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S U M M A R Y

The improvement of the geodetic coverage within the African Plate over the last decade

together with an extended GPS position time-series allows improved accuracy in determining

the velocity field than prior geodetic studies. Using this new velocity field of the whole African

continent, the best model proposed here remains consistent with previous studies including

the existence of two small plates along the East African Rift System (EARS, Victoria and

Rovuma). We focus specifically on the velocities along this plate boundary by estimating both

the geodetic and the seismic moment rate. Whereas we use a scalar form of the Kostrov relation

to calculate the geodetic moment rate, the seismic moment rate is obtained by integrating

the cumulative truncated Gutenberg–Richter earthquake distribution of local events in the

39-yr-long worldwide catalogue, using a maximum likelihood method. This statistical method

allows us to take into account the probable incompleteness of the existing catalogue and to

assume the seismic moment rate calculated from this short catalogue to be representative of the

long-term seismic deformation. The comparison of geodetic and seismic energy release sheds

light on the variations of mechanical behaviour related to intracontinental extension along the

EARS. The southward increase, observed along the rift, of the proportion of geodetic moment

seismically accommodated suggests a significant control of the thermal structure associated

with different states of rifting evolution.
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1 I N T RO D U C T I O N

The East African Rift System (EARS) is the largest seismically

and volcanically active rift above sea level. This mainly intracon-

tinental divergent boundary runs over 3000 km from Mozambique

to the triple junction of Arabia–Nubia–Somalia plates in Afar. The

seismic activity in East Africa prominently underlines this north–

south system, drawing seismic belts that delimit largely aseismic

blocks (Fig. 1). The extensive deformation shows different stages,

from intracontinental extension, continental break-up, to eventually

incipient oceanic spreading in northern Afar (Hayward & Ebinger

1996; Ebinger & Casey 2001; Chorowicz 2005; Delvaux & Barth

2010). The geological models, which provide an average motion

over several million years, offer a first and global estimate of the

kinematics of the EARS (Jestin et al. 1994) with an opening rate

ranging from 1 to 5 mm yr–1 on its northern part (north of 22◦S).

Southward, the kinematics of such models is more ambiguous, and

some authors have considered this part as a diffuse extension zone

up to 2000-km wide (Grimison & Chen 1988). On a smaller scale,

the spatial organization of the extensive deformation is complex,

with different orders of segmentation characterizing the EARS sys-

tem. The first-order segmentation is related to the five individual

∼1000-km-long branches: the Main Ethiopian Rift (MER), the

Western and the Eastern (Kenya Rift) branches surrounding the

Tanzanian craton the Malawi Rift and the Davie Ridge (Fig. 2).

The second-order segmentation delimits 50–100-km-long segments

(Chorowicz 2005), concentrating the tectonic or/and the volcanic

activity (Ebinger 1989a,b; Ebinger et al. 1993; Hayward & Ebinger

1996; Delvaux & Khan (1998); Kurz et al. 2007). The complexity

of the boundary therefore makes both the short-term and the long-

term kinematics of the EARS difficult to understand. The recent

geodetic data offer a good opportunity to make both the geom-

etry and the extent of this boundary more precise, together with

its extension rates. As suggested by previous studies using either

GPS and slip vector data (Calais et al. 2006) or only geodetic data

(Stamps et al. 2008), geodetic models require two smaller plates

in addition to the large Nubia and Somalia plates, to account for

the observed velocity field: the Victoria Plate, also called Ukerewe

Nyanza (Hartnady 2002), which encompasses the Tanzanian craton

and further south the Rovuma Plate. This latter plate is supposed to

be bounded by the Malawi Rift at the West and by the Davie Ridge

on its eastern side but the geometry of their northern and southern

borders remains partly unknown. However, the geodetic models for

East Africa suffer from both the lack of a homogeneous network

with a dense distribution of the GPS stations and the short time span

of the time-series of the most of the geodetic data.

C© The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1
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2 A. Déprez et al.

Figure 1. Map of the seismicity and the continuous GPS stations used in this study. The colour scale depicts the magnitude of the seismicity. Most of the

seismicity in Africa is located along the EARS. Events with a magnitude greater than 6 (black dots) are scarce.

In this study, after re-evaluating this four-plate model in light of

longer time-series and more GPS stations since the last decade, we

focus on the seismic/aseismic behaviour of the first-order segments

of the EARS by comparing seismic and geodetic moment rates.

We then analyse the variations of the ratio of seismic and geodetic

extension rates taking into account the knowledge of the evolution of

the continental breakup stages along the whole EARS, in particular

the thermal state of the lithosphere (Bilham et al. 1999; Keir et al.

2006; Yang & Chen 2010) and therefore the influence of variable

asthenospheric processes along the branches of the EARS (George

et al. 1998; Ebinger & Casey 2001; Nyblade 2011).

2 DATA A N D P RO C E S S I N G

Over the last decade a large number of new continuous GPS stations

have been installed in Africa, significantly increasing the available

data set. Combined with an increase of the time span of the for-

mer GPS observations, we aim to obtain a geodetic velocity field

of Africa and improve the solution compared to previous studies

(Calais et al. 2006; Stamps et al. 2008). To do so, we collect all

possible data from the African continuous GPS stations from 1999

to 2011.

We include ∼90 continuous GPS stations in the processing

(Fig. 1). We select 11 reliable sites around the world for the stabi-

lization of the network with respect to the ITRF2008 (GLSV GRAZ

IISC JOZE KIT3 MAS1 ONSA POL2 RABT VILL ZIMM). We

process our data set using the GAMIT/GLOBK software version

10.4 (King & Bock 2010), leading to daily position time-series

and absolute velocity with respect to ITRF2008 for each station

(Table 1). In order to estimate accurate data uncertainties, we model

the noise of the time-series by the sum of white noise and flicker

noise, as done by previous studies (Zhang et al. 1997; Mao et al.

1999). The CATS software (William 2003, 2008) is used to com-

pute the amplitude of the components of both noises. As expected,
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East African Rift System deformation 3

Figure 2. Velocities w.r.t. Nubia. On the Nubian Plate, only the sites used for the pole determination are drawn. On the other plates, 2 arrows are drawn for

each site. The light colour arrow shows the observed velocity w.r.t. Nubia. The dark colour arrows shows the theoretical movement of the site w.r.t. Nubia

deduced from the Euler poles determined by the inversion of the geodetic velocity field for each plate.

the velocity error decreases when the time span of the observa-

tions increases. For the oldest stations, corresponding to 12 yr of

data acquisition, the errors on both the north and east components

are ∼0.3 mm yr–1.

3 E U L E R P O L E S D E T E R M I NAT I O N

By inverting the geodetic velocity field previously calculated, we

estimate the Euler pole coordinates and the angular velocity of each

plate independently with respect to the ITFR2008 (Figs 2 and 3).

We split our data set into four subsets of continuous GPS stations

following the four-plate model of Calais et al. (2006) and Stamps

et al. (2008): ∼60 sites on the Nubia Plate, nine on the Somalia

Plate, eight on the Victoria Plate, seven on the Rovuma Plate. In

addition of being uneven, the data subsets present large differences,

since most of the sites on the two small plates are located along

their boundaries. Therefore, due to a significant dissimilarity of the

available data set between the Nubia Plate and the other plates, we

follow a specific approach for the determination of the pole for the

Nubia Plate.

3.1 Nubia

To avoid any miscalculation of the rotation vector, which charac-

terizes the motion in a rigid plate model on a sphere, a careful

selection of the sites included in the inversion is needed. We start

using a subset of spatially well-distributed sites according to the

three following conditions:

(1) The horizontal component velocity uncertainties are smaller

than 0.7 mm yr–1.
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Table 1. GPS site velocities with respect to ITRF-2008 and in the Nubia fixed reference frame.

Site Lon Lat Ve ITRF08 Vn ITRF08 Ve fixed Nubia Vn fixed Nubia σ e σ n Corr.

DIFA 12.60631 13.31236 19.26 17.18 −0.75 0.27 1.04 1.37 −0.015

DJOU 1.66164 9.69206 18.81 16.58 −0.86 −0.16 0.67 0.62 0.027

GAO1 359.99399 16.25212 17.91 16.71 −0.83 0.05 0.66 0.65 0.053

GMAS 344.36573 27.76478 14.45 15.03 −0.16 −0.21 0.35 0.44 0.082

GOUG 350.11929 −40.34883 20.22 17.27 0.94 1.37 0.99 1.08 0.144

LPAL 342.10617 28.76387 13.44 15.69 −0.61 0.75 0.28 0.44 0.047

MAS1 344.36673 27.76374 15.04 15.02 0.42 −0.22 0.17 0.22 0.280

NIAM 2.18319 13.47926 18.80 16.71 −0.48 −0.05 0.69 0.54 0.045

NKLG 9.67213 0.35391 20.24 17.39 −0.14 0.47 0.41 0.43 0.050

OUAG 358.48750 12.35639 18.22 16.36 −0.96 −0.21 0.73 0.76 0.050

PRE1 28.22404 −25.74634 15.51 16.81 −0.57 0.72 0.55 0.69 0.052

SIMO 18.43957 −34.18794 14.06 17.93 −1.42 1.19 1.00 1.19 0.039

SUTH 20.81046 −32.38021 14.61 17.80 −0.92 1.17 0.55 0.69 0.139

TAMP 5.52965 22.79265 18.83 16.85 0.56 −0.02 0.61 0.65 0.040

TGCV 337.01724 16.75477 17.23 13.44 0.37 −0.74 0.40 0.31 0.070

TOMB 357.00255 16.73065 18.32 15.35 −0.10 −1.13 0.78 0.74 0.039

YKRO 354.75991 6.87056 20.22 16.60 0.52 0.28 0.34 0.39 0.083

ZAMB 28.31101 −15.42554 17.70 16.37 −0.54 0.29 0.85 1.06 0.075

MALI 40.19440 −2.99591 24.32 14.35 4.40 −0.29 0.70 0.55 0.069

RCMN 36.89348 −1.22083 24.13 14.58 3.91 −0.53 0.95 1.08 0.011

REUN 55.57172 −21.20823 15.48 10.02 0.84 −1.85 0.68 0.60 −0.042

SEY1 55.47941 −4.67372 23.55 9.49 4.21 −2.40 0.77 0.52 −0.022

MBAR 30.73788 −0.60147 21.69 15.80 1.37 −0.037 0.59 0.67 0.011

MOIU 35.29001 0.28832 22.37 16.30 1.95 0.99 1.64 1.96 −0.011

NURK 30.08968 −1.94455 20.75 15.50 0.57 −0.40 1.48 1.94 0.036

DODM 35.74817 −6.18646 22.00 14.92 2.52 −0.33 5.22 5.22 0.055

NMPL 39.25794 −15.12283 19.08 14.18 1.55 −0.60 5.14 5.56 0.056

PMBA 40.48383 −12.96446 18.04 13.70 0.09 −0.90 4.05 5.05 0.049

ZOMB 35.32513 −15.37584 19.36 15.59 1.61 0.28 4.65 5.64 0.024

(2) The time span of observations is longer than 8 yr.

(3) The site must be far from any kind of known local deforma-

tion.

Therefore, sites close to or within the seismically active areas

and/or plate boundaries are excluded. This is the case in Northern

Africa (Moroccan sites TETN, IFR1, IFRN and RABT), in East

Africa close to the Ethiopian rift (DAKE, BDAR, BHAL, DAMY,

ROBE, ARMI, NAZR, ETJI, ADIS and ETAD) and along the Red

Sea side (SHEB and ASMA).

By estimating the Nubian Euler pole with five reliable sites,

(NKLG, GMAS, NIAM, MAS1, PRE1, choice of these sites based

on the time-series), we obtain a weighted rms (WRMS) on the

residual horizontal velocities of 0.3 mm yr–1. Then we consider

every possible six-site subset independently, including the previous

sites and one additional station. We estimate the consistency of

additional data with the rigid rotation previously defined by using

the F-ratio statistic (Nocquet et al. 2002, 2006). The final data set

used as input in the inversion consists of 19 stations indicated on

the map of the Fig. 2. We obtain a solution for the Nubia-ITRF2008

angular velocity (Table 2) with a WRMS on the horizontal velocities

of 0.5 mm yr–1 and a reduced χ 2 of 1.42. The residual horizontal

velocities are lower than 1.8 mm yr–1 for the 19 sites.

It is important to note that the horizontal velocities at 13 sites

considered unreliable due to their short time-span observations (less

than 3 yr—BJKA, UNEC, MAUA, BJPA, CTWN, ULUB, SUTV,

BJCO, MZUZ, PHLW, SUTM, PRE2 and TAMA) are neverthe-

less consistent with the estimated pole, since their residual veloc-

ities with respect to the stable Nubian Plate model are lower than

1.7 mm yr–1.

3.2 Somalia

Due to the small number of sites on the Somalia Plate (9), we

evaluate the pole using all the sites assumed to belong to the plate.

In order to check the consistency of each site with the data set, we

look at the effect of removing this site on the WRMS value after

inversion. Using this approach, we select only four stations (REUN,

RCMN, SEY1 and MALI) to constrain the pole with a WRMS

of 0.4 mm yr–1. Three stations (MAL2, SCTR and VACS) are not

included in the inversion but are consistent with the calculated pole,

since their residual velocity in the Somalia reference frame is lower

than 1.5 mm yr–1. On the contrary, the site on Madagascar Island

(ABPO) and the site along the Indian ridge (RDRG) present an

unexpected residual velocity of 1.8 and 1.7 mm yr–1, respectively.

3.3 Victoria

After following the same approach for the Victoria Plate, we finally

determine its angular velocity using GPS velocity at only three sites

(MOIU, MBAR and NURK), which is lower than the total amount

of stations located within the plate (8). The resulting WRMS is

0.3 mm yr–1 and the maximum residual velocity is 0.9 mm yr–1.

3.4 Rovuma

The WRMS resulting from the inversion of data from four sites

assumed to belong to the Rovuma Plate (ZOMB, DODM, NMPL

and PMBA) is 0.7 mm yr–1. The residual velocities are lower than

0.7 mm yr–1, excepted for PMBA where the residual velocity is

1.4 mm yr–1.
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East African Rift System deformation 5

Figure 3. Relative velocities along the EARS. According to Calais et al. (2006), we use a four-plate model and define the plate borders by following the

seismicity. The velocities are deduced from the Euler poles determined by an inversion of the geodetic velocity field for each plate.

Table 2. Euler pole coordinates with respect to the ITRF-2008. Between brackets: Nubia

pole coordinates obtained by Altamimi et al. (2012).

Plate Lat Lon Ang σ lat σ lon σ ang

Nubia 50.30465 −79.88782 0.23844 0.0041 0.0165 0.0015

(49.4493) (−81.0435) (.2671) (0.2448) (0.7058) (0.0012)

Somalia −48.50120 81.31849 −0.29851 0.0288 0.0428 0.0106

Victoria 53.79063 −62.49425 0.24154 0.0432 1.4459 0.0109

Rovuma −44.27138 72.48177 −0.32118

Despite the high uncertainties, the trend of the velocities changes

along the EARS on either sides of the E–W-trending Kenya–

Tanzania border located at latitude ∼5◦S. Further north, the most

probable E–W velocity component calculated at each site (MOIU,

MBAR and NURK) is slightly positive or almost null, whereas

the same velocity component of the southernmost sites (DODM,

ZOMB, PMBA and NMPL) is negative or almost null. This ob-

servation confirms the need for an E–W Plate boundary south of

the Tanzanian craton (Calais et al. 2006). In our model, this border

follows the Usangu rift (Le Gall et al. 2004).

Our four-plate model is roughly similar to the previous models

proposed by Calais et al. (2006) and Stamps et al. (2008). Such a

 by guest on A
pril 4, 2013

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


6 A. Déprez et al.

similarity, with a database enhanced by a great number of sites and

an accurate uncertainty estimate of the velocities, leads us to be

confident about the geodetic model and to enlarge the scope of our

work. In the following, we adopt an approach combining geodetic

and seismic data. This kind of comparison reveals that geodetic

measurements give a fundamental contribution to characterize the

main features of the strain field.

4 G E O D E T I C A N D S E I S M I C M O M E N T

R AT E S

The comparison of the seismic and geodetic deformation is impor-

tant for understanding both the tectonic deformation and earthquake

hazard assessment (Papazachos & Kiratzi 1992; Ward 1998; Shen-

Tu et al. 1998; Kreemer et al. 2000; Jenny et al. 2004; Masson

et al. 2005; Pancha et al. 2006; D’Agostino et al. 2009). However,

such comparison suffers from its dependency on the existing seis-

mic catalogue, and great caution must be taken on the estimate of

the seismic moment rates. There is a great likelihood that the am-

plitude of the seismic deformation rate in a given region based on

instrumental seismicity would either be significantly lower or larger

than the long-term one, due to the short duration (a few decades)

of the seismic catalogue (Kreemer et al. 2002; Masson et al. 2005).

Nevertheless, in this study we show that the systematic greatly lower

seismic moment rates compared to the geodetic ones along some of

the ∼1000-km-long segments of the EARS cannot be reasonably

only assigned to the incompleteness of the short duration catalogue,

following the approach developed in Mazzotti et al. (2011) and

detailed in the following Section 4.2.

In order to study the geodetic strain and its seismic accommo-

dation in East Africa, we look closer at the five main branches of

the EARS. The first branch encompasses the Main Ethiopian Rift

corresponding to the northern Nubia–Somalia boundary and the

four following segments are the EARS Western Branch, the Malawi

Rift, the EARS Eastern Branch and the Davie Ridge, which figure

the Nubia–Victoria, the Nubia–Rovuma, the Victoria–Somalia and

the Rovuma–Somalia boundaries, respectively.

4.1 Geodetic moment rate

We compute the spatial evolution of the geodetic strain along the

segments of the main branches, by calculating the velocities along

the plate boundaries using the rotation poles of the Somalia, Victoria

and Rovuma plates deduced from the previously calculated geodetic

model (Fig. 3).

To do so, we use a sliding rectangular window with a 100-km-

wide step (Fig. 5). Two sides of the window with length (l) are

parallel to the velocity vector calculated at the centre of the box, the

two other sides are 300-km long (L). Assuming that both magni-

tude and direction of the velocity are constant over time within the

window, the geodetic strain rate (∈̇) is defined by the ratio between

the velocity and the box width (l).

∈̇ =
v

l
. (1)

Then, we estimate the geodetic moment rate using the definition

of the strain tensor rate given by Kostrov (1974).

2µAHS∈̇ = Ṁgeodetic (2)

using µ the shear modulus taken to 3 × 1010 N m−2, A = l × L the

box surface area and HS the seismogenic thickness. In order to take

into account the effect of the presence of the Afar hotspot on the

elastic thickness of the lithosphere, we choose HS = 25 km along

the Main Ethiopian Rift and HS = 30 km from southern Ethiopia

to the southernmost part of the rift (Ebinger et al. 1989). Note that

the geodetic moment rate is independent of the box width.

4.2 Seismic moment rate

We estimate the seismic moment rate by using the scalar moment

of the seismic events recorded within the zone. The scalar approach

has been chosen because of the weakness of the CMT catalogues

for the EARS due to both the low magnitude of most of the earth-

quakes occurring in this region (Bendick et al. 2006) and the sparse

seismic network. First, we combine the NEIC and ISC earthquake

catalogues. In order to unify these catalogues, we consider that the

mb magnitude given by the ISC and NEIC agencies are the same,

according to many previous studies (e.g., Rezapour 2005; Scordilis

2006). Then we determine a linear relation (Eq. 3) between body

wave magnitudes (mb) and moment magnitudes (Mw), using a set of

earthquakes, for which both Mw and mb magnitudes are determined.

Mw = 0.8363mb + 1.013. (3)

We note that this relation is consistent with the results of Scordilis

(2006), who established in particular an empirical relation to convert

mb into Mw using a very large sample of data over the world.

The range of magnitude of the earthquakes used in this study is

relatively narrow. We only consider the events with a magnitude Mw

higher than or equal to m0 = 4.7, considered as the completeness

magnitude by plotting the log cumulative number of earthquake

against magnitude. The highest magnitude recorded along the EARS

is 7.0, corresponding to the earthquake in Mozambique on 2006

February 22.

Within each box defined along the EARS, we estimate the seis-

mic moment rate using the following relation (eq. 4, Hyndman &

Weichert 1983), which is obtained by integrating the Gutenberg–

Richter log-linear distribution up to a maximum magnitude MX.

Ṁseismic = ϕ
b

(c − b)
10[(c−b)Mx +a+d], (4)

where ϕ is a correction factor due to the asymmetric relation

between magnitude and moment, Hyndman & Weichert (1983) ad-

vised for ϕ = 1.27, reflecting a standard error of 0.2 on magnitudes.

c and d are the parameters used for the conversion from magnitude

m into seismic moment M0 [log10(M0) = cm + d]. In our case,

taking advantage of the previous determination of the magnitude

Mw for all earthquakes, we use the relation defined by Kanamori

(1977), which yield (c, d) = (1.5, 9.1). MX is the assumed maximum

magnitude. We use one maximum magnitude value for every box

along the same segment, which is taken equal to the highest mag-

nitude recorded in the catalogue along the segment. This led us to

use the following values: MX = 5.7 along the Main Ethiopian Rift,

MX = 5.9 along the Eastern Branch of the Tanzanian Craton, MX =

6.8 along the Western Branch of the Tanzanian Craton, MX = 6.5

along the Malawi Rift, MX = 6.4 along the Davie Ridge. a and b

are the intercept and the slope of the Gutenberg–Richter recurrence

relation respectively (eq. 5).

log N = a − bM. (5)

We use the maximum likelihood method, first defined by Weichert

(1980), to calculate these parameters: the maximum likelihood

estimate of the seismicity level, a, is the total number of
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Table 3. Moment rates along the MER and earthquake catalogue statistics. Ṁgeodetic: moment rate based on the GPS data, calculated using the

Kostrov relation. b: best-fitting slope of the Gutenberg–Richter recurrence relation (eq. 5). N: number of earthquakes used for the magnitude–

frequency fit. Ṁseismic: moment rate based on the earthquake catalogue, calculated using a statistical method with different maximum magnitude

(MX) and a summation method. Min and Max values presented for Ṁseismic correspond to the bounds of the 67 per cent confidence interval.

Ṁgeodetic (1017 Nm yr−1) b (+/−) N Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1)

Mx = 5.7 Mx = 6.7 ‘summation’

Median Min Max

Box1 25.77 1.30 (0.19) 22 1.00 0.17 9.57 1.58 0.41

Box2 25.19 1.40 (0.24) 15 1.22 <0.06 12.07 1.53 0.50

Box3 24.76 0.93 (0.10) 12 0.25 0.04 0.85 0.94 0.18

Box4 24.22 0.92 (0.15) 16 0.33 0.04 1.77 1.27 0.30

Box5 23.86 0.91 (0.12) 18 0.44 0.07 1.77 1.73 0.20

Box6 23.59 1.01 (0.14) 16 0.53 0.07 2.59 1.63 0.21

Box7 23.35 1.03 (0.17) 16 0.48 0.04 3.02 1.40 0.27

Box8 25.46 1.21 (0.22) 16 0.69 0.04 7.61 1.33 0.30

Table 4. Reconciliation between seismic and geodetic moment rates, along the MER. Ṁgeodetic/Ṁseismic: ratio

between geodetic and seismic moment rates. Ṁgeodetic − Ṁseismic: difference between geodetic and seismic moment

rates. T7 (respectively T6) difference between geodetic and seismic moment rates expressed as equivalent return

period of MW = 7 (respectively MW = 6) earthquakes (Mazzotti et al. 2011).

Ṁgeodetic/Ṁseismic Ṁgeodetic − Ṁseismic (1017 Nm yr−1) T7 T6

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

26 3 155 24.77 16.19 25.60 16 15 25 0.5 0.5 0.8

21 2 >390 23.97 13.12 25.19 17 16 30 0.5 0.5 1

99 29 576 24.51 23.90 24.71 16 17 16 0.5 0.5 0.5

74 14 689 24.42 23.00 24.72 16 16 17 0.5 0.5 0.5

55 14 358 23.78 22.45 24.15 17 16 18 0.5 0.5 0.6

45 9 368 23.33 21.27 23.80 17 17 19 0.5 0.5 0.6

50 8 544 23.12 20.57 23.55 17 17 19 0.5 0.5 0.6

37 3 725 24.78 17.85 25.43 16 16 22 0.5 0.5 0.7

Table 5. Moment rates along the Eastern branch of the Tanzanian Craton and earthquake catalogue statistics (same fields as Table 3).

Ṁgeodetic (1017 Nm yr−1) b (+/−) N Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1)

Mx = 5.9 Mx = 6.9 ‘summation’

Median Min Max

Box1 16.53 1.27 (0.14) 39 1.82 0.28 7.63 3.09 0.72

Box2 15.49 1.14 (0.11) 47 1.78 0.35 6.12 4.05 1.15

Box3 14.49 1.19 (0.10) 65 2.57 0.60 7.69 5.28 1.49

Box4 13.51 1.17 (0.09) 73 2.84 0.74 7.76 6.07 1.58

Box5 12.60 1.25 (0.10) 66 2.86 0.68 8.31 5.15 1.19

earthquakes above the magnitude of completeness (m0, defined

above) and an estimate of b is given by a formula equivalent to

b =
log 10

(m̄ − m0)
, (6)

where m̄ is the average magnitude of the sample.

5 D I S C U S S I O N

5.1 GPS and earthquake catalogue moment rates

comparison

In order to estimate the seismic moment rate over a period, one could

simply normalize by the period duration the cumulative estimated

moments for the recorded events (method that we call ‘summation

method’ in the following). However the use of this method suf-

fers from the possible lack of both large earthquakes, with high

recurrence rate compare to the catalogue duration and the unde-

tected, small magnitude events, which leads to large statistical errors

(Hyndman & Weichert 1983). The statistical method adopted in this

study is therefore more rigorous, since it takes into account the in-

completeness of the catalogue using the magnitude distribution of

the events through the estimate of the b value. We obtained seismic

moment rate values, which differ from these obtained by using the

‘summation method’: the ratio between the two seismic moment

rate estimates ranges from 0.06 to 1.5 (Tables 3–12).

Nevertheless the ratio between seismic and geodetic moment

rates follows a similar evolution along the main branches of the

EARS whatever the method used to estimate the seismic moment

rate: a low seismic moment rate for the most northeastern branches

(MER and Eastern Rift, see Sections 5.2 and 5.3) and a good agree-

ment of the seismic and geodetic moment rates for the other seg-

ments mainly located in the southern part of the EARS (Western

Rift, Malawi Rift and Davie Ridge, see Sections 5.4–5.6).

As described in the Section 4.2, the seismic moment rate cal-

culation depends on the choice of the maximum magnitude (MX)
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Table 6. Reconciliation between seismic and geodetic moment rates, along the Eastern branch of the Tanzanian

Craton (same fields as Fig. 4).

Ṁgeodetic/Ṁseismic Ṁgeodetic − Ṁseismic (1017 Nm yr−1) T7 T6

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

9 3 60 14.71 8.90 16.25 27 24 45 0.9 0.8 1.4

9 2 44 13.71 9.37 15.14 29 26 42 0.9 0.8 1.3

6 2 24 11.92 6.80 13.89 33 29 59 1.1 0.9 1.9

5 2 18 10.67 5.75 12.77 37 31 69 1.2 1 2.2

4 2 19 9.74 4.29 11.92 41 33 93 1.3 1.1 2.9

Table 7. Seismic moment rates along the Western branch of the Tanzanian Craton and earthquake catalogue statistics

(same fields as Tables 3 and 4).

b (+/−) N Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1)

Mx = 6.8 Mx = 7.8 ‘summation’

Median Min Max

Box1 1.23 (0.18) 30 2.32 0.20 19.62 4.32 0.73

Box2 1.23 (0.14) 53 4.10 0.59 21.59 7.60 1.93

Box3 1.42 (0.16) 48 5.73 <0.86 26.16 6.90 1.53

Box4 1.29 (0.12) 69 4.85 0.90 19.55 7.79 1.79

Box5 1.29 (0.12) 69 4.85 0.90 19.55 7.79 1.79

Box6 1.16 (0.09) 84 6.18 1.71 17.78 13.53 1.94

Box7 1.15 (0.08) 87 6.57 1.98 17.51 14.71 1.99

Box8 1.23 (0.08) 68 5.19 1.58 13.27 9.71 0.93

Box9 1.04 (0.11) 54 5.22 1.08 19.44 15.18 6.42

Box10 1.00 (0.10) 71 7.28 1.57 25.54 22.80 9.08

Box11 0.97 (0.08) 100 10.88 3.07 30.08 36.72 12.57

Table 8. Geodetic moment rate along the Western branch of

the Tanzanian Craton and ratio between geodetic and seismic

moment rates (same fields as Tables 3 and 4).

Ṁgeodetic (1017 Nm yr−1) Ṁgeodetic/Ṁseismic

Median Min Max

Box1 3.53 1.5 0.2 17

Box2 4.12 1 0.2 7

Box3 4.74 0.8 0.2 >5

Box4 5.44 1.1 0.3 6

Box5 6.23 1.3 0.3 7

Box6 6.95 1.1 0.4 4

Box7 7.61 1.2 0.4 4

Box8 8.26 1.6 0.6 5

Box9 8.93 1.7 0.5 8

Box10 9.49 1.3 0.4 6

Box11 10.16 0.9 0.3 3

value, that we take here equal to the maximum magnitude observed

in the earthquake catalogue within each branches. This choice can

be discussed and in order to enhance the weight of our conclu-

sions we re-evaluate the seismic moment rate by using a magnitude

maximum with an increment of 1 compared to the first calculation.

The increase of the seismic moment rate induced by this change

is not associated with major consequence on our seismic/geodetic

comparison, since it allows reducing the gap between seismic and

geodetic rates along the 2 southernmost segments. But the discrep-

ancy between the two kinds of measurement stays very large along

the MER. At the Southern end of the Eastern Rift, the discrepancy is

less prominent but stays consistent with the observations of Calais

et al. (2008) with more than the half of the deformation aseismically

accommodated (Tables 3–12).

In order to justify our conclusion on the aseismic behaviour

along the northeastern branches, we quantify the difference be-

tween the GPS and the seismic catalogue-based moment rates

in terms of the return period of Mw = 6 earthquakes (Maz-

zotti et al. 2011). This magnitude is consistent with field ob-

servations, such as fault length and slip length on faults, along

these branches (Asfaw 1998; Williams 2003), which are ad-

mittedly magmatic examples of segment related to continen-

tal breakup (Ebinger & Casey 2001). Moreover Mw = 6

is greatly higher than the catalogue magnitude completeness

(Mw = 4.7).

Table 9. Seismic moment rates along the Malawi rift and earthquake catalogue statistics (same fields as Table 3).

b (+/−) N Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1)

Mx = 6.5 Mx = 7.5 ‘summation’

Median Min Max

Box1 0.94 (0.12) 40 3.15 0.52 14.29 11.51 3.64

Box2 1.09 (0.18) 22 1.48 0.12 13.27 3.83 0.50

Box3 1.13 (0.14) 43 2.80 0.39 14.91 6.58 0.88

Box4 1.17 (0.15) 43 2.76 0.34 16.25 5.94 0.78

Box5 1.11 (0.16) 31 2.04 0.21 14.21 4.94 0.65

Box6 0.90 (0.19) 16 1.32 0.09 13.83 5.23 1.90

Box7 0.84 (0.20) 13 1.17 0.07 13.89 5.35 1.78

Box8 1.45 (0.36) 6 1.00 <0.01 36.42 1.12 0.07
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East African Rift System deformation 9

Table 10. Geodetic moment rate along the Malawi rift and ratio

between geodetic and seismic moment rates (same fields as

Fig. 3).

Ṁgeodetic (1017 Nm yr−1) Ṁgeodetic/Ṁseismic

Median Min Max

Box1 15.41 5 1 30

Box2 13.93 9 1 120

Box3 12.95 5 0.9 34

Box4 11.50 4 0.7 34

Box5 10.05 5 0.7 48

Box6 8.28 6 0.6 94

Box7 6.56 6 0.5 96

Box8 4.85 5 0.1 >300

From the north to the south along the EARS, we observe a general

decrease of the geodetic moment rate, which roughly corresponds

to an increase of the seismic moment rate. This is clearly observed

(in blue, Fig. 4) along the eastern side of the EARS (i.e. from the

Main Ethiopian Rift to the Davie Ridge through the Eastern branch

of the Tanzanian Craton, Fig. 4), where the gap between seismic

and geodetic moment rates at the North is largely reduced at the

South. Along the western side (in red, Fig. 4), even if the agreement

between seismic and geodetic data seems to be better on the northern

part (western branch of the Tanzanian Craton) than on the southern

one (Malawi Rift), the potential large earthquakes expected in the

Lake Malawi vicinity (Jackson & Blenkinsop 1997) would greatly

impact the shape of the seismic moment rate curve.

5.2 The Main Ethiopian Rift and the northern part of the

Eastern Rift

Along the northernmost segment of the EARS, the Main Ethiopian

Rift splits Africa into Nubia and Somalia with a velocity of about

5 mm yr–1 (Fig. 6). This opening rate is the highest value for the

whole EARS, which is explained by both the high distance of the

Nubia-Somalia rotation pole and the uniqueness of the spreading

axis at this latitude of the EARS. Geological kinematic models (Joffe

& Garfunkel 1987; Jestin et al. 1994) and previous GPS studies

(Fernandes et al. 2004; Bendick et al. 2006; Calais et al. 2006;

Kogan et al. 2012) on this EARS section testify to intense ongoing

deformation. At the surface, the MER is characterized by large

active volcanoes and neogene volcanism (Chorowicz 2005) and

large scarps of normal faults. Further south, the EARS is divided

into two branches on both sides of the 600-km-wide Tanzanian

craton. The Eastern branch is thought to be the direct continuation

of the MER (Ebinger et al. 2000). We estimate the seismic moment

rate at the northern tip of this branch but the very low number of

earthquakes prevents us to calculate it for the branch centre.

Table 12. Geodetic moment rate along the Davie Ridge and

ratio between geodetic and seismic moment rates (same fields

as Fig. 3).

Ṁgeodetic (1017 Nm yr−1) Ṁgeodetic/Ṁseismic

Median Min Max

Box1 4.91 7 0.6 135

Box2 5.52 6 0.3 >220

Box3 6.02 2 0.4 >15

Box4 6.55 2 0.5 12

Box5 7.00 2 0.5 11

Box6 7.52 5 1.1 27

Box7 8.10 19 2.2 279

Box8 8.68 7 0.1 >500

Along this segment (MER and Northern part of the Eastern Rift),

the geodetic moment rate is 21–99 times larger than the moment

rates derived from the seismic study (Tables 3 and 4). Even if our

short duration seismic data set corresponds to a random sample

of the long-term pattern of seismicity over the seismic cycle, it

would be unrealistic to associate such a discrepancy only with a

“missing” part of the earthquake catalogue. The mean ‘missing’

Mw = 6 return periods are very short (6 months) in all boxes but

one compared to the 39-yr-long catalogue duration and stand for at

least the equivalent of 234 ‘missing’ events of a magnitude Mw = 6

in the catalogue for this northernmost zone (two events by year in

each box and three boxes without spatial overlap).

Significant variations of the extensive style are observed in the

along-axis direction of this branch showing an evolution of the

second-order segmentation related to the transition between rifting

of continental crust in the south to incipient oceanic floor spreading

in Afar. Hayward & Ebinger (1996) studied the correlation between

the morphological variations of the ∼60-km-long tectono-magmatic

segments within this section and in Afar (symetrical/asymetrical

graben, the size of the graben and both the existence and the spatial

distribution of the volcanic edifices within the segment) with the de-

crease of the crust thickness and the effective elastic thickness from

south to north. Even if no clear along-axis variation in our geodetic

versus seismic comparison is observed, suggesting an evolution of

the extension stage, we note that the significant discrepancy be-

tween the estimates of the seismic and geodetic moment rates over

the MER is similar to what is observed in the Afar area (e.g. Doubre

et al. 2007). This implies that the aseismic behaviour of the crust

reflects the control of the magma intrusion process on ∼80 per cent

of the total extension at short-term (e.g. Cattin et al. 2005; Grandin

et al. 2009) or long-term (De Chabalier & Avouac 1994). This is in

agreement with the field observations of Casey et al. (2006) in the

MER, and the recurrent activity of the volcanic centres (Biggs et al.

2011; Keir et al. 2011).

Table 11. Seismic moment rates along the Davie Ridge and earthquake catalogue statistics (same fields as Fig. 3).

b (+/−) N Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1) Ṁseismic (1017 Nm yr−1)

Mx = 6.4 Mx = 7.4 ‘summation’

Median Min Max

Box1 1.06 (0.21) 11 0.68 0.04 8.24 1.90 0.25

Box2 1.45 (0.29) 6 0.99 <0.03 16.71 1.10 0.06

Box3 1.40 (0.17) 32 3.16 <0.41 15.97 3.93 0.42

Box4 1.08 (0.12) 50 3.06 0.53 12.98 8.05 1.82

Box5 1.09 (0.12) 54 3.29 0.62 12.90 8.46 1.81

Box6 0.98 (0.12) 25 1.66 0.28 7.02 5.54 0.78

Box7 1.09 (0.18) 7 0.43 0.03 3.62 1.11 0.13

Box8 1.41 (0.37) 12 1.22 <0.02 59.37 1.51 0.19
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10 A. Déprez et al.

Figure 4. Seismic and geodetic moment rates along the EARS. The vertical axis corresponds to the distance along the EARS with the origin at the centre of

the northernmost box. Lines = smoothed seismic moment rate (A low-pass filter is used to smooth the curve of the seismic moment rate). Triangles = seismic

moment rate within each individual box. Dots = geodetic moment rate.

5.3 The southern part of the Eastern Rift (Natron rift)

We observe a decrease of the difference between seismic and geode-

tic moment rates in the southern tip of the Eastern branch (Fig. 7,

Tables 5 and 6). However the rate of seismicity stays low, which

is consistent with the associated dense distribution of volcanoes

(Chorowicz 2005). Unlike MER described above, the extension ac-

commodated by dyke intrusions was thought to be volumetrically

insignificant (Ebinger et al. 2000). Moreover, based on structural

observations and geochronology data, Ebinger et al. (1993) con-

cluded that during the two main distinct volcanism episodes that

occurred in this area (45–35 Ma and 18–11 Ma) the amount of ex-

tension was very low in comparison with the estimated volume of

erupted material.

Nevertheless in our result, the aseismic deformation seems to be

significant: the seismic moment rate reaches no more than one quar-

ter of the geodetic moment rate at the southern end of this branch (at

a latitude of about 5◦S). The difference between the two estimates

stands for at least ∼60 ‘missing’ earthquakes of magnitude Mw = 6

in the catalogue for this relatively small area (at least 1.3 event yr–1

within each box and two boxes without spatial overlap), which ap-

pears clearly unrealistic. Some evidences of aseismic processes have

been described in previous studies, which could explain our results.

For example, a recent episode of rifting in the Natron Rift observed

with geodetic methods (GPS and InSAR) and a nearby temporary

seismic network revealed both the importance of aseismic slip on

normal fault and the role of dyke intrusion in the upper crust (Calais

et al. 2008; Biggs et al. 2009; Albaric et al. 2010). Moreover, to-

mographic studies showed a wide and deep low-velocity anomaly

within the upper mantle, which is evidence for a thermal anomaly

currently located under the eastern margin of the Tanzanian craton

(Nyblade et al. 2000; Nyblade 2011). All authors (Ebinger & Sleep

1998; Georges et al. 1998) who proposed a geodynamical model

for this area argue for a great influence of a mantle plume inducing

this thermal anomaly and causing a higher magmatic rate along the

eastern branch than along the western one.
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East African Rift System deformation 11

Figure 5. Ratio of the geodetic moment rate divided by the seismic moment rate, along the EARS.

5.4 The Western Rift

Along the Western branch, a significant accumulation of earth-

quakes with magnitude Mw between 4.5 and 5.5 together with six

events with a magnitude Mw larger than 6 (Mw 6.4 in Democratic

Republic of the Congo on 1992 September 11, Mw 6.2 in Uganda

on 1994 February 5, Mw 6.5 on 2000 October 2, Mw 6.2 on 2002

October 24 and Mw 6.8 on 2005 December 5 in the Lake Tanganyika

region) make this branch strongly seismic, particularly in compar-

ison to the MER and the Eastern Rift (Fig. 7, Tables 7 and 8).

Moreover, the location of the Nubia–Victoria pole only ∼250 km

from the northern tip of the plate boundary is responsible for the

very low values of opening rates at north with a regular increase

to 1.8 mm yr–1 at its the southern tip. This leads to a similar south-

ward increase of the moment rates, which remain on the same order

of magnitude. However variations in the crustal strength had been

shown in previous studies focusing on the Tanzanian Craton vicinity

(Albaric et al. 2008), associated in particular with the recent reacti-

vation (about 10 Ma, Kampunzu et al. 1998) of volcanic provinces

(Virunga, Kivu provinces); the low rate of melt production together

with the magma composition (Rogers et al. 1998) recorded in these

provinces are characteristic of an early continental extension stage.

The amount of the extension is also not large enough to promote a

significant ductile stretching and a potentially aseismic deformation

(Bastow & Keir 2011). This is also consistent with the remoteness of

the mantle plume assumed to underlie the Eastern Rift (see previous

paragraph) (Rogers et al. 1998).

5.5 The Malawi Rift

The Mbeya area connects the South Rukwa and North Malawi Rifts

(Fig. 8, Tables 9 and 10). It is also the triple junction between the

Nubia, Victoria and Rovuma plates. In term of tectonics, this zone

is complex with some compression ‘pulses’ within a global envi-

ronment of normal faulting (Delvaux & Barth 2010). The seismic

moment rate computed using the scalar approach does not take into

account this complexity. The Malawi Rift is thought to be a good
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Figure 6. Zoom on the Main Ethiopian Rift. The blue arrows correspond to the velocity model at the frontier between Nubia and Somalia plates in the Nubian reference frame. The orange arrows correspond to

the GPS velocity w.r.t. Nubia. The grey circles depict the seismicity and we add the known focal mechanisms (source NEIC and ISC catalogues). The white triangles represent the volcanoes with recent activity

(source NGDC).
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Figure 7. Zoom on the Victoria Plate. The green arrows correspond to the velocity model at the frontier between Nubia and Victoria (along the Western rift) w.r.t. Nubia and between Somalia and Victoria plates

(along the Eastern rift) with a fixed Victoria reference frame. Orange arrows, grey circles, white triangles: same as Fig. 6.
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Figure 8. Zoom on the Rovuma Plate. The pink arrows correspond to the velocity model at the frontier between Nubia and Rovuma (along the Rukwa and Malawi rifts) w.r.t. Nubia; and between Somalia and

Rovuma plates (along the Davie Ridge and the Quathlamba Seismic Axis) with fixed Rovuma. Orange arrows, grey circles, white triangles: same as Fig. 6.
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example of initial rift stage (Chorowicz 2005), without fluid in-

volvement or aseismic slip (Biggs et al. 2010). Our results show

a seismic moment rate four to nine times smaller than the geode-

tic moment rate, but some field observations denoted geological

structures (see in particular the description of the Bilila-Mtakataka

fault by Jackson & Blenkinsop 1997), which present the necessary

conditions to trigger a normal faulting earthquake with magnitude

as large as Mw = 8 and so a return period clearly larger than the

catalogue used here. So it is reasonable to assume a ‘missing’ event

of such a magnitude, which would greatly modify the shape of the

seismic moment rate curve upward to reach values of the same range

than the geodetic one.

5.6 The Davie Ridge

From the study of the focal mechanisms, Delvaux & Barth (2010)

deduce that an E–W extension occurs along the Davie Ridge. This

ridge is considered to be the southward continuation of the east-

ern branch of the EARS. This structure, which was originally a

transform structure, is associated with a significant level of scat-

tered seismicity (Grimison & Chen 1988). Moreover, this branch

partly under water and less studied than the segments described

above, might encompass an also significant number of likely miss-

ing events. This could reasonably explain the seismic moment rates

more than two times lower than the geodetic one in five over eight

boxes along the Davie Ridge.

We can notice a better agreement of the seismic moment rate

with the geodetic one at the segment center, pattern similar to the

one observed along the Malawi Rift (Fig. 8, Tables 11 and 12).

This quasi-symmetrical evolution observed in the two moment rate

relative values between the two sides of the Rovuma Plate, leads

us to follow the assumption of a diffuse extension zone through

Mozambique (Grimison & Chen 1988; Kusky et al. 2010).

6 C O N C LU S I O N

Using the largest data set from permanent African GPS networks

currently available, we bring out a large-scale model of the kine-

matics in Africa, particularly focusing on the EARS system. We

accurately determined the Euler pole of the Nubia Plate with respect

to ITRF-2008, which is consistent with the results from Altamimi

et al. (2012). Similar to Calais et al. (2006) and Stamps et al. (2008),

the velocity field in Eastern Africa requires the taking into account

of two micro plates (Victoria and Rovuma) delimited by the active

branches of the EARS. However, the Euler poles of the Somalia

Plate and of the two micro plates (Victoria and Rovuma) remains

insufficiently constrained due to either a lack of GPS sites in these

area (largely under sea for the Somalia Plate and difficult to access)

or to recent installations of GPS stations that impede reliable ve-

locity values, particularly for the Rovuma Plate where most of the

stations are younger than 2 yr. In spite of these restrictions, we de-

signed a geodetic model which fits the data and which is consistent

with both previous geodetic studies and tectonic observations. We

observed in this study that, even if an improvement may be expected

after a few years (increase of the time-series length, densification of

the GPS network), we already obtain a model in a good adequacy

with the data set collected here.

Using all the available data from the earthquake catalogues

(NEIC, ISC) from the 1973 to 2012, we compare our geodetic

results to the seismic activity along the whole EARS. The main

limitation encountered here is related to the completeness of the

seismic catalogues: the potential microseismicity not taken into ac-

count and above all the lack in the recorded seismicity of large

events (too old or coming) due to the time length of the seismic

cycle. Using a simple scalar approach, this study focuses on the

spatial evolution of the rifting process along the EARS by looking

at the seismic versus geodetic moment rates along the four main

branches of the EARS.

By analysing the required ‘missing’ part of the catalogue to equal

seismic and geodetic results, keeping in mind the tectonic environ-

ment of each area (and by inference the largest magnitude reason-

ably expected), our results allow us to differentiate the zones where

aseismic deformation (associated with a weaker lithosphere, Bas-

tow & Keir 2011) seems to significantly account for the middle-term

extension from the more seismic ones.

The EARS offers all ranges of rift morphologies: from the Main

Ethiopian Rift, where segments present the characteristics of the

last stage before seafloor spreading with an extension mainly by

dyke intrusions, to the nascent signs of continental extension in

Mozambique, where large normal active faults play the main role in

the extension. An accurate description of the relations between the

tectonic characteristics, thermal structure and kinematics is beyond

the scope of this study (for more details refer to the works of Ebinger

et al. 2012).

However we clearly see a global increase of the accommodation

of the deformation by seismic activity from north to south. This

seems to reflect the evolution of the extension style. In the north,

the influence of the Afar hotspot decreases the elastic thickness of

the lithosphere, and local volcanism participates in the extension

process of the lithosphere (dyking) with a relatively small release

of seismic energy. In the south, the tectonic structures have typical

features of the early rifting stages with earthquakes triggered by the

deformation of the cold, brittle crust. These observations testify to

the parallel evolution of the thermal state of the lithosphere and its

surface expression (Ebinger et al. 1993; Bonini et al. 2005; Kurz

et al. 2007; Yang & Chen 2008; Raucoules et al. 2010).

The large discrepancy between geodetic and seismic moment

rates is largely related to the existence of volcanic activity as shown

along the MER or the Eastern rift. Conversely a good agreement is

found within the zones where the rift is not affected by volcanism

and the lithospheric strength is high. Therefore the main parameter

to influence the discrepancy between seismic and geodetic results

appears to be the proportion of ductile deformation (and by infer-

ence the lithospheric thermal state). And even if the presence of

magmatism and/or volcanism is commonly the signature of the ex-

tension processes for a mature rift, whose the weaker lithosphere is

related to a high degree of tinning caused by a previous extension

over a long time (Bastow & Keir 2011); other causes of lithospheric

weakening can be found (mantle plume for example) triggering also

a decrease of the amount of extension by faulting (and by inference

a decreasing seismic rate).

This spatial evolution of the geodetic/seismic moment ratio for

continental to more mature domain is also pointed out by Nobile

et al. (2012) for short-term deformation involving dyke intrusion.

Whereas the dyking events along the Manda-Harraro segment and

Dallol area in Afar monitored by both InSAR and seismic network

over the last decade (Wright et al. 2006; Ayele et al. 2007, 2009;

Grandin et al. 2009, 2011; Wright et al. 2012) are characterized by

very high geodetic/seismic ratio (higher than 25), the intrusions of

Natron at the Southern end of the Eastern Rift (Calais et al. 2008),

and the Harrat Lunayyir (Pallister et al. 2010) within the Arabian

Plate show lower ones (lower than 10).
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