα1 and Hα2 be two horo-
spheres given by:

Hα1 = {Xα1 ∈ R3,1, s.t. Xα1 = x+
1

2
x2e∞,α1 + e0, 1

α1

; x ∈ R2} (27)

Hα2
= {Xα2

∈ R3,1, s.t. Xα2
= y +

1

2
y2e∞,α2

+ e0, 1
α2

; y ∈ R2} (28)

where
e∞,α1

= (α1, α1), e∞,α2
= (α2, α2) (29)

and

e0, 1
α1

=
1

2
(− 1

α1
,

1

α1
), e0, 1

α2

=
1

2
(− 1

α2
,

1

α2
) (30)

Then, the previous horospheres satisfy:

Hα1 ∩Hα2 6= φ ⇐⇒ Hα1 ≡ Hα2 ⇐⇒ α1 = α2. (31)

Proof. Suppose that there exist x and y in R2 such that

x+
1

2
x2e∞,α1

+ e0, 1
α1

= y +
1

2
y2e∞,α2

+ e0, 1
α2

. (32)

Since R3,1 = R2 ⊕ R1,1, the last equation is equivalent to:

x = y and
1

2
x2e∞,α1

+ e0, 1
α1

=
1

2
y2e∞,α2

+ e0, 1
α2

(33)

⇔ x = y and

{
x2α1 − 1

α1
= x2α2 − 1

α2

x2α1 + 1
α1

= x2α2 + 1
α2

(34)

⇔ x = y and α1 = α2 (35)

�

Therefore, two different horospheres, i.e. corresponding to different isotropic
bases of R1,1 (equation (11)), do not intersect.
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Figure 1. Viewpoint degrees of freedom for t1 = t2 = 0
(from [12]).

3. Projective representations

Suppose that a planar object is embedded into the subspace R2 × {0} of the
three-dimensional space R3 equipped with a Cartesian coordinate system
(O, x1, x2, x3) and an orthonormal basis {e1, e2, e3}. We assume that the
image D0 ⊂ R2 × {0} of this embedding contains the origin O. The frame
(O, e1, e2, e3) is called object frame.

3.1. The camera extrinsic parameters

We suppose that the camera is fully calibrated such that its intrinsic param-
eters are given by the matrix K = Id. In [12], the authors define the camera
extrinsic parameters by making use of a spherical coordinate system for the
space R3. More precisely, we have the following definition.

Definition 3.1. The camera extrinsic parameters are given by the 6-tuple
(θ, φ, ψ, λ, t1, t2)(see figure 1) where:

1. The latitude angle θ, which is the non-signed angle between the z-axis
and the optical axis of the camera. We assume that 0 ≤ θ < π/2 radians.

2. The longitude angle φ (for θ 6= 0), which is the signed angle between the
x1-axis and the orthogonal projection of the optical axis onto the plane
(O, x1, x2). We suppose that 0 ≤ φ < 2π radians.

3. The rotation signed angle ψ of the camera about its optical axis (0 ≤
ψ < 2π).

4. The zoom parameter λ which is the distance between the position of
the optical center C of the camera in the space and the point O′ of
intersection of the optical axis with the object plane (λ > 0).

5. The two parameters t1 and t2 of the planar translation that the camera
can undergo parallel to the plane (O, x1, x2).

Remark 3.1. The zoom parameter measures how far is the camera from the
object plane. The angles θ and φ represent the direction of the optical axis.



8 Ghina El Mir, Christophe Saint-Jean and Michel Berthier

If the translation parameters are null, i.e. the camera axis passes through
the origin O, then (λ, θ, φ) are the spherical coordinates of the optical center
and (λsinφsinθ, λcosφsinθ, λsinφ) are its Cartesian coordinates in the object
frame. For θ = 0 the image is called a frontal image and corresponds to a
frontal viewpoint. As for every θ 6= 0 the longitude φ can take any arbitrary
value in [0, 2π[, we suppose that this is also satisfied for the frontal case.

Indeed, as described in [2], the camera extrinsic parameters are the
parameters encoding the 3-D rotation and translation that relate the object
frame to the camera frame in the 3-D space. In fact, the camera frame denoted
by (C, e′1, e

′
2, e
′
3) is constructed through the object frame (O, e1, e2, e3) as

follows (see figure 2):
First we apply to the object frame a translation Te3 vertically towards C of
vector e3. This is followed by a rotation Rψe3 about e3 of angle ψ in order to
allow the rotation of the camera about its optical axis. Next, the previous
definitions of the latitude and longitude angles enables us to describe their
actions by a two rotations, the first one Rθe2 about e2 and of angle θ and the

second one Rφe3 about e3 and of angle φ. Then the zoom parameter induces
a dilation Dλ of ratio λ. These transformations of the space map the origin

O onto the vector ~u′ (see figure 2) given by:

~u′ = DλR
φ
e3R

θ
e2R

ψ
e3Te3(O) = λsinφsinθ e1 + λcosφsinθ e2 + λsinφ e3. (36)

Finally, the coordinates of O′ which represent the planar translation of the
camera are taken into account by applying a translation Tt1,t2 by the vector
(t1, t2, 0). Thus, the 3-D transformation that expresses the camera frame
according to the object frame is decomposed as follows:

l = Tt1,t2DλR
φ
e3R

θ
e2R

ψ
e3Te3 . (37)

The camera frame is then defined by (C, e′1, e
′
2, e
′
3) associated with the Carte-

sian coordinate system (C, x′1, x
′
2, x
′
3), where

~OC = l(O) (38)

e′1 = Rφe3R
θ
e2R

ψ
e3(e1)

e′2 = Rφe3R
θ
e2R

ψ
e3(e2)

e′3 = Rφe3R
θ
e2R

ψ
e3(e3).

The image plane equation in the camera frame is given by: x′3 = −1.

Hereafter, let x = x1e1 + x2e2 = ~OM be a vector encoding the coordi-
nates of a point M in the object frame. This point can be expressed in the
camera frame by

x′ = l−1(x) (39)

= T−e3 R
−ψ
e3 R−θe2 R−φe3 Dλ−1 T−t1,−t2 (x).

That is, if x′ = ~OM ′ = x′1e1 +x′2e2 +x′3e3 then ~CM = x′1e
′
1 +x′2e

′
2 +x′3e

′
3 i.e.

the coordinates of M ′ in the object frame are equal to those of M expressed in
the camera frame. Thus, the projection of M onto the image plane x′3 = −1



Conformal Geometry for Viewpoint Change Representation 9

x1

x2

x3

x'1

x'2

x'3

Figure 2. Construction of the camera frame (C, e′1, e
′
2, e
′
3)

through the object frame (O, e1, e2, e3). The 3-D transforma-
tion describing this construction is denoted by l (see equa-
tions (37) and (38)). The parameters of l are the camera six
extrinsic parameters.

is identified to the projection of M ′ onto the plane x3 = −1. Let then Π
denote the projection onto the plane x3 = −1 such that

Π(x1e1 + x2e2 + x3e3) =

{
−x1

x3
e1 − x2

x3
e2 − e3 if x3 6= 0

x1e1 + x2e2 if x3 = 0
, (40)

then the 3-D Euclidean transformation that expresses the image coordinates
in the camera frame is given by: xcam = Π(x′). Thanks to commutativity
between some elements, this can be written as:

xcam = R−ψe3 (Π T−e3 R
−θ
e2 ) R−φe3 Dλ−1 T−t1,−t2 (x). (41)

This leads to interpret the pinhole camera model in the 2-D homogeneous
space by the following identity:

I = k−10 I0 := I0 ◦ k−10 , (42)

where

k0 = R−ψ hθ R−φ Dλ−1 T (43)

and
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1. I0 : R2 → R is the frontal image corresponding to the extrinsic param-
eters (0, 0, 0, 1, 0, 0), i.e. representing the object reflectance (see [11]),

2. T is a planar translation,
3. Rψ is a planar rotation about the origin with a rotation angle ψ,
4. Dλ is a dilation centered on the origin with ratio λ,
5. hθ := Π T−e3 R

−θ
e2 is called perspective distortion and is represented in

the 2-D homogeneous space by the 3× 3 matrix Mθ given by:

Mθ =

 cosθ 0 0
0 1 0

−sinθ 0 1

 .

Therefore, an image of a planar object is represented by any mapping

Iψ,θ : R−ψhθ(R2) −→ R. (44)

If the corresponding extrinsic parameters of the camera (θ, φ, ψ, λ, t1, t2)
are known, then one can find the object reflectance I0 through equations (42)
and (43).

Remark 3.2. 1. It’s immediate that in the case of frontal viewpoint, the
perspective distortion is h0 = Id.

2. The inverse of Mθ is given by:

M−1θ =
1

cosθ

 1 0 0
0 cosθ 0

sinθ 0 cosθ

 .

Since it’s a homogeneous matrix, we can omit the factor 1
cosθ . It’s a

matrix representing h−1θ in the 2-D homogeneous space.

3.2. Viewpoint changes in the projective geometry

Through the previous representation of the acquisition of an image via the
projective pinhole camera model, the homography k of P2(R) that relates
two different views of the planar object can be written as:

k : R−ψ1
hθ1(R2) ⊂ P2(R) −→ R−ψ2

hθ2(R2) ⊂ P2(R) (45)

such that

k = R−ψ2
hθ2 f (R−ψ1

hθ1)−1 (46)

= R−ψ2 hθ2 f h
−1
θ1

Rψ1 ,

where f is an affine similarity (of the 2-D homogeneous space as well).

Since R−ψ2
and hθ2 (resp. h−1θ1 and Rψ1

) do not commute weakly, the
homography k has 8 degrees of freedom because the similarity f has a four
parameters. Let Γ denotes the set of homographies of P2(R) given by equation
(46). In the next section, we will represent every k ∈ Γ by a conformal
mapping through the conformal model.
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Note that frontal viewpoint changes are represented by affine similarities
k ∈ Γ (for θ1 = θ2 = 0).

4. Conformal representations

The aim here is to encode every k ∈ Γ which models a viewpoint change by
a mapping in the conformal geometry. It’s immediate, through equation (25)
that a similarity f ∈ Γ is represented in the conformal model by a bijection
from a horosphere Hα onto itself given by

Xα = ϕα(x) 7−→ δGαXαG
−1
α = f(x) +

1

2
[f(x)]2e∞,α + e0, 1α ∈ Hα, (47)

where δ is the ratio of f (σf (x) = δ−1, ∀x ∈ R2), for an arbitrary α 6= 0.
However, the restriction hθ |R2 of the perspective distortion is not a Möbius

transformation on R2, therefore it can’t be represented by a versor in the
conformal model of R2. Our approach is to link the choice of the parameter
α of Hα to the latitude angle θ so that ϕα of equation (20) would encode
hθ |R2 and thus a generic k ∈ Γ for θ1 6= θ2 can be modeled by a mapping be-

tween two different horospheres Hα1 and Hα2 encoding hθ1(R2) and hθ2(R2)
respectively.

4.1. Conformal model of the perspective plane: A generalization of the con-
formal model of the Euclidean plane

As described above, for every scalar α 6= 0 the horosphere Hα = ϕα(R2)
realizes a conformal modelling of the Euclidean plane R2. The same vector
x ∈ R2 can be ’seen’ through diverse conformal representations: for all α 6= 0
its homogeneous representation within the conformal model of R2 associated
with the isotropic vectors e∞,α and e0, 1α is the vector Xα = ϕα(x) where

x = P⊥E (Xα) (see equation (20)).

Our purpose in this subsection is to generalize the conformal model
so that it represents not only the Euclidean plane but also hθ(R2) for all
θ ∈]0, π2 [. This generalization satisfies the following properties:

1. α encodes the latitude angle θ i.e. α = αθ where θ 7→ αθ is bijective,
2. the horosphere Hαθ = ϕαθ (R2) models hθ(R2) for all θ ∈]0, π2 [,

3. this is reduced to the conformal model of R2 for only one specific α = α0

i.e. the horosphere ϕα0
(R2) encodes h0(R2) = R2,

4. for every αθ, the representations of Möbius transformations of R2 by
versors in R3,1 (equation (25)) are preserved. The versors depend on
the value of αθ.

This leads us to construct a modeling of a generic k ∈ Γ by a mapping
between two horospheres.

We call a perspective plane the image hθ(R2) of the Euclidean plane by
a perspective distortion hθ, for all θ ∈ [0, π2 [. It is strictly included in the real
projective plane P2(R).
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First let θ ∈]0, π2 [ and x = x1e1 +x2e2 ∈ R2. The image hθ(x1e1 +x2e2)
of x by hθ is represented in the projective geometry by the 2-D homogeneous
vector:

vθ(x1e1 + x2e2) = Mθ · (x1e1 + x2e2 + e3) (48)

= x1cosθ e1 + x2e2 + (−x1sinθ + 1)e3.

The e3-component of vθ(x1e1 +x2e2) is equal to zero if and only if hθ(x1e1 +
x2e2) is a point at infinity of P2(R): for all x2 ∈ R, hθ(1/sinθ e1 + x2e2) is
a point at infinity represented by

vθ(1/sinθ e1 + x2e2) = cotθ e1 + x2e2, (49)

where cot encodes the cotangent function. Since e∞,α models all the points at
infinity, it encodes hθ(1/sinθ e1 + x2e2) for all x2 ∈ R. We set then through
the expression of the vector vθ(1/sinθ e1 + x2e2)

e∞,αθ = (αθ, αθ) = (cotθ, cotθ) (50)

e0, 1
αθ

=
1

2
(− 1

αθ
,

1

αθ
) =

1

2
(−tanθ, tanθ), (51)

and the orthonormal basis {e+,αθ , e−,αθ} is given by:{
e0, 1

αθ

= 1
2 (e−,αθ − e+,αθ )

e∞,αθ = e−,αθ + e+,αθ
. (52)

The conformal model of hθ(R2) is

Hαθ = {Xαθ = x1e1 + x2e2 +
1

2
(x21 + x22)e∞,αθ + e0, 1

αθ

;x1, x2 ∈ R}, (53)

where ϕαθ (x1e1 + x2e2) models the point hθ(x1e1 + x2e2) of the perspective
plane. Particularly, for all x2 ∈ R, ϕαθ (1/sinθ e1 + x2e2) encodes the point
at infinity hθ(1/sinθ e1 +x2e2). Moreover, since the homogeneous 2-D vector
vθ(0) is equal to e3 then hθ(0) is the origin of P2(R). Therefore, similarly to
the conformal model of R2, ϕαθ (0) = e0, 1

αθ

encodes the origin hθ(0) of the

perspective plane hθ(R2).

For the frontal case θ = 0, we set

e∞,α0
= (−1, −1) (54)

e0, 1
α0

=
1

2
(1, −1). (55)

The conformal model of h0(R2) is reduced to the conformal model of the
Euclidean plane R2.

Remark 4.1. We choose here the value −1 for the value of α0 because the
cot mapping is bijective from ]0, π/2[ onto R∗+. Thus, the negative scalar −1
ensures that the corresponding e∞,α0

is a good representation for the value
θ = 0. Indeed, it prevents having the same vector e∞,α0 that represents two
different latitude angles (one of them is θ = 0).
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R2 = RψP
⊥
E (Hαθ )

R−ψhθ ≡ ϕψ,αθ
−→

Hαθ

Figure 3. Image representation: Image Iψ,θ whose perspec-
tive distortion is encoded by ϕαθ . Its domain is represented
by the horosphere Hαθ (Right). Its associated frontal image
I0 (Left).

4.2. Image representation through the conformal model

In this subsection, the domain of an image previously defined in the projective
geometry (equation (44)) is replaced by another one, namely the horosphere,
that is a useful geometric object to represent both of the domain and the
perspective distortion of the image. This induces a new image representation
and a modeling of a single viewpoint change.

Consider the embedding of R1,1 into R3,1 through the conformal split
R3,1 = R2 ⊕ R1,1, where {e+,αθ , e−,αθ} given in the previous section is the
orthonormal basis of R1,1. Let Iψ,θ be an image Iψ,θ : R−ψhθ(R2) −→ R
corresponding to the extrinsic parameters (θ, φ, ψ, λ, t1, t2). Let I0 be
the frontal image associated with Iψ,θ and corresponding to the extrinsic
parameters (0, φ, 0, λ, t1, t2). Consequently, through the projective pinhole
models of acquisition of Iψ,θ and I0, we have:

Iψ,θ ◦R−ψ hθ = I0 (56)

on the domain of I0 encoded by the Euclidean plane R2. As explained pre-
viously, the perspective plane hθ(R2) is modeled by ϕαθ (R2) which is the
horosphere Hαθ . Next, we need to represent R−ψ in the conformal model as-
sociated with αθ in order to make a full modeling of the domain R−ψ hθ(R2)
of Iψ,θ. Let F−ψ : Hαθ −→ Hαθ defined for Xαθ = ϕαθ (x) by

F−ψ(Xαθ ) = G−ψXαθGψ (57)

= R−ψ(x) +
1

2
[R−ψ(x)]2e∞,αθ + e0, 1

αθ

where G−ψ = e
ψ
2 e1∧e2 is the versor encoding R−ψ in the conformal model

associated with αθ (see equation (25)). Hence, R−ψ hθ(R2) is encoded by
F−ψ ◦ ϕαθ (R2) where F−ψ ◦ ϕαθ is equal to

ϕαθ ◦R−ψ =: ϕψ,αθ . (58)

Since ϕψ,αθ (R2) = Hαθ for all ψ, we encode the domain of Iψ,θ by {Hαθ , ϕψ,αθ}.
In fact, the embedding of the domain R2 of I0 onto Hαθ is given by ϕψ,αθ that
takes into account the parameter ψ of the camera. This leads us to construct
the following image representation.

Definition 4.1 (Image conformal representation). Under the above assump-

tions, an image is given by a conformal embedding ϕψ,αθ of R2 into R3,1
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corresponding to an orthonormal basis {e+,αθ , e−,αθ} of R1,1 that encodes
its perspective distortion and a camera rotation parameter ψ. It is a mapping
Īψ,αθ defined on the associated horosphere as follows:

Īψ,αθ : {Hαθ , ϕψ,αθ} −→ R (59)

Xαθ = ϕψ,αθ (x) 7−→ Iψ,θ ◦R−ψhθ ◦RψP⊥E (Xαθ )

= Iψ,θ ◦R−ψ hθ(x)

Remark 4.2. 1. Since θ 7→ αθ is bijective from [0, π
2 [ onto R∗+∪{−1} then

every Iψ,θ matches with a unique Īψ,αθ and vice versa.
2. On one hand, a vector Xαθ = ϕψ,αθ (x) represents the point R−ψ hθ(x)

that belongs to the image plane of Iψ,θ. On the other hand, RψP
⊥
E (Xαθ )

is the point x in the image plane of I0 that matches with Xαθ because it
matches with R−ψ hθ(x) (see figure 3).

3. Most of the previous equations are satisfied on subsets of R2 or Hψ,αθ .
However, in order to simplify the notations we suppose that we deal
with the entire spaces by assuming that the intensity function Iψ,θ is
well defined on the whole of R−ψ hθ(R2) ⊂ P2(R).

Next, let Ī denote the set of conformal image representations:

Ī = {Īψ,αθ s.t αθ ∈ R∗+ ∪ {−1}, ψ ∈ [0, 2π[, Iψ,θ : R−ψhθ(R2)→ R}. (60)

4.3. Viewpoint change representation

This subsection is devoted to constructing within the conformal geometry a
viewpoint change representation, that is a representation of an homography
k ∈ Γ.

Following the previous notations, let Īψ1,αθ1
and Īψ2,αθ2

be two images

in Ī of a planar object given by:

Īψ1,αθ1
(R−ψ1

x+
1

2
(R−ψ1

x)2e∞,αθ1 + e0, 1
αθ1

) = Iψ1,θ1 ◦R−ψ1
hθ1(x) (61)

and

Īψ2,αθ2
(R−ψ2 y +

1

2
(R−ψ2 y)2e∞,αθ2 + e0, 1

αθ2

) = Iψ2,θ2 ◦R−ψ2 hθ2(y). (62)

We denote by I10 and I20 resp. their associated frontal images (see above).
Since I10 and I20 are frontal images of the same planar object, there exists a
planar direct similarity f such that

I10 = I20 ◦ f. (63)

The homography k ∈ Γ that relates Iψ1,θ1 and Iψ2,θ2 is the mapping given
by equation (46):

k : R−ψ1
hθ1(x) 7−→ x 7−→ f(x) 7−→ R−ψ2

hθ2 [f(x)]. (64)

According to the previously introduced image representation, it is given
by the bijection (see figure 4):

ϕψ2,αθ2
◦ f ◦ ϕ−1ψ1,αθ1

: {Hαθ1
, ϕψ1,αθ1

} −→ {Hαθ2
, ϕψ2,αθ2

}. (65)
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Rψ1
P⊥E (Hαθ1

)

f

y

Rψ2
P⊥E (Hαθ2

)

R−ψ1hθ1

−→
ϕψ1,αθ1

R−ψ2hθ2
−→

ϕψ2,αθ2

Hαθ1

F̃

yk

Hαθ2

Figure 4. Viewpoint change representation: The top row
shows the image Iψ1,θ1 (upper right) and its frontal I10 (upper
left), the bottom row shows the image Iψ2,θ2 (bottom right)
and its frontal I20 (bottom left). The projective mappings
and their conformal representations are also shown.

More explicitly, we have the following proposition.

Proposition 4.1. The viewpoint change between the images Īψ1,αθ1
and Īψ2,αθ2

is represented by the mapping F̃ : {Hαθ1
, ϕψ1,αθ1

} −→ {Hαθ2
, ϕψ2,αθ2

} that
sends

Xαθ1
= R−ψ1

x+
1

2
(R−ψ1

x)2e∞,αθ1 + e0, 1
αθ1

(66)

to

F̃ (Xαθ1
) = R−ψ2 f(x) +

1

2
[R−ψ2 f(x)]2e∞,αθ2 + e0, 1

αθ2

. (67)

This conformal viewpoint change representation is represented by the
following diagram:

Hαθ1

F̃ //

Rψ1
P⊥E

��

Hαθ2

Rψ2
P⊥E
��

R2

f
//

ϕψ1,αθ1

JJ

R2

ϕψ2,αθ2

TT
.

Remark 4.3. The two isotropic bases {e∞,αθ1 , e0, 1
αθ1

} and {e∞,αθ2 , e0, 1
αθ2

}

of R1,1 encode the latitude angles θ1 and θ2 of the perspective distortions of
the two images. The rotation parameters ψ1 and ψ2 of the two cameras are
encoded by the rotations R−ψ1

and R−ψ2
. Furthermore, the affine similarity

f gives an additional representation of the remaining parameters via its 4
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degrees of freedom: it models the variation of the parameters of the associated

frontal images I10 and I20 . Hence, F̃ takes into consideration all the degrees
of freedom of the homography k ∈ Γ. This means that it is a well-chosen
viewpoint change representation.

Remark 4.4. Recall that a transformation F : R3,1 −→ R3,1 of class C1 is
said to be conformal if and only if for all X ∈ R3,1 there exists λ(X) 6= 0
such that

[dF (X).x] · [dF (X).y] = λ(X)x · y, ∀x, y ∈ R3,1, (68)

where dF is the differential function of F . Particularly, an orthogonal trans-
formation is conformal.

Proposition 4.2. The mapping F̃ is the restriction to the horosphere Hαθ1
of

a linear conformal transformation of R3,1.

Proof. Let F1 : Hαθ1
−→ Hαθ1

and F2 : Hαθ1
−→ Hαθ2

be two mappings
that send

Y1 = y +
1

2
y2e∞,αθ1 + e0, 1

αθ1

(69)

to

F1(Y1) = g(y) +
1

2
[g(y)]2e∞,αθ1 + e0, 1

αθ1

(70)

and

F2(Y1) = y +
1

2
y2e∞,αθ2 + e0, 1

αθ2

, (71)

respectively, where g = R−ψ2
fRψ1

. We have

F̃ = F2 ◦ F1. (72)

Since g is a planar direct affine similarity, it is the composition of a
rotation, translation and dilation with ratio ρ not equal 0. Therefore, from
equation (25) there exists a versor Gαθ1 in R3,1 such that

F1(Y1) = ρGαθ1Y1G
∗
αθ1

−1. (73)

Consequently, F1 is the restriction to Hαθ1
of a conformal transformation of

R3,1. Moreover, F2 is the restriction to Hαθ1
of the conformal transformation

of R3,1 that sends a vector

y + y∞e∞,αθ1 + y0e0, 1
αθ1

(74)

to the vector

y + y∞e∞,αθ2 + y0e0, 1
αθ2

. (75)

In fact, one can easily verify that this last transform is orthogonal since
e∞,αθ1 · e0, 1

αθ1

= e∞,αθ2 · e0, 1
αθ2

= −1.

Hence, F̃ is the restriction to Hαθ1
of a conformal transformation of

R3,1. �
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This viewpoint change representation leads in the next subsection to
interpret the pinhole camera model in the conformal geometry instead of the
projective geometry as above.

4.4. Conformal pinhole camera model

Here, the homography k0 defining the acquisition of Iψ,θ in the projective
geometry (equation (43)) and relating the object reflectance I0 to Iψ,θ is
modeled by a mapping in the conformal geometry between their associated
horospheres.

We remind that e∞,α0
= (−1,−1) and e0, 1

α0

= 1
2 (1,−1) are the two

isotropic vectors representing the frontal view of the object and Hα0
the cor-

responding horosphere. Similarly, if e∞,αθ = (αθ, αθ) and e0, 1
αθ

= 1
2 (− 1

αθ
, 1
αθ

)

are the vectors encoding the latitude angle of Iψ,θ, we denote by Hαθ their as-
sociated horosphere. Thus, applying the previous conformal viewpoint change
representation, the homography k0 = R−ψhθ R−φ Dλ−1T is represented by
the following bijection F0 : {Hα0

, ϕ0,α0
} → {Hαθ , ϕψ,αθ} that sends

X0 = x+
1

2
x2e∞,α0

+ e0, 1
α0

(76)

to

F0(X0) = R−ψf0(x) +
1

2
[R−ψf0(x)]2e∞,αθ + e0, 1

αθ

, (77)

where f0 = R−φ Dλ−1 T . This leads to the following definition:

Definition 4.2. Under all these previous notations, the conformal pinhole cam-
era model Īψ,αθ of Iψ,θ is defined by:

Īψ,αθ : {Hαθ , ϕψ,αθ} −→ R (78)

Y 7−→ Ī0,α0
◦ F0

−1(Y ) = I0 ◦ P⊥E ◦ F0
−1(Y ),

where

Ī0,α0
: {Hα0

, ϕ0,α0
} −→ R (79)

X0 = x+
1

2
x2e∞,α0 + e0, 1

α0

7−→ Ī0,α0(X0) = I0 ◦ P⊥E (X0) = I0(x).

is the conformal representation of I0.

5. Conclusion

We have shown in this paper how to take advantage of the conformal model
to introduce new image and viewpoint change representations. We have for
instance described how to deal with the perspective distortion parameter us-
ing the two isotropic vectors e∞,αθ and e0, 1

αθ

. This is expressed by the mean

of a generalization of the conformal model that represents a perspective plane
hθ(R2) for every scalar αθ. This allows to consider an image as defined on a
horosphere Hαθ with a given embedding ϕψ,αθ of R2 into R3,1 corresponding
to an isotropic basis {e∞,αθ , e0, 1

αθ

} that encodes the latitude angle θ and a

rotation parameter ψ. In this context, every viewpoint change is described
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as a mapping between two horospheres linked by an affine similarity that
relates there associated frontal images. In the end, we have modeled the pin-
hole model of acquisition of an image Iψ,θ within this setting in the conformal
geometry by making use of the conformal viewpoint change representation
between Iψ,θ and the image I0 encoding the reflectance of the planar object.

We will detail in a forthcoming paper how to make a group-representation
of all the viewpoint changes that acts on the set of images and decomposes Ī
into disjoint union of orbits in the conformal geometry. This will enable us to
define viewpoint change invariant detectors and descriptors in this framework
using the theory of group actions.
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