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Quasicrystals have been identified as alloys possessing unusually low surface energy. This

results in poor adhesion properties of quasicrystalline coatings when deposited on metallic

substrates, hindering the development of these new materials for technological

applications. Here we investigate the possible use of complex Al-Cu metallic phases as

interface layers to accommodate the structural and electronic mismatch between a

quasicrystalline coating and a metallic substrate and improve adhesion. First, we show

that all stable low-temperature phases of the Al-Cu system can be grown as thin films

using DC magnetron sputtering. Among the various possible phases, we select the g-brass
g-Al4Cu9 as a promising candidate for the interface layer. Then the g-Al4Cu9 phase is
grown on the fivefold surface of an icosahedral (i-) Al-Pd-Mn quasicrystal. The interface

is investigated by transmission electron microscopy and shows a clear texturing of the

film. The grains exhibit rotational epitaxy with the substrate. We find that the interface is

mainly composed of a b-phase of unknown chemical composition and sometimes exhibits

g grains in direct contact with the quasicrystalline substrate. Occasionally, we observe a

fourth phase at the b/g interface, identified as b1, possessing a lattice parameter ab1 equal
to 2ab and 2/3ag.

I. INTRODUCTION

In the last decade, there has been an intense renewal

of interest for binary Al-transition metal(s) systems

containing complex metallic alloys (CMAs) with giant

unit cells related to quasicrystalline phases.1–10 This was

motivated in part by the possibility of developing CMAs

as new coating materials with low friction, reduced adhe-

sion, and good corrosion resistance for technological

applications.11–13 Those surface properties are related to

the peculiar electronic structure of CMAs characterized

by a pseudogap at the Fermi level, usually associated

with poor metallic behavior. Quasicrystals represent the

ultimate case of CMAs, possessing long range order but

no translation periodicity together with forbidden rota-

tional symmetry, such as fivefold or tenfold symmetry.14

Although the surface properties of CMAs and quasi-

crystals are very promising,15 their development as func-

tional coatings has been hindered by the poor adhesion

observed on metallic substrates. Extensive studies of the

wetting and adhesive properties of quasicrystalline and

CMA surfaces have shown that this is related to a rela-

tively low surface energy compared to metallic systems,

especially transition metals. One possibility to circum-

vent this problem is to develop an interfacial layer such

as obtaining a gradient of properties between the sub-

strate and the surface.16 This interface layer should be

an intermetallic compound presenting electronic and

crystallographic characteristics that are intermediate

between those of a simple metal and a quasicrystal. This

condition is usually met by the so-called approximant

phases, which have a periodic structure with giant unit

cells and a local order similar to that of the quasicrystal-

line phase.

In this article, we report a study of the formation of

CMA compounds in the Al-Cu system by reactive diffu-

sion in the solid state between bilayers deposited by DC

magnetron sputtering. The various phase transformations

induced by reactive diffusion between Al/Cu bilayers

have been investigated in previous reports.17–31 Here we

mainly focus on the formation of CMA phases existing in
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the Al-Cu system, namely the g-brass Al4Cu9
1 and the

orthorhombic z-Al3Cu4
2,7 compounds. These two phases

were previously identified as approximant phases of qua-

sicrystals by Dong et al.3,32 They are not true geometrical

approximants, but they contain similar valence electron

concentrations compared to the icosahedral Al-Cu-Fe

quasicrystal and exhibit locally pseudo-pentagonal con-

figurations and distorted icosahedra. The two compounds

are stable at low temperature according to the phase

diagram.33 Their stabilization is attributed to a Hume-

Rothery mechanism similar to the one taking place in

the icosahedral phase. The number of atoms per unit

cell is larger compared to most simple metals (52 for

g-Al4Cu9 and 83 for z-Al3Cu4), but smaller compared to

most CMAs. The two compounds are described as super-

structures of the b-AlCu phase (CsCl structure type).

They thus represent an intermediate complexity between

simple metals and quasicrystals. In addition, recent ultra

high vacuum studies have shown that the g-Al4Cu9 phase
can be grown on the fivefold surface of either Al-Cu-Fe

or Al-Pd-Mn icosahedral quasicrystals,16,34 with clear

rotational epitaxy with the substrates. This supports the

idea that such compounds could be used as a buffer layer

to accommodate the interface between a quasicrystalline

coating and a simple metal substrate.

The article is organized as follows. We first provide

experimental details in Sec. II. In Sec. III, we describe

the formation of selected stable compounds of the Al-Cu

phase diagram by varying the thickness of the elemental

Al and Cu layers deposited on various substrates. In Sec.

IV, we form a coating of the g-Al4Cu9 on an icosahedral

(i-)Al-Pd-Mn single grain quasicrystal oriented normal to

one of its fivefold axes, and the interface is investigated

by transmission electron microscopy (TEM). Finally,

we discuss the orientation relationships at the crystal-

quasicrystal interface.

II. EXPERIMENTAL DETAILS

The Al/Cu films were grown by DC magnetron

sputtering. Three different types of substrate have been

used for deposition. The first one is an Si(100) wafer on

which the native oxide was intentionally kept in order to

act as a diffusion barrier and avoid intermixing with Si.

The second one is a 304L steel substrate, polished using

diamond paste down to 1 mm and cleaned with acetone in

an ultrasonic bath, then with methanol. In addition, sub-

strates are cleaned with ethanol using optical paper just

before loading into the sputtering system. The third type

of substrate is a single grain quasicrystal prepared as

explained later in Sec. IV.

The base pressure in the sputtering system is

1.10�7 mbar. Films are deposited at a pressure of

2.10�2 mbar in an atmosphere containing 10% H2-90%

Ar. The sputtering system is equipped with three inde-

pendent magnetrons focused at the center of the substrate

holder and inclined by 30� with respect to the substrate

surface normal. The target to substrate distance is set

equal to 10 cm and the sample rotates at 28 rpm during

deposition to ensure homogeneity. Al/Cu bilayers are

deposited at room temperature. In the case of the steel

substrate, a radio-frequency biasing is first applied to

remove the oxide layer. A self-bias of –200 VDC is mea-

sured on the substrate holder for a power of 43 WRF. This

allows the recovery of metallic iron at the surface and in

addition should favor interdiffusion between substrate

and film, thus enhancing adherence.35 Similarly, both

Al and Cu targets are cleaned before deposition. This

is achieved by sputtering the targets for 5 min (using

80WDC and 100WDC for Cu and Al targets, respectively),

the shutters being closed. The purity of the elemental

targets is 99.99 and 99.95% for Al and Cu, respectively.

The total thickness of the Al/Cu bilayers is equal to 1 mm.

After deposition, the bilayers are annealed in situ (220 �C

for 1 h) in a gas flow with a pressure of 2.10�2 mbar using

a PBN heater located at the back side of the substrate

holder. The temperature has been calibrated using a ther-

mocouple sealed inside a 3 mm thick Cu sample within a

temperature range from 20 �C to 400 �C.

The deposition rates have been determined by measur-

ing layer thicknesses on cross sections of Al/Cu/Si(100)

samples by scanning electron microscopy (SEM) in sec-

ondary electron and backscattered modes (Philips XL30).

We have checked that the layer thicknesses are constant

over the deposition area, although local height variations

are observed for Al thin films resulting from anisotropy of

grain growth. The deposition rates thus determined are

equal to 650 and 1480 nm�h–1 for Al and Cu, respectively,
within our experimental conditions.

The various phases formed after annealing are identi-

fied using grazing-incidence x-ray diffraction (GI-XRD)

at an incident angle of 3� with CoKa radiation (l ¼
1.78897 Å, INEL CPS120 instrument, Artenay, France)

and energy dispersive spectroscopy (EDS) measurements

performed at 15 keV in the SEM (FEI XL30, Eindhoven,

The Netherlands) to avoid contribution from the substrate.

Samples for TEM were prepared by mechanical polish-

ing to a thickness of 40 mm followed by an ion milling

process (Ar+, 3 kV, Gatan PIPS device, Pleasanton, CA).

TEMwas performed on a LaB6 Philips CM200 instrument

(Eindhoven, The Netherlands) with a voltage of 200 kV.

Electron energy loss spectroscopy (EELS) was carried out

with a PEELS 666 Gatan device coupled to the TEM.

III. CHARACTERIZATION

As-deposited films of the pure elements do not show

any contamination within the detection limits of EDS.

Pure Al thin films have a white color, which is not due

to oxidation of the Al but to texturing. This was verified
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ex situ by x-ray photoemission spectroscopy (XPS). The

as-loaded Al film exhibits a clear doubling of the Al 2p
core level with a metallic component at 72.6 eV binding

energy (BE) and an oxide component at 74.9 eV BE.

After sputtering the surface (Ar+, 3 kV, 30 min), the

oxide component almost completely disappeared, show-

ing that the Al oxide was limited to the first atomic layers

as a result of air exposure during sample transfer from

the sputtering system to the XPS chamber.

Figure 1 shows selected SEM images of as deposited

Al/Cu bilayers. Texturing of a pure Al thin film is obvi-

ous in Fig. 1(a). Copper thin films exhibit a columnar

morphology, common for physical vapor deposition at

this pressure (not shown). Columnar grains are visible

in the backscattered SEM image of the Al/Cu bilayer

shown in Fig. 1(b) for tAl/tCu ¼ 1.06. A cross-sectional

image of a g-Al4Cu9 coating is shown in Fig. 1(c). It has

been obtained after annealing an Al/Cu bilayer with

thickness ratio tAl/tCu ¼ 1.06. Observation of the fracture

profile reveals that the Al-Cu compounds are dense and

brittle. The total thickness of the coating is basically

unchanged upon annealing, suggesting that as-deposited

Al and Cu elemental films are reasonably dense, although

some porosity can be observed at the surface as shown in

Fig. 1(d) for the case of the g-Al4Cu9 film.

Several bilayers have been deposited either on Si

wafers or on steel substrates with different thickness

ratios tAl/tCu such as to form the different stable phases

reported in the phase diagram. Figure 2 shows the corre-

sponding GI-XRD spectra recorded after annealing the

bilayers. The phases identified in each sample are reported

in Table I. Semi-quantitative chemical compositions of

the various coatings measured by EDS and secondary ion

mass spectroscopy (SIMS) are also listed in Table I as a

function of tAl/tCu. We note that compositions measured

by EDS show a higher Cu content compared to the

stability domains of the phases identified by GI-XRD.

This could result from an inhomogeneous composition

along the surface normal due to incomplete alloying dur-

ing the thermal cycle used in this set of experiments.

Thus we have performed additional measurements using

SIMS. Composition profiles indicate that some coatings

(tAl/tCu ¼ 2.82, 1.7, and 1.55) are indeed inhomogeneous

over the whole film thickness. However, the concentra-

tion profiles are constant over the first 400 nm below the

surface. Hence the compositions measured by SIMS

reported in Table I are those measured in this limited

FIG. 1. Cross-section scanning electron micrographs of Al-Cu thin

films deposited on Si(100) equipped with its native oxide: (a) pure Al

thin film with an average thickness of 650 nm. The circled region shows

faceting of the Al grains; (b) bilayer of Al (550 nm) and Cu (1350 nm),

shown in back-scattered electron mode to see the Z-contrast;

(c) annealed Al(530 nm)/Cu(500 nm) sample determined to be g-Al4Cu9
with a thickness of 1 mm after annealing. (d) Top-view scanning electron

micrograph of an annealed Al(530 nm)/Cu(500 nm) sample.

FIG. 2. X-ray diffraction patterns (lKa = 1.78897 Å) of Al-Cu bi-

layers after annealing for 1 h at 220 �C, either on steel or Si(100)

substrates. The thickness ratio tAl/tCu is underlined next to each pat-

tern. All samples have a thickness of 1 mm except the one correspond-

ing to tAl/tCu = 3.58 which is only 500 nm thick. For each pattern, the

main lines of the majority phase are marked with symbols.
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surface region. These chemical compositions are in

better agreement with the composition of the bulk

phases. These measurements indicate that either longer

annealing times or higher annealing temperatures are

required to achieve a complete alloying of the bilayers.

Because of these limitations, the compositions given here

are only semi-quantitative.

We note that the choice of the substrate—either oxi-

dized Si(100) or sputtered steel—has no noticeable effect

on the phases formed upon low temperature annealing

(220 �C), as characterized by GI-XRD. We also mention

that we did not detect by EDS any chemical species that

could have diffused from the substrate into the film upon

annealing. However, the adherence of the coatings on

Si(100) wafers is poor: coatings either spontaneously

peel off or can be removed using an adhesive tape, which

is convenient for further TEM investigations. On the

contrary, the adherence of the coatings on sputtered steel

substrates is very good, as evidenced by subsequent tri-

bological tests performed on these samples (data not

presented here).

IV. ORIENTATION RELATIONSHIPS BETWEEN

g-Al4Cu9 AND I-Al-Pd-Mn

A 1 mm thick film of the g-Al4Cu9 has been prepared

on the fivefold surface of an icosahedral (i-)Al-Pd-Mn

quasicrystal following the same procedure as described

above.

The micrograph shown in Fig. 3 represents the typical

microstructure of the film and its interface with the sub-

strate. The zone with the brightest contrast corresponds

to the film. The micrograph shows that the film-substrate

interface is not flat, suggesting interdiffusion has oc-

curred during further growth of the film. Electron-

diffraction patterns (EDP) allow the identification of the

various phases. They were recorded at different substrate

orientations. We identify three of them: the g-Al4Cu9
phase (aexp ¼ 8.60 Å) in the film area and the icosahedral

phase in the substrate area, but also an ordered cubic

b-phase (aexp ¼ 2.87 Å) of unknown composition which

is located exclusively at the interface. The g-Al4Cu9
phase sometimes appears directly at the interface, with

no extra phase, but this situation was found to be the

exception rather than the rule.

The diffraction pattern of the quasicrystalline phase

along the fivefold axis (A5) exhibits some disorder de-

pending on the probed area (Fig. 3). The inset shows

part of a second pattern recorded in a thin area of the

quasicrystal using inverse contrast. Arrows indicate the

doubling of intense spots along a specific direction. This

may result from the ion bombardment that can degrade

the sample and lead to the formation of structures with

lower symmetry.36,37 In the case of icosahedral phases,

these structures possess either pentagonal, tetrahedral,

trigonal, or decagonal symmetry.38 These kinds of

defects may also be intrinsic to the single grain quasi-

crystal. In both cases, such a doubling of the spots is

TABLE I. Semi-quantitative chemical composition of thin films determined by EDS and SIMS as a function of thickness ratio tAl/tCu and

corresponding crystalline phases identified by GI-XRD. The composition measured by EDS is averaged over the first micron while that measured

by SIMS is averaged over a thickness of only 0.4 mm below the surface. The last column gives the Cu concentration expected from the bulk

composition of the identified phases.

tAl/tCu XRD EDS (Cu at.%) Surface composition determined by SIMS (Cu at.%) Cu at.% from Ref. 23

3.58 y-Al2Cu missing data, single phase y-Al2Cu domain ! 31.9 to 33

2.82 y-Al2Cu + Z-AlCu 49.3 51.5
33 to 49.8

1.96 y-Al2Cu + Z-AlCu 55.8 47.3

single-phase y-AlCu domain ! 49.8 to 52.3

1.8 z-Al3Cu4 + Z-AlCu 58.7 51.5
52.3 to 55.2

1.7 z-Al3Cu4 + Z-AlCu 62.1 51.5

single-phase z-Al3Cu4 domain ! 55.2 to 56.3

1.55 z-Al3Cu4 + d-Al2Cu3 62.6 57.0 56.3 to 59.3

single-phase d-Al2Cu3 domain ! 59.3 to 61.9

1.5 d-Al2Cu3 + g-Al4Cu9 67.6 63.0 61.9 to 62.5

1.06 g-Al4Cu9 68.1 62.3 62.5 to 69

FIG. 3. Typical brightfield micrograph of the sample with thickness

ratio tAl/tCu =1.06 and electron-diffraction patterns showing the differ-

ent structures in the different zones separated by solid lines.
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explained by linear phasonic deformation.38 Additional

spots can be distinguished in the diffraction pattern

shown (A5 in Fig. 3). They define a rectangular mesh

with a lattice parameter of 3.01 Å. This could correspond

to the b-Al(Pd, Mn) phase reported in Bolliger et al.39

These two different defects appear in thin areas of the

sample, suggesting that they are induced by the ion bom-

bardment used during the thinning process. We empha-

size that this b-Al(Pd, Mn) phase (with lattice parameter

a ¼ 3.01 Å) is located within the substrate area and is

different from the b phase identified at the interface

(with lattice parameter a ¼ 2.87 Å). This latter one may

have formed either during the sputtering of the substrate

before thin film deposition or possibly because of incom-

plete alloying during the annealing of the bilayer, or a

combination of the two. In an attempt to discriminate

between these two possibilities, we have performed addi-

tional EELS measurements. It turns out that the substrate

contains exclusively Al, Pd, and Mn and that both inter-

face and film contain Al and Cu. However, we cannot

exclude the presence of Pd and/or Mn at the interface

that could not have been detected by EELS due to a too

large thickness in this area. Nevertheless, Cu is clearly

identified at the interface and within the film. However,

the intensities of Cu L2,3 and M2,3 spectra recorded at the

interface are reduced compared to the film, that is, the Cu

content of the b phase is lower than that of the Al4Cu9
film ([Cu] b < 69 at.%). The existence of various b
phases was reported in all relevant phase diagrams,

including b-AlCu3 with A2 structure type, as well

as b-Al-Mn, b-Al-Pd, b-Al-Pd-Mn, b-Al-Cu-Pd, and

b-Al-Cu-Mn.40 Based on EELS measurements, the two

possible candidates are the high-temperature b-AlCuPd2
phase with a ¼ 3.003 Å and the b-Al20CuMn phase with

a ¼ 2.984 Å. We cannot rule out either the formation of

other metastable phases or of quaternary phases.

In a recent study by Bielmann et al., it was found that

the g-Al4Cu9 phase could be formed as a surface alloy by

annealing a Cu thin film deposited on the fivefold surface

of i-Al-Pd-Mn through diffusion of Al in the Cu film.34

No traces of Pd could be detected by Auger spectroscopy

in the near surface region, although the annealing tem-

perature used in this study was 350 �C, that is, higher

than the temperature used in the present work. This sug-

gests that diffusion of Pd at the interface is less favorable

compared to Al diffusion. This is consistent with the

lower enthalpy of formation of the g-Al4Cu9 phase,

DHf (g-Al4Cu9) ¼ –23.0 kJ.mol–1 compared to other Cu-

Pd phases, such as DHf (b-CuPd) ¼ –13.7 kJ.mol–1.41

In the present work, the Cu layer and the substrate are

initially separated by a 500 nm-thick Al layer. Reactive

diffusion at 220 �C between elemental multilayers of

Al/Cu and Al/Mn is known to promote the formation of

alloyed thin films.42 At room temperature, those two

elements deposited on Al or coated with Al by magnetron

sputtering exhibit similar values of interdiffusion lengths.

Those lengths are larger than the one reported for the

Al/Pd system.35 Therefore, the formation of the b phase

at the interface could result from the diffusion of Cu from

the upper layer and Mn from the underlying substrate

into the Al layer, leading to the formation of a ternary

b-Al-Cu-Mn phase. The limited grain size at the interface

would then be induced by an incident flux of Cu atoms

largely superior to the Mn atoms flux coming from an

alloyed substrate with a low Mn content. Moreover, Mn

diffusion kinetics would be limited due to the lack of

defects in the single crystal, in comparison to the Cu

atoms diffusing from a polycrystalline layer with many

diffusion paths (grain boundaries, dislocations, etc.).

Assumptions concerning the formation of the interfacial

b phase are difficult to express because of the many

possibilities for its formation. The mechanism can be

much more complicated and we do not possess enough

kinetics and thermodynamics data to go further in the

discussion. Consequently, we now focus on the orienta-

tion relationships (ORs) between the different structures.

The transmission electron micrographs shown in

Figs. 4 to 8 were recorded in bright field mode. There-

fore, the substrate oriented along a zone axis as well as

grains in rotational epitaxy with respect to the substrate

appear with a dark contrast. Note that due to the fivefold

symmetry of the substrate, rotational epitaxy of either the

b-CsCl or the g-Al4Cu9 phase implies that only two out

of three crystallographic axes are aligned with a dense

axis of the substrate.16,34,43–45 Hence, the film should not

appear as completely dark in these images. Also, grains

of the film appearing with a bright contrast can neverthe-

less have ORs with the substrate, albeit with another

substrate axis, different from the zone axis considered.

Figure 4(a) shows a micrograph together with EDPs of

the various phases recorded when the substrate is along

an A5 zone axis [Fig. 4(b)]. The diffraction pattern cor-

responding to the b phase was recorded at the substrate-

film interface and corresponds to a [111] axis of the b
phase [Fig. 4(c)]. The EDP performed within a grain

of the g phase corresponds to a [111] axis [Fig. 4(d)].

Experimental angles between the {110} planes take

values of either 62.5� or 57.5� instead of the expected

60� angle. This corresponds to an elongation by 4%

along the [–110] direction. Such a deformation of the g
phase can have a variety of origins, including thermal

strain induced by the mismatch between the expansion

coefficients of film and substrate or internal strain (due

to, e.g., incommensurability between substrate and film,

columnar morphology of the film, or Ar atom trapping

resulting from ion bombardment, etc.). The lattice pa-

rameter of the g phase is measured at 8.60 Å, that is,

1.3% smaller compared to the bulk lattice parameter of

8.71 Å.40 The EDP of the quasicrystalline substrate is

used to determine the ORs.
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Figure 5(a) shows another grain of the g-phase grain

with its [111] axis parallel to the A5 axis of the substrate.

The diffraction pattern shown in Fig. 5(b) has been

obtained by tilting the sample by 14.8� to observe a [100]

zone axis of the g-phase. Two different phases contribute

to this complex EDP: the g phase and another cubic phase

with lattice parameter a¼ 5.72 Å, both aligned along their

[100] direction. The latest corresponds to a metastable

phase, named b1, with ab1 ¼ 2ab ¼ 2/3ag and containing

16 atoms in the cubic unit cell. Its formation has already

been reported in Al-Cu alloys containing 40–50 at.% Cu

obtained by rapid quenching and annealing at 750 �C.46

The interface is thus composed of a complex microstruc-

ture, containing a variety of cubic phases of increasing com-

plexity, with ab ¼ 2.87 Å, ab1 ¼ 5.72 (� 2ab ¼ 5.74 Å)

and ag ¼ 8.60 Å (�3ab ¼ 8.61 Å).

Figure 6 shows EDPs of the g phase in direct contact

with the substrate oriented normal to one of its twofold

axes (A2). The g phase has its [111] axis parallel to

the twofold substrate axis in this case. The micrograph

and EDPs shown in Fig. 7 reveal the ORs between the

b phase and the substrate at the interface, with the sub-

strate oriented along a twofold axis. The grain of the g

phase observed in this micrograph in the vicinity of the

surface of the coating has more complex ORs with the

substrate and the b phase in this case (Table II). Finally,

Fig. 8(a) shows an EDP of the substrate in A3 orientation

FIG. 4. (a) Bright field micrograph of a sample with thickness ratio tAl/tCu = 1.06 and substrate oriented along an A5 axis. (b) EDPs of icosahedral

quasicrystalline substrate, (c) b-phase along the [111] axis, and (d) g-phase along the [111] axis.

FIG. 5. Bright field micrograph of the sample with thickness ratio tAl/

tCu = 1.06 observed along an A5 zone axis with a g grain in [111]

orientation (a). EDP obtained by tilting the sample by 14.8�, so as to

observe the g-phase along the [100] zone axis. Two different phases

contribute to this complex EDP: the g phase and another cubic phase

b1 phase with lattice parameter ab1 = 5.72 Å = 2/3 ag, both aligned

along their [100] direction. The two lattices are superimposed on the

EDP (dotted lines: g phase; solid lines: b1 phase).
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and Fig. 8(b) shows the ORs between the substrate and the

b phase at the interface. The OR is A3//[111]b.Table II

summarizes the various ORs determined from Figs. 4 to 8.

To confirm these ORs, we use the stereographic pro-

jection proposed by D. Shechtman for the icosahedral

phase14 superimposed on the projection of the cubic

structure (either b or g), calculated with the crystallo-

graphic data from Villars and Calvert40 and using soft-

ware CaRine 3.1. We first align the A2 substrate zone

axis with the [111] zone axis of the film. Then the cubic

stereographic projection is rotated around its zone axis so

as to optimize the alignment of dense directions of the

substrate and film. Among the various possible ORs, the

two following ones offer the best matching:

A2-sub jj ½111�cubic

A5-sub jj ½�101�cubic

A2-sub jj ½�110�cubic

A3-sub jj ½�12�1�cubic

and

A2-sub jj ½111�cubic

FIG. 6. (a) Bright field micrograph of a sample with thickness ratio

tAl/tCu = 1.06 and substrate oriented along an A2 axis. EDPs patterns of

(b) the quasicrystalline substrate, and (c) the g-phase along the [111] axis.

FIG. 7. (a) Bright field micrograph of a sample with thickness ratio tAl/tCu = 1.06 and substrate oriented along an A2 axis. (b) EDPs patterns of

quasicrystalline substrate, b-phase along the [111] axis, and (c) g-phase along the [521] axis.

T. Duguet et al.: Structurally complex metallic coatings in the Al-Cu system and their orientation relationships with an icosahedral quasicrystal

J. Mater. Res., Vol. 25, No. 4, Apr 2010770

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 07 Jun 2013 IP address: 129.20.91.99

A3-sub jj ½�101�cubic

A2-sub jj ½�1�12�cubic

A5-sub jj ½1�21�cubic

These results are in perfect agreement with the ORs

determined experimentally from Figs. 6 and 7 and con-

firm the occurrence of a textured film. These relation-

ships are also in agreement with the ones predicted by the

different interface models between icosahedral phases

and CsCl-type phases.47 In particular, it was shown that

the coincidence site lattice at the A5QC/[110]b interface

presents a relatively small mismatch that should corre-

spond to a minimum in the interfacial free energy

between the two phases.39,46 This orientation relationship

is frequently encountered in ultrahigh vacuum studies of

the fivefold surface of icosahedral phases.20

Most of the ORs reported in Table II are in agreement

with previous observations of quasicrystal-crystal inter-

faces, except for the A5 || [111]cubic relationship deter-

mined for substrate oriented normal to an A5 axis. This

relationship is in contradiction with other ORs deter-

mined for different substrate orientations, indicating that

the A5 direction should be parallel to the <110> and

<121> type directions. This particular interface could

thus correspond to a metastable configuration. It is worth

mentioning that this A5 zone axis was the only one we

could access experimentally, although five additional A5

axes could in principle be investigated.

V. CONCLUSIONS

We have described the formation of Al-Cu coatings of

different crystallographic structures on various substrates

by low temperature annealing of bilayers of specific

thicknesses. In particular, we could successfully form

the two CMA phases contained in the Al-Cu phase dia-

gram, including the g-Al4Cu9 compound. A 1 mm thick

coating of this latter phase has been synthesized on the

fivefold surface of an icosahedral Al-Pd-Mn single grain

and the substrate-film interface was studied by TEM.

Four different phases were identified. The interface

mainly contains a b phase of unknown composition with

a lattice parameter a ¼ 2.87 Å whereas the film mainly

contains the g phase with a lattice parameter a ¼ 8.60 Å.

An additional structure could be identified occasionally

at the interface between the b and g phases. This meta-

stable b1 structure links the two others with an interme-

diate lattice parameter of a ¼ 5.72 Å corresponding to

2ab and 2/3ag. Experimental ORs at the interface are

confirmed through the superimposition of the stereo-

graphic projections of the phases and are in general

agreement with the different models for quasicrystal-

crystal interfaces as well as with relevant, earlier reports.

Such orientation relationships between metallic b and g
phases and the quasicrystalline substrate are expected to

promote the adherence of the coating. In addition, these

metallic phases represent an intermediate degree of com-

plexity between a quasicrystal and a simple metal,

supporting the idea that such phases could be used as a

buffer layer.
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