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A Hierarchical Model to Estimate Fish Abundance in

Alpine Streams by using Removal Sampling Data from Multiple

Locations

Christophe Laplanche�

ECOLAB (UMR 5245), Ecole Nationale Superieure d’Agronomie de Toulouse, 31326

Castanet-Tolosan, France

The author compares 12 hierarchical models in the aim of estimating the abundance of fish in alpine
streams by using removal sampling data collected at multiple locations. The most expanded model
accounts for (i) variability of the abundance among locations, (ii) variability of the catchability
among locations, and (iii) residual variability of the catchability among fish. Eleven model reductions
are considered depending which variability is included in the model. The more restrictive model
considers none of the aforementioned variabilities. Computations of the latter model can be achieved
by using the algorithm presented by Carle and Strub (Biometrics 1978, 34, 621–630). Maximum a
posteriori and interval estimates of the parameters as well as the Akaike and the Bayesian in-
formation criterions of model fit are computed by using samples simulated by a Markov chain Monte
Carlo method. The models are compared by using a trout (Salmo trutta fario) parr (01) removal
sampling data set collected at three locations in the Pyrénées mountain range (Haute-Garonne,
France) in July 2006. Results suggest that, in this case study, variability of the catchability is not
significant, either among fish or locations. Variability of the abundance among locations is sig-
nificant. 95% interval estimates of the abundances at the three locations are [0.15, 0.24], [0.26, 0.36],
and [0.45, 0.58] parrs per m2. Such differences are likely the consequence of habitat variability.

Key words: Hierarchical modeling; Model reductions; Removal sampling.

1 Introduction

Alpine freshwater systems are subject to anthropogenic disturbances, mainly hydroelectric power
plants which alter the particle size distribution of the substrate, the flow rate, and the water tem-
perature (Petts, 1984; The World Commission on Dams, 2000; Petts and Gurnell, 2005). Fish are
directly or indirectly subject to the aforementioned disturbances (Magaud et al., 1997; Xenopoulos
et al., 2005; Buisson et al., 2008). The monitoring of fish populations can be used to evaluate the
ecological health of freshwater systems (Angermeier and Schlosser, 1995; Paller et al., 2000;
Oberdorff et al., 2001; Pacheco et al., 2008). Abundance (Hutagalung et al., 1997), biomass (Kraft,
1972; Shirvell, 1979), species assemblage (Matthews, 1998; Paller et al., 2000), genetic alterations,
and enzymatic responses (Larno et al., 2001) of fish can be used as indicators of stress at the
population level.
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It is not feasible to remove and count all the fish in a given freshwater stream section to derive an
observed value of the fish abundance (abundance refers, in the following, to the number of fish per
m2 of stream). Fish ecologists use various sampling techniques (electrofishing, trapping, and
netting), protocols (capture–recapture and removal sampling), probabilistic models, and optimi-
zation techniques to derive an estimate of the fish abundance by collecting only a fraction of the fish
(White et al., 1982; Lobón-Cerviá, 1991; Manly, 1992). Removal sampling by electrofishing is a
well-used method to estimate fish abundance in alpine streams: a stream section is closed by nets
and fractions of the fish are successively removed by electrofishing. A popular estimate of fish
abundance is achieved by using a simple probabilistic model which assumes that the catchability of
the fish is constant among fish and across removals (Moran, 1951), and by computing a maximum
likelihood estimates of the model parameters (Cowx, 1983; Bedrick, 1994). Carle and Strub (1978)
presented an iterative algorithm (CS) to compute such an estimate.

CS leads, however, to biased estimates of fish abundance (Peterson, Thurow, and Guzevich,
2004). Both the bias and the variance of the CS estimator decrease while the population size, the
catchability, or the number of removals increase (Mahon, 1980; Hirst, 1994). The bias of the CS
estimator increases if the catchability is variable among fish (Mahon, 1980; Mäntyniemi, Ro-
makkaniemi, and Arjas, 2005) or across removals (Schnute, 1983; Riley and Fausch, 1992; Wang
and Loneragan, 1996). More accurate estimates of the fish abundance can be achieved by sampling
at multiple locations and by using more complex probabilistic models (Heimbuch et al., 1997; Mitro
and Zale, 2000; Wyatt, 2002; Royle, 2004). Researchers have created models to estimate fish
abundance which take into account random variations of the fish abundance (Wyatt, 2002; Royle,
2004; Dorazio, Jelks, and Jordan, 2005), random variations of the catchability (Wyatt, 2002),
variations across removals of the catchability (Otis et al., 1978; Schnute, 1983; Pollock and Otto,
1983; Lee and Chao, 1994; Wang and Loneragan, 1996), and random variations among fish of the
catchability (Pollock and Otto, 1983; Lee and Chao, 1994; Dorazio et al., 2005; Mäntyniemi et al.,
2005).

Freshwater fish biologists consequently have a large collection of models to estimate fish abun-
dance from removal sampling data. As estimation results are contingent on model choice, it is
decisive to choose the most relevant model. The author uses a Bayesian approach to choose the
model and estimate the abundance of trout parrs of an alpine stream of the Pyrénées mountain
range, France. The author presents first an expanded hierarchical model which takes into account
(i) variability of the abundance among locations, (ii) variability of the catchability among locations,
and (iii) residual variability of the catchability among fish. The expanded hierarchical model is a
compilation of existing models (Halley and Inchausti, 2002; Wyatt, 2002; Royle, 2004; Mäntyniemi
et al., 2005) and is therefore briefly presented. Eleven model reductions are considered depending
which variability is included in the model. The point and interval estimates of the parameters as well
as the goodness-of-fit of the models are then compared in order to highlight the most relevant
model. Given that fish abundance and catchability may vary with fish species, fish size, and habitat
(Mahon, 1980; Randall, 1990; Bayley and Dowling, 1993; Anderson, 1995; Speas et al., 2004), the
author focuses on one freshwater fish species of a given size class living in a similar alpine habitat.

2 Models

2.1 The expanded hierarchical model

Let m be the number of locations of similar habitat of an alpine stream inhabited by the fish species
of interest. At each location, a stream section is depleted by electrofishing in k removals. Let ai (m

2)
be the area of the stream section at the i-th location and cij be the number of fish caught during the
j-th removal at the i-th location (i 2 f1; . . . ;mg, j 2 f1; . . . ; kg). The model parameters are structured
in three hierarchical levels as illustrated in Fig. 1 and are described in the following sections.



Parameters at the removal level are the catchabilities mij , the numbers of caught fish cij , and the
population sizes nij. Parameters at the location level are the areas ai, the population sizes ni, the
abundances li (m

�2), the catchabilities mi, and the variances di. Parameters at the stream level are
the abundance l, the catchability m, and the variances d, s2

l, s
2
m, and s2

d. Parameters at the removal,
location, and stream levels are of dimension mk, m, and 1, respectively.

The expanded hierarchical model accounts for variability among fish of the probability
of capture. As shown by Mäntyniemi et al. (2005), such a variability leads to a decrease of the
catchability across removals. By assuming that the probabilities pi1f of catching any fish f 2
f1; . . . ; nig during the first removal at the i-th location are independent and beta distributed
(pi1f jai;bi � Betaðai;biÞ 8f ) and given that the probability pijf of capturing any fish f during removal
j � 2 given that the fish have not been captured earlier are equal to pi1f , Mäntyniemi et al. (2005)
have shown that the pijf are still independent and beta distributed. The expectancy mij ¼ Eðpijf jai; biÞ
is referred to in the following as the catchability during the j-th removal at the i-th location. The
expectancy mi ¼ mi1 ¼ ai=ðai1biÞ is referred to as the catchability (during the first removal) at the
i-th location. The variance di ¼ aibi=fðai1biÞ

2
ðai1bi11Þg of pi1f is bounded by the constraints

0odiomið1� miÞ (as ai40, bi40, and 0omio1). Mäntyniemi et al. (2005) have shown that mij ¼
miZi=ðZi1j � 1Þ with Zi ¼ mið1� miÞ=di � 1. Under the hypotheses stated above, the number of fish
caught during the j-th removal at the i-th location is a binomial

cijjnij ; mij � Binomialðnij ;mijÞ 8i; j;

where nij is the number of fish remaining in the i-th stream section before the j-th removal, ni1 ¼ ni
and nij ¼ ni �

Pj�1
j0¼1 cij0 for j 2 f2; . . . ; kg.

The population sizes ni are taken to be independent Poisson random variables of expectancies liai
(Royle, 2004). The model accounts for spatial, random variations among locations of the para-
meters li, mi, and di. The abundances li are assumed independent gamma random variables of
expectancy l and variance s2

l (Halley and Inchausti, 2002; Wyatt, 2002). The catchabilities mi are
assumed independent beta random variables of expectancy m and variance s2

m. Let ei ¼ di=mið1� miÞ,
0oeio1. The normalized variances ei are assumed independent beta random variables of ex-
pectancy d=mð1� mÞ and variance fsd=mð1� mÞg2. The conditional distribution of the parameters at
the location level are summarized in Table 1.

The parameters at the stream level are l, m, d, s2
l, s

2
m, and s2

d. They are related to the parameters
at the location level by the relationships provided in Table 1. They are as a result bound to the
following constraints: l40, 0omo1, 0odomð1� mÞ (as d=mð1� mÞ is the expectancy of a beta

Figure 1 Directed acyclic graph of the expanded hierarchical model (L). Frames in-
dicate hierarchical levels: removal (j 2 f1; . . . ; kg) and location (i 2 f1; . . . ;mg). Variables
outside frames are variables at the stream hierarchical level. Rectangles: deterministic
nodes; ellipses: stochastic nodes; filled nodes: observed variables. Parameters at the
removal level are the catchability mij, the catch cij , and the population size nij . Parameters
at the location level are the area ai, the population size ni, the abundance li (m

�2), the
catchability mi, and the variance di. Parameters at the stream level are the abundance l,
the catchability m, and the variances d, s2

l, s
2
m, and s2

d.



distribution), s2
l40, 0os2

momð1� mÞ (as s2
m is the variance of a beta distribution of expectancy m),

and 0os2
dodfmð1� mÞ � dg (as fsd=mð1� mÞg2 is the variance of a beta distribution of expectancy

d=mð1� mÞ).
By using Bayes law, the posterior of the parameters is

pðn;k; l; d;l;m; d;s2
l;s

2
m;s

2
djcÞ / pðcjn;l; dÞpðnjkÞ�

pðkjl;s2
lÞpðljm;s

2
mÞpðdjd;s

2
dÞpðl;m; d;s

2
l;s

2
m;s

2
dÞ;

where n ¼ ðniÞi2f1;...;mg, k ¼ ðliÞi2f1;...;mg, l ¼ ðmiÞi2f1;...;mg, d ¼ ðdiÞi2f1;...;mg, and c ¼ ðcijÞi2f1;...;mg;j2f1;...;kg.
The conditional densities of n, k, l, d, and c are expressions for standard distributions. The prior
pðl;m; d;s2

l;s
2
m;s

2
dÞ is defined later. As explained by Spiegelhalter et al. (2002), the likelihood of a

hierarchical model is not uniquely defined depending on the parameters in focus. The author
evaluates in the following relevancy of including the components k, l, and d in the model.
The author therefore focuses in the following on such parameters, which are parameterized
with hyperparameters (l, m, d, s2

l, s2
m, and s2

d). In that case, the likelihood is
pðcjk; l; dÞ ¼ pðcjn;l; dÞpðnjkÞ.

2.2 Model reductions

Eleven model reductions are considered, depending whether the models account for (i) variability
among locations of the abundance, (ii) variability among locations of the catchability, and (iii)
variability among fish of the catchability. Models which account for such variabilities are abbre-
viated in the following as models accounting for s2

l, s
2
m, and d, respectively. Among the models,

which account for d, some also account for variability among locations of the variability among fish
of the catchability. This latter variability is abbreviated as s2

d. Nesting relationships between the
hierarchical models are illustrated in Fig. 2. The more restrictive model is model A and the ex-
panded hierarchical model is model L. Model A assumes that the fish abundance is equal among the
m locations (li ¼ l 8i) and that the catchability is the same for all fish, all removals, and all
locations [pijf ¼ m 8ði; j; f Þ]. The assumptions underlying model A are those considered by fresh-
water fish biologists who estimate fish abundance by summing the removal sampling data across
locations before using CS.

2.3 Parameter estimates and model comparison

The implementation of models A–L as well as the generation of the Markov chain Monte
Carlo (MCMC) samples (Robert and Casella, 2004) are performed with OpenBUGS, an open
source version of WinBUGS (Ntzoufras, 2009). The R package BRugs is used to access
OpenBUGS functionalities from R. Samples are processed by using R (Crawley, 2007). WinBUGS
and R scripts are available on the journal website as Supporting Information. A total of 500 000
samples of the posterior are generated for each model, although fewer iterations provide
satisfactory results for some models (e.g. 10 000 iterations for models A–D). The burn-in is 1000

Table 1 Conditional distributions of the parameters at the location level (i 2 f1; . . . ;mg).

Variable Distribution Expectancy Variance

nijli Poisson liai liai
lijl;s2

l Gamma l s2
l

mijm;s
2
m Beta m s2

m
di=mið1� miÞjm; d;s

2
d Beta d=mð1� mÞ fsd=mð1� mÞg2



iterations. Convergence is assessed by using several chains with different initial values, although
no statistical convergence diagnosis has been considered. Several point estimates of the
parameters are computed: posterior expectancy, marginal posterior median, marginal posterior
mode, joint posterior mode (maximum a posteriori, MAP), and joint likelihood mode (maximum of
the likelihood, ML). The interval estimates of the parameters are the 2.5 and 97.5% quantile
estimates of their marginal posterior. ML estimates are used to compute estimates of the Akaike
information criterion (AIC) and Bayesian information criterion (BIC) (Carlin, Clark, and Gelfand,
2006).

3 Data Set and Priors

3.1 Data set

Data have been collected in July 2006 at three locations on the Neste d’Oueil stream (Haute-
Garonne, Pyrénées mountain range, France): Saint-Paul (1050m elevation), Mayrègne (1150m
elevation), and Cires (1230m elevation). The Saint-Paul stream section is 121m long, 4.7m wide.
The Mayrègne section is 2180m upstream Saint-Paul, 141m long, 3.8m wide. The Cires section is
2480m upstream Mayrègne, 171m long, 2.9m wide. Streams have been electrofished in two re-
movals. Only brown trout (Salmo trutta fario) young-of-the-year parrs (01) are considered in the
following. All trout parrs are less than 75mm long. The area of the stream sections and the number
of parrs caught at each location are provided in Table 2.

A E G

B F I

C H J

D K L

Figure 2 Three-dimensional commutative diagram illustrating the nesting relationships be-
tween the hierarchical models. Only direct nesting relationships are explicitly plotted. Arrows
point toward an augmentation of the complexity, arrow labels indicate which component is
added to the model: d represents the variability among fish of the catchability (arrows pointing
rightward, cube on the left), s2

l represents variability among locations of the abundance
(arrows pointing downward), s2

m represents variability among locations of the catchability
(arrows pointing toward the reader), s2

d represents variability among locations of the varia-
bility among fish of the catchability (arrows pointing rightward, cube on the right). The
complexity of model A is 21m, complexity increases by 1 by adding the d component and by
m11 by adding either of the s2

l, s2
m, or s2

d components. Squared models suggest a low
catchability and circled models suggest a high catchability. A backward elimination procedure
suggests the reduction L! J! C.



3.2 Priors

The free parameters are assumed to be a priori related solely by the constraints domð1� mÞ,
s2
momð1� mÞ, and s2

dodfmð1� mÞ � dg. In that case, the prior is

pðl;m; d;s2
l;s

2
m;s

2
dÞ ¼ pðlÞpðmÞpðdjmÞpðs2

lÞpðs
2
mjmÞpðs

2
djm; dÞ:

The priors which are assigned to each free parameter are provided in Table 3. The abundance l is
uniformly distributed on [0, 100] m�2 by using expert knowledge that parr abundance is less than
100 parrs per m2 in the Neste d’Oueil. The catchability m and the variances d, s2

m, and s2
d are

assigned uniform priors on their definition sets. The variance s2
l is gamma distributed,

s2
l � Gammað1; 1Þ, providing the knowledge that low values of s2

l are a priori more likely than
higher values. The consequences of the choice of such priors on the results are investigated later.

4 Results

MAP and interval estimates of the abundance and the catchability at the stream level are provided
in Table 4. Estimates of d (models E–L), s2

l (models C, D, H, and J–L), s2
m (models B, D, F, I, K,

and L), s2
d (models G, I, J, and L) as well as posterior expectancy, marginal posterior median,

marginal posterior mode, and ML point estimates were computed, are available as Supporting
Information, but are not reported below.

A three-group k-mean clustering by using the point estimates of the catchabilities (stream level)
suggests the classification of the models into: a first group (models F and I) of low catchability
(m̂ 2 ½0:18; 0:23�), model B of intermediate catchability (m̂ ¼ 0:50), and a third group (remaining
models) of high catchability (m̂ 2 ½0:65; 0:72�). Such a classification is highlighted in Fig. 2. Models
of the two first groups account for s2

m without s2
l.

BIC estimates of models A–L are provided in Table 4. AIC estimates are similar to BIC estimates
and are not reported. Models A, B, E, and G of high BIC are outrightly rejected. Models A, E, and
G do not account for either s2

l or s
2
m. Model B accounts for s2

m only. The five models of lowest BIC
(models C, D, H, J, and K) account for s2

l. Model C leads to the lowest BIC.

Table 2 Area of the stream sections and number of trout parrs (01) caught at Cires, Saint-Paul,
and Mayrègne in July 2006.

Cires Saint-Paul Mayrègne

i 1 2 3
ai (m

2) 498 574 541
ci1 66 122 187
ci2 19 34 63

Table 3 Priors of the free parameters (stream level).

l�Unifð0; 100Þ
m�Unifð0; 1Þ
djm�Unifð0; mð1� mÞÞ
s2
l�Gammað1; 1Þ

s2
mjm�Unifð0; mð1� mÞÞ

s2
djm; d�Unifð0; dfmð1� mÞ � dgÞ



Models which account for s2
l are models C, D, H, and J–L. Estimates of the parameters at the

location level with models C, D, H, and J–L are provided in Table 5. Point estimates of the local
abundances are of similar values by using any of these models. Estimate of s2

m (q2:5 ¼ 0:0008,

Table 4 Point and interval estimates of the abundance and the catchability (stream level) and BIC
estimates.a)

l̂ m̂

q2.5 MAP q97.5 q2.5 MAP q97.5 BIC

A 0.31 0.33 0.37 0.62 0.71 0.75 129.1
B 0.38 0.42 0.51 0.25 0.50 0.73 102.6
C 0.25 0.66 1.54 0.62 0.71 0.75 61.1

D 0.25 0.78 1.53 0.43 0.70 0.79 67.5
E 0.34 0.33 5.69 0.04 0.69 0.68 131.2
F 0.62 0.97 1.22 0.15 0.23 0.61 72.3
G 0.40 0.35 1.28 0.18 0.65 0.59 119.5
H 0.38 0.61 3.20 0.08 0.71 0.66 63.6
I 0.49 1.24 1.34 0.17 0.18 0.66 75.0
J 0.29 0.44 1.89 0.17 0.67 0.71 70.1
K 0.39 0.90 2.36 0.13 0.72 0.68 70.0
L 0.34 0.52 2.01 0.21 0.69 0.71 77.1

a) Point parameter estimates are joint MAP estimates. Interval parameter estimates are 2.5 and
97.5% marginal posterior quantile estimates.

Table 5 Point and interval estimates of the parameters in focus (location level) with models C, D,
H, and J–L.

q2.5 MAP q97.5 q2.5 MAP q97.5 q2.5 MAP q97.5

l̂1 l̂2 l̂3

C 0.15 0.18 0.24 0.26 0.29 0.36 0.45 0.49 0.58

D 0.15 0.17 0.24 0.25 0.31 0.36 0.45 0.51 0.60
H 0.19 0.18 1.74 0.31 0.30 2.66 0.53 0.49 4.41
J 0.17 0.21 0.77 0.27 0.30 1.22 0.47 0.52 1.99
K 0.20 0.19 1.36 0.32 0.30 1.97 0.56 0.49 2.77
L 0.18 0.19 1.27 0.28 0.31 1.51 0.50 0.51 1.91

m̂1 m̂2 m̂3

D 0.53 0.70 0.81 0.59 0.70 0.80 0.56 0.70 0.74
K 0.10 0.73 0.66 0.11 0.70 0.66 0.12 0.73 0.62
L 0.11 0.69 0.73 0.14 0.68 0.73 0.18 0.69 0.69

100d̂1 100d̂2 100d̂3

J 0.00 0.00 15.07 0.00 0.00 14.67 0.00 0.00 12.77
L 0.15 3.26 15.13 0.12 0.18 14.82 0.03 0.00 12.86



ŝ2
m ¼ 0:0000, q97:5 ¼ 0:12) with model L suggests the reduction L-J. Estimates of fdigi with model J

(Table 5) suggests the reduction J-C, hence the reduction L-J-C.
The two-step backward elimination variable selection procedure and the BIC results suggest

model C as the most appropriate model. The point estimates of the abundance at Cires, Saint-Paul,
and Mayrègne are therefore l̂1 ¼ 0:18, l̂2 ¼ 0:29, and l̂3 ¼ 0:49 m�2, respectively. Interval esti-
mates are [0.15, 0.24], [0.26, 0.36], and [0.45, 0.58] m�2, respectively.

5 Discussion

Depending on which components (d, s2
l, s

2
m, and s2

d) are considered, models provide various results
of abundance estimates. The comparison of the models in terms of BIC implies, however, that
variability among locations should be included (models C, D, H, and J–L) and that the most
reduced model accounting for such a variability (model C) should be preferred. Such a choice is
consistent with a backward elimination variable selection procedure suggesting a reduction of
model L into model C. Models D, H, and J–L, which include additional variability (d, s2

m, and s2
d),

provide MAP estimates l̂i similar to those with model C with wider confidence intervals. The results
suggest, however, that such variabilities do not significantly take place in the study area.

Abundances at Cires, Saint-Paul, and Mayrègne are significantly different. Such differences are
likely due to habitat variability (Bayley and Dowling, 1993). A new electrofishing campaign to-
gether with measurement of habitat quality is to be performed to investigate the relationship
between habitat quality and abundance.

The point estimates of some variances, although constrained to be strictly positive, are equal to
zero (e.g. ŝ2

m ¼ 0 for model L and d̂1 ¼ d̂2 ¼ d̂3 ¼ 0 for model J). The marginal posteriors of such
parameters are exponentially shaped (see Supporting Information), indicating that the joint pos-
terior maximizes if the aforementioned parameters tend toward zero. Null point estimates of the
variances therefore do not imply a mistake in simulating or processing MCMC samples. This rather
strongly suggests that some reductions should be considered with the above variances forced to be
equal to zero, in this case L-J-C.

Reported point estimates maximize the joint posterior. The author has chosen to report joint
MAP estimates rather than expectancy or median estimates in view of the positive skewness and the
bimodality of the marginal posterior of some parameters. MAP estimates have the benefit (or the
shortcoming) not to be contingent to the width of the tail of the posterior. For instance, although
joint MAP estimates of l1, l2, l3 with model L are approximately equal to those with model C
(Table 5), expectancy estimates would be l̂1 ¼ 0:19, l̂2 ¼ 0:30, l̂3 ¼ 0:51 m�2 with model C and
l̂1 ¼ 0:42, l̂2 ¼ 0:57, l̂3 ¼ 0:85 m�2 with model L. Joint MAP estimates are in most cases close to
marginal posterior mode estimates. In some cases, however, marginal posterior mode estimates
consequentially differ to joint MAP estimates. For instance, the marginal posterior mode estimate
of the probability of capture would be m̂ ¼ 0:50 with model L, whereas the joint MAP estimate is
m̂ ¼ 0:69. Consequently, to the author’s point of view, it is not desirable to use marginal distribution
statistics (expectancy, median, and mode), which are routinely provided by WinBUGS to provide
abundance estimates. It is preferable to compute joint MAP estimates.

The deviance information criterion (DIC) is a generalization of the AIC by using the posterior
distribution of the deviance statistics to compute measures of fit and complexity (Spiegelhalter et al.,
2002). DIC relies on the assumption that the posterior expectancy is a good estimate of the model
parameters. Consequently, the author has not considered using the DIC as an index of model fit and
complexity. AIC and BIC computations rely on a relevant choice of the parameters in focus. In this
study, the parameters in focus are k, l, and d. The main reason supporting this choice is, as stated
earlier, that models A–L are compared in order to evaluate the relevancy of including the k, l, and d
components into the model. In other words, all models have in common both the components cjn,
l, d, and njk which are as a consequence included in the likelihood. Another reason in favor of not



focusing on n is that the population sizes are highly correlated to the corresponding abundances
(nijli � PoissonðliaiÞ is a Poisson regression model) suggesting to consider n as a nuisance variable.
Except for s2

l, all free parameters are assigned vague priors (Table 3). The prior of l is
uniform on [0, 100] m�2. Such a prior is, however, not non-informative stricto sensu. The constraint
lo100 m�2 is non-informative (all simulated samples of l are lower than 10m�2) but the choice of l
being uniformly distributed on a natural scale is not. Another possibility could be l uniformly
distributed on a log scale. As described by Lambert et al. (2005), vague priors are informative
and the consequences on estimation results need to be investigated. Informal sensitivity analysis
(Gustafson, 1996) is given in the Appendix. Abundance estimates at the stream level are sensitive to the
choices of vague priors, whereas abundance estimates at the location level are not. As a result, to the
author’s point of view, in a case study where few locations are considered, it is more advisable to report
abundance estimates at the location level rather than the abundance and variance estimates at the
stream level.

The statistical assumptions underlying the expanded hierarchical model are (i) the modeling
of the variability among fish of the probability of capture as a beta distribution, (ii) the modeling
of the variability of the population sizes as a Poisson distribution, (iii) the assumption that mi and ei are
beta distributed, and (iv) the assumption that li are gamma distributed (i 2 f1; . . . ;mg). Assumptions
(i) and (ii) have been discoursed elsewhere (Halley and Inchausti, 2002; Wyatt, 2002; Royle, 2004;
Mäntyniemi et al., 2005). Another possibility for assumptions (iii) and (iv) could be to
transform the variables and assign normal distributions (e.g. logitðmiÞjm;s

2
m � NormalðlogitðmÞ;s2

mÞ).
The distribution choices (iii) and (iv) are not, to the author’s point of view, critical, in view of
the small number of locations which are considered in the case study and given that mi, ei, and li
distributions are parameterized in terms of expectancy and variance. The use of the hierarchical models
with a higher number of locations would require, however, a careful choice of the distributions
of mi, ei, and li and a sensitivity analysis to evaluate the consequence of such a choice on the estimation
results.

The flexibility of the Bayesian framework makes possible future improvements of the expanded
hierarchical model. The number of removals is, in this case study, equal for all the locations. The model
could nevertheless cope with different number of removals per location. The model could be extended
by accounting for a higher hierarchical level (watershed). Several streams would be sampled within a
watershed and several locations would be considered per stream. One could use such a model extension
to compare abundance of fish populations at the stream level. The expanded hierarchical model does
not take into account variability of the catchability across removals, although some experiments
suggest it occurs in the field (Otis et al., 1978; Schnute, 1983; Pollock and Otto, 1983; Lee and Chao,
1994; Wang and Loneragan, 1996; Peterson et al., 2004). However, it is not possible to estimate such a
variability by using removal sampling data with only two removals. With a higher number of removals,
the expanded hierarchical model could be extended and an approach similar to the one presented here
could help to decide whether it is appropriate to include variability of the catchability across removals.
The model deals so far with removal sampling data of a given fish species, fish size class, and habitat.
The model could take into account the effect of fish species (Mahon, 1980), of fish size (Mahon, 1980;
Anderson, 1995), and of habitat (Randall, 1990; Bayley and Dowling, 1993; Speas et al., 2004) on the
abundance and on the catchability. See for instance the work of Rivot et al. (2008) including habitat
and time. The author has extended the current model (L) to account for variability of the abundance
and the catchability with fish size.
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Appendix

Estimates of the abundance and of the catchability at the stream level (Table 5) and estimates of the
abundances at the location level (Table 5) by using the priors of Table 3 are compared with

Table A1 Point and interval estimates of the abundance and catchability (stream level) and BIC
estimates by using the following priors: uniform distribution on the log scale for l (models A1 and
C1), beta distribution for m (models A2, A3, C2, and C3), uniform distribution for

ffiffiffi
d
p

(model E1), sl
(model C4), sm (model B1), and sd (model G1).

a)

l̂ m̂

BICq2.5 MAP q97.5 q2.5 MAP q97.5

A 0.31 0.33 0.37 0.62 0.71 0.75 129.1
A1 log10ðlÞ � Unifð�2; 2Þ 0.31 0.33 0.37 0.62 0.70 0.75 129.1
A2 m � Betað2; 5Þ 0.31 0.34 0.38 0.60 0.69 0.74 129.1
A3 m � Betað5; 2Þ 0.31 0.33 0.37 0.62 0.71 0.75 129.1

B 0.38 0.42 0.51 0.25 0.50 0.73 102.6
B1 smjm � Unifð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1� mÞ

p
0.37 0.42 0.51 0.25 0.48 0.72 102.6

C 0.25 0.66 1.54 0.62 0.71 0.75 61.1
C1 log10ðlÞ � Unifð�2; 2Þ 0.19 0.09 1.27 0.62 0.70 0.75 61.1
C2 m � Betað2; 5Þ 0.25 0.44 1.55 0.60 0.69 0.74 61.1
C3 m � Betað5; 2Þ 0.25 0.53 1.54 0.62 0.71 0.75 61.1
C4 sl � Unifð0; 10Þ 0.28 0.21 6.62 0.62 0.70 0.75 61.2

E 0.34 0.33 5.69 0.04 0.69 0.68 131.2
E1

ffiffiffi
d
p
jm � Unifð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1� mÞ

p
0.33 0.33 4.14 0.06 0.71 0.71 131.0

G 0.40 0.35 1.28 0.18 0.65 0.59 119.5
G1 sdjm; d � Unifð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dfmð1� mÞ � dg

p
0.40 0.36 2.84 0.08 0.63 0.58 119.4

a) Estimates by using the priors of Table 3 are reproduced (models A–C, E, and G).

Table A2 Point and interval estimates of the local abundances by using the priors provided in
Table A1.

l̂1 l̂2 l̂3

q2.5 MAP q97.5 q2.5 MAP q97.5 q2.5 MAP q97.5

C 0.15 0.18 0.24 0.26 0.29 0.36 0.45 0.49 0.58
C1 0.15 0.18 0.24 0.26 0.30 0.36 0.45 0.51 0.58
C2 0.15 0.18 0.24 0.26 0.29 0.36 0.45 0.51 0.59
C3 0.15 0.18 0.24 0.26 0.30 0.35 0.45 0.50 0.58
C4 0.15 0.19 0.24 0.26 0.30 0.35 0.45 0.49 0.58



estimates by using the following priors: l is uniformly distributed on the log scale, m is beta
distributed,

ffiffiffi
d
p

, sl, sm, and sd are uniformly distributed. The consequences of modifying the prior
of a free parameter are investigated by using the model of the lowest complexity, which considers
such a parameter. Estimates of the abundance and of the catchability (stream level) are provided in
Table A1. Given that model C has been selected in this case study as the most appropriate model,
the sensitivity of model C regarding the choice of the priors for l and m is also investigated.
Estimates of the local abundances with model C are given in Table A2.

The prior log10ðlÞ � Unifð�2; 2Þ provides the knowledge that low values of l are more likely than
larger values on the natural scale (pðlÞ ¼ 1=f4l logð10Þg, l 2 ½10�2; 102�). The prior m � Betað2; 5Þ
provides the knowledge that lower values of the catchability are more likely than higher values
(mode 0.2, q2:5 ’ 0:04, q97:5 ’ 0:64). The prior m � Betað5; 2Þ provides the knowledge that higher
values are more likely (mode 0.8, q2:5 ’ 0:36, q97:5 ’ 0:96). Uniform priors for standard deviations
provide the knowledge that lower values of the variances are more likely than higher values (e.g.
pðs2

mjmÞ ¼ 1=f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1� mÞ

p
smg). The use of a bounded flat prior sl � Unifð0;sl;maxÞ simulates the

use of an improper flat prior sl / 1. Simulated samples of s2
l saturate at the upper boundary s

2
l;max

no matter how large the value of sl;max. The use of a uniform prior for s2
l (see Supporting

Information) leads to similar results.
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