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Robust passivity-based control of switched-reluctance motors

Antonio Lorı́a Gerardo Espinosa–Pérez Erik Chumacero

Abstract

We propose a state-feedback controller for switched-reluctance motors as a preliminary step towards

the solution of the sensorless control problem (without measurement of rotor variables). We establish

global exponential stability. Furthermore, our controller renders the closed-loop system robust to external

disturbances that is, input-to-state stable. Although there exist some works on sensorless control of

switched-reluctance motors, these consist mainly on ad hoc solutions without theoretical foundation.

The few theoretically-validated results in the literature are established under more stringent conditions

such as knowledge of the load torque.

I. INTRODUCTION

In view of their many technological advantages such as their absence of permanent magnets or windings

in the rotor, switched-reluctance machines are highly reliable and have lower costs than other synchronous

motors. These make them particularly attractive in a number of applications such as transportation systems

and the boosting industry of electrical vehicles –see [1], [2], [3], [4]. However, technological simplicity

comes at the cost of model mathematical complexity: due to magnetic saturation, the map flux-current

is highly nonlinear; also, the mechanical torque is a nonlinear function of the stator currents and angular

positions. Accounting for a few exceptions –see [5], [6], magnetic saturation is commonly neglected in

the dynamic model hence, it is assumed that the mapping from flux to current is linear (the inductance

depends purely on rotor angles). Even under such simplification, the model of the switched-reluctance

motor is a complex nonlinear multivariable system which posses significant challenges to the control

theorist and the control practitioner.

In spite of a number of articles on control of switched-reluctance machines via full state feedback

–[7], [5], [6], [8] and partial state-feedback –[9], [10], articles including a theoretical analysis are scarce.

Certainly the same holds for ad hoc solutions based on methods such as model-predictive control —[11].

As for other electro-mechanical machines, a natural approach is to use two loops in the control. The

first to drive the rotor variables (velocity and position) to a desired reference; as a matter of fact, typically

only the velocities account as variables of interest to be controlled. A second loop is closed around the

stator dynamics via current feedback; the goal is to steer the currents to a regime such that the current

drives the rotor velocities to the desired reference. Although appealing, this method is obstructed by the

fact that currents enter nonlinearly in the mechanics equations. That is, the rotor dynamics consists in a

drift-less system non-affine in the control input. To overcome the difficulty of control implementation,

the torque sharing technique is adopted –see [12], [5], [13]. It exploits the physical properties of the

machine by ‘allocating’ the control action through one phase at a time.

In this paper we address the problem of velocity/position control of switched reluctance motors via

the approach described above. We use full-state feedback that is, we assume that both velocities and

positions as well as currents, are measured. It is also assumed that the load torque is unknown and

constant. Although we use full-state measurement, we provide proofs of Lyapunov global exponential

stability in closed loop. Also, we establish that the closed-loop system is globally input to state stable

with respect to external additive disturbances. Therefore, the controller that we propose constitutes a first

step towards control of reluctance drives under more realistic assumptions: partial state feedback, account

of magnetic saturation, etc.
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The rest of the paper is organized as follows. In the next section we present the dynamic model, we

assume that the inductances are functions of the rotor angular positions only. For clarity of exposition,

in Section IV we describe the first control loop: for the rotor dynamics; in Section V we present the

stator-currents controller and in Section VI we present our main results.

II. THE MOTOR EQUATIONS

A. Problem statement

Considering the experimentally-validated fact that the mutual inductance among stator phases is neg-

ligible, a general three-phase dynamic model is given by –cf. [14],

ψ̇j(θ, x) +Rxj = uj , j = 1, 2, 3; (1a)

Jω̇ = Te(θ, x)− TL(θ, ω) (1b)

θ̇ = ω. (1c)

Equation (1a) corresponds to the stator dynamics and Equations (1b), (1c) describe the rotor’s motion.

For each phase j, uj is the voltage applied to the stator terminals, ψj is the flux linkage and xj is the

stator current; x = [x1, x2, x3]
⊤. Based on the assumption that the machine operates at relatively low

current levels, it is common practice to express the inductance of each phase as a strictly positive Fourier

series truncated at the first harmonic that is, the flux is represented by a linear function of the currents:

ψj(θ, x) = Lj(θ)xj where

Lj(θ) = ℓ0 − ℓ1 cos
(

Nrθ − (j − 1)
2π

3

)

with ℓ0 > ℓ1 > 0 hence, the stator dynamics equation becomes

uj = Lj(θ)ẋj +Kj(θ)ωxj +Rxj (2)

where

Kj(θ) =
∂Lj

∂θ
= Nrℓ1 sin

(

Nrθ − (j − 1)
2π

3

)

corresponds to the phase-inductance variation relative to the rotor angular position.

In Equations (1b), (1c) R represents the stator resistance, J corresponds to the total rotor inertia, θ
and ω denote the angular position and velocity respectively. The inputs are the mechanical torque of

electrical origin, Te and the load torque, TL. Based on the assumption that inductances are decoupled,

Te corresponds to the sum of the torques produced by each phase i.e.,

Te =
1

2

3
∑

j=1

Kj(θ)x
2
j .

Although the previously-described model is simplified for the purpose of control design and stability

analysis, it is adopted in both the electrical-machines and the control research communities –cf. [14].

Other models as for instance that used in [9], account for variations of ℓ0 and ℓ1 depending on the

stator currents but does not include theoretical validation the experimental results reported therein. A

fully-nonlinear has been used in a few experimental works such as [15] and [5] however, the controllers

proposed therein use full state-feedback.

The control problem consists in driving the angular velocity ω to a set-point reference ω∗. It is

assumed that TL is constant and unknown.
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Fig. 1. Illustration of the control approach. A PID controller virtually injected through the variable Td steers ω → ω∗ –See

Section IV. Td is also injected in the form of a reference current x∗ into the stator control loop and a nonlinear controller

ensures current tracking control –see Section V. The systems are feedback interconnected through the nonlinear map Te. The

proper definition of the reference model (dashed lines) ensures that the interconnection remains stable in view of a small-gain

argument –see Section VI.

III. THE CONTROL APPROACH

Generally speaking, an appealing control approach for electro-mechanical machines is to design a

control law for the mechanical part (the rotor) separately from a controller for the electrical part (the

stator). The control action on the rotor dynamics enters through the mechanical torque; naturally, the

current x may be seen as a virtual control input in (1b). Accordingly, a control law u may be designed

for the stator equations (1a) and implemented by applying the corresponding input voltage. The control

u must be such that the actual current x tracks a desired reference x∗ which is viewed as the control law

for the rotor equations. See Figure 1.

However appealing, this approach is stymied by two major technical difficulties:

• the rotor equation (1b) is non-affine in the ‘control input’ x,

• θ appears non-linearly.

The first difficulty is addressed in Section III-B via the so-called torque-sharing approach, adapted to

the purpose of this paper –cf. [12], [5], [13]. The second presents an obstacle to observer-design and

output-feedback control. Although the controller that we present uses full-state feedback, it constitutes

a first step towards sensorless control. The approach relies on a modified dynamic model, equivalent to

(1b)-(1c), (2) and which is propitious to certainty-equivalence control; this is presented in Section III-A.

A. New coordinates

Following ideas from [16] we introduce the function ̺ : [−π, π] → Sa where Sa := {(̺1, ̺2) ∈ R2 :
̺21 + ̺22 = a}, with a ∈ R+. Let ϑ ∈ [−π, π], A > 0 and

̺1 := A cos
(

Nr[θ + ϑ]
)

(3a)

̺2 := A sin
(

Nr[θ + ϑ]
)

. (3b)

Now, if we set ϑ = −θ(0) and for any ρ◦ ∈ R+, A := ρ◦ we see that the solutions of

ρ̇ = ωJρ, ρ = [ρ1, ρ2]
⊤, ρ(0) = [ρ◦, 0]

⊤ (4)

where

J = Nr

[

0 −1
1 0

]

.

satisfy ρ(t) ∈ Sρ◦ for all t ≥ 0 and are given by ρ(t) = ̺(θ(t)) where θ(t) is solution to (1c) i.e.,

ρ1(t) = ρ◦ cos
(

Nr[θ(t)− θ(0)]
)

ρ2(t) = ρ◦ sin
(

Nr[θ(t)− θ(0)]
)

.
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Furthermore, without loss of generality we consider that θ(0) = 0. Then, the rotor dynamics (1b) takes

the form

Jω̇ = Te(ρ, x)− TL (5)

in which TL is constant and it is assumed that the mechanical torque is now expressed as a function of

ρ that is,

Te(ρ, x) =
1

2
x⊤K(ρ)x (6)

hence, although Te and Te are different functions Te(ρ(θ), x) and Te(θ, x) represent the same quantity.

The matrix K(ρ) = ℓ1K
′(ρ) with

K ′(ρ) = Nr





ρ2 0 0

0 1
2

(

ρ2 −
√
3ρ1

)

0

0 0 1
2

(

ρ2 +
√
3ρ1

)



 . (7)

In the new coordinates the stator equation becomes

L(ρ)ẋ+K(ρ)ωx+Rx = u (8)

where L(ρ) = ℓ0I + ℓ1L
′(ρ) and

L′(ρ) =





−ρ1 0 0

0 −1
2

(

ρ1 +
√
3ρ2

)

0

0 0 −1
2

(

ρ1 −
√
3ρ2

)



 . (9)

It is clear that there exist positive constants ℓm, ℓM , km and kM such that

ℓm ≤ |L(ρ)| (10a)

ℓM |ρ1 − ρ2| ≥ max {|L(ρ1 − ρ2)| , |L(ρ1)− L(ρ2)|} (10b)

kM |ρ1 − ρ2| ≥ max {|K(ρ1 − ρ2)| , |K(ρ1)−K(ρ2)|} . (10c)

Thus, under the conditions described in Section II-A, the motor dynamics is defined by Equations (4),

(5) and (8). The advantage of the rotor dynamics model (4), (5) is that it is linear in the new ‘position’

variables, ρ.

For the purpose of tracking control we introduce a reference oscillator dynamics for (4). Given a

desired constant reference ω∗, we introduce θ∗ as the angular position reference for θ that is, θ̇∗ = ω∗

and the reference oscillator dynamics

ρ̇∗ = ω∗
Jρ∗, ρ∗(0) = [ρ∗◦, 0]

⊤ (11)

where the initial condition ρ∗◦ ∈ R+ is a free design parameter. The solutions to (11) which define the

angular reference trajectories, are

ρ∗(t) = ρ∗◦

[

cos
(

Nr[θ
∗(t)− θ∗(0)]

)

sin
(

Nr[θ
∗(t)− θ∗(0)]

)

]

(12)

where θ∗(t) = ω∗t + θ∗(0) and the initial reference angular position θ∗(0) ∈ [−π, π]; without loss of

generality we fix θ∗(0) = 0. Note that ρ∗(t) ∈ Sρ
∗

◦ for all t ≥ 0.

B. Torque sharing

This technique is used to induce a virtual control input into the mechanical equation (5). Ideally, the

virtual control input enters through the mechanical torque. That is, given a control law Td, one must

solve the equation
ℓ1T

∗
e (ρ, x

∗)

J
= Td (13)

for the current reference x∗. Then, Equation (5) may be equivalently written as

Jω̇ = JTd − TL + [Te − ℓ1T
∗

e ] (14)
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which for control purposes, may be viewed as a nominal system ω̇ = Td − TL/J perturbed by the term

[Te − ℓ1T
∗
e ]. By design, Td is such that ω → ω∗ provided that [Te − ℓ1T

∗
e ] ≡ 0 and [Te − ℓ1T

∗
e ] vanishes

provided that current reference trajectories x∗ are asymptotically tracked.

Clearly, the difficulty to solve (13) relies on the fact that Te is quadratic in x∗. The torque sharing

approach as used in [12], [5], [13], exploits the fact that the mechanical torque Te corresponds to the

sum of torques due to each phase therefore, we define

T ∗

e =
1

2

[

K ′

1(ρ
∗)x∗1

2 +K ′

2(ρ
∗)x∗2

2 +K ′

3(ρ
∗)x∗3

2
]

.

and we solve (13) for x∗j to obtain

x∗j =











[

2J

ℓ1

]1/2
[

mj(ρ
∗)Td

K ′

j(ρ
∗)

]1/2

if K ′

j(ρ
∗) 6= 0

0 otherwise

(15)

where the functions mj ensure that xj exists for any ρ∗ and Td. That is, depending on the current phase

of the reference model, the function mj ensures that the respective signs of the numerator and of the

denominator in the previous expression are equal for at least one j ∈ {1, 2, 3}. To that end, we define

the sets

Θ+
j =

{

ρ∗ ∈ S
ρ∗

◦ : K ′

j(ρ
∗) ≥ 0

}

Θ−

j =
{

ρ∗ ∈ S
ρ∗

◦ : K ′

j(ρ
∗) < 0

}

where the superscripts + and − stand for required positive and negative torque respectively. Accordingly,

given Td, we define

mj(ρ
∗) =

{

m+
j (ρ

∗) if Td ≥ 0,

m−

j (ρ
∗) if Td < 0.

where
m+

j (ρ
∗) > 0 ∀ρ∗ ∈ Θ+, m+

j (ρ
∗) = 0 ∀ρ∗ ∈ Θ−,

m−

j (ρ
∗) > 0 ∀ρ∗ ∈ Θ−, m−

j (ρ
∗) = 0 ∀ρ∗ ∈ Θ+.

Moreover, we impose that
3

∑

j=1

m+
j (ρ

∗) = 1,

3
∑

j=1

m−

j (ρ
∗) = 1.

so we have

Td = m1(ρ
∗)Td +m2(ρ

∗)Td +m3(ρ
∗)Td (16)

and (13) holds.

Remark 3.1: In the previously cited references the torque-sharing technique is implemented using θ
instead of ρ∗ that is, the reference x∗j depends on the current phase of the motor and not of the reference

model.

For clarity of exposition, we divide the rest of the paper in three parts that are coherent with the control

approach described above. First, we discuss the control of the rotor dynamics (design of Td) then, we

present a tracking (x→ x∗) control law u for the stator dynamics. Finally, using a small-gain argument

we establish that the the interconnection of the two subsystems schematically represented in Figure 1, is

exponentially stable.

IV. ROTOR ROBUST STATE-FEEDBACK CONTROL

We present two preliminary results on robust state-feedback control of the rotor dynamics. In the first

case, we establish a result of practical stability with respect to the uncompensated constant disturbance

induced by the load-torque; in the second case, we add an integrator establish global exponential stability.

In both scenarios we recover a property of input-to-state stability with respect to external inputs. This is

significant to analyze the stability of the system interconnected with the stator dynamics.
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A. Without load compensation

Let ν∗ = TL

J then, the rotor model is given by

ω̇ =
Te
J

− ν∗ (17a)

ρ̇ = ωJρ. (17b)

Define eρ := ρ− ρ∗ and eω := ω− ω∗ then, according to the policy described in Section III-B, we pose

the state-feedback control law

Td = −kdeω − kpρ
∗⊤

J
⊤eρ + ν + ω̇∗. (18)

Define further, ν̃ := ν − ν∗ and add Td − ℓ1T
∗
e /J to the right-hand side of Equation (17a). Then, the

latter may be rewritten as

ėω = −kdeω − kpρ
∗⊤

J
⊤eρ + ν̃ +∆1(t, ex, eρ) (19a)

∆1(t, ex, eρ) =
ℓ1
2J

[

x⊤K ′(eρ)x− x∗⊤K ′(ρ∗)x∗ + x⊤K ′(ρ∗)x
]

. (19b)

Subtracting (11) from (17b) and defining v = ∆1 + ν̃, the mechanical error dynamics becomes

ėω = −kdeω − kpρ
∗(t)⊤J⊤eρ + v (20a)

ėρ = eωJρ
∗(t) + ωJeρ (20b)

which may be viewed as a non-autonomous periodic system perturbed by the input v. The interest of

this observation relies on the following statement.

Proposition 4.1 (GES by state-feedback, no load): Let v be bounded. Then, the system (20) is input-

to-state-stable with respect to the input v and the map v → eω is output-strictly passive. In addition, in

the case that v ≡ 0 the origin (eρ, eω) = (0, 0) of (20) is globally exponentially stable.

Proof. Consider the positive definite radially unbounded function Vc1,

Vc1(eω, eρ) =
1

2

(

e2ω + kp |eρ|2
)

(21)

whose time derivative along the trajectories of (20) yields

V̇c1(eω, eρ) = −kde2ω + eωv . (22)

Output strict passivity of the map v 7→ eω follows by integrating on both sides of (22) since Vc1 ≥ 0.

The proof of global asymptotic stability under the condition v ≡ 0, follows invoking Lasalle’s theorem

for periodic systems –see e.g. [17, Theorem 5.3.79]: note that ew = 0 implies that V̇c1 = 0 and the only

solution of kpρ
∗(t)⊤J⊤eρ = 0 for any t, is eρ = 0 that is, the origin is the largest invariant set contained

in {V̇c1 = 0}. Global exponential stability is established invoking standard results from adaptive control

literature, observing that Jρ∗(t) is persistently exciting that is, there exist Tc and µc > 0 such that
∫ t+Tc

t
Jρ∗(τ)ρ∗(τ)⊤J⊤dτ ≥ µcI. (23)

As a matter of fact, (23) holds with Tc = π/Nrω
∗ and µc = |ρ∗◦|2N2

r Tc/2 –see Appendix IX-A. Input-

to-state stability follows from the following statement.

Lemma 4.1: Let ε1 ∈ (0, 1) be a small parameter to be defined, let i ∈ {1, . . . 6}, λi ≥ 0 be such that
∑6

i=1 λi = 1, kdi := λikd and k̄dj :=
∑6

i=j kdi; similarly for kp. Define the functions Vc2, Vc3 by

Vc2(t, eω, eρ) = ε1eωρ
∗(t)⊤J⊤eρ (24a)

Vc3(t, eρ) = −e⊤ρ
∫ t+Tc

t
e(t−τ)

Jρ∗(τ)ρ∗(τ)⊤J⊤dτeρ . (24b)

Then, if

|ρ∗◦| ≥
1

2
eπ/Nrω∗

(25)
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we have

3
∑

i=1

V̇ci ≤ −k̄d3e2ω − Nrπ

2ω∗
|ρ∗◦|

(

|ρ∗◦| e−π/ω∗ − Nr

2

)

|eρ|2

−ε1k̄p3
[

ρ∗⊤J⊤eρ

]2
+
(

ε1

[

ρ∗⊤J⊤eρ

]

+ eω

)

v. (26)

The proof of Lemma 4.1 is included in Appendix IX-B. Input-to-state stability with respect to the

input v follows remarking that
∑3

i=1 Vci is an ISS-Lyapunov function; indeed, it is enough to choose a

constant α sufficiently small such that |v| ≤ α |eω, eρ| implies that
∑3

i=1 V̇c is negative definite. �

B. With compensation of unknown load

Proposition 4.1 establishes global exponential stability for the system without load torque. As a

byproduct, the system is robust with respect to additive disturbances such as torque-load uncertainty

(ν̃ = const.). By exploiting the passivity of (20) we add a second loop which we close with integral

action, to compensate for ν̃. That is, let the variable ν in (18) be defined by

ν̇ = −ki
(

eω + ε1

[

ρ∗⊤J⊤eρ

])

, ki > 0, (27)

then, the map
(

eω + ε1

[

ρ∗⊤J⊤eρ

])

7→ ν is passive, the passivity and robustness properties of (20) are

conserved.

Proposition 4.2 (GES by state-feedback, with load compensation): The system (20) with v = ν̃ +∆1

is input-to-state-stable with respect to ∆1 and the map ∆1 7→
(

eω + ε1

[

ρ∗⊤J⊤eρ

])

is output-strictly

passive. Moreover, if ∆1 ≡ 0 that is if v = ν̃, then the origin (eρ, eω, ν̃) = (0, 0, 0) of (20) is globally

exponentially stable for appropriate values of the gains kp, kd and ki.

Proof. Consider the system (20) with v = ν̃ +∆1 and the function

Vc4(ν̃) :=
1

2ki
ν̃2. (28)

The total time derivative of
∑4

i=1 Vci along the trajectories of (20), and

˙̃ν = −ki
(

eω + ε1

[

ρ∗⊤J⊤eρ

])

, ki > 0 (29)

satisfies (26) with v = ∆1. Integrating the resulting expression of
∑4

i=1 V̇ci on both sides, we see that the

map ∆1 7→
(

eω + ε1

[

ρ∗⊤J⊤eρ

])

is output-strictly passive. Furthermore, if ∆1 ≡ 0 global asymptotic

stability follows invoking Lasalle’s principle, as in the proof of Proposition 4.1.

Now we proceed to show that
∑5

i=1 Vci with

Vc5(eρ, eω, ν̃) := −ε3ν̃eω − 1

2
ε1ε3ki |eρ|2 (30)

qualifies as an ISS-Lyapunov function. The total time derivative of Vc5 along the trajectories generated

by (20), (29) yields

V̇c5 = ε3ki

(

eω + ε1

[

ρ∗⊤J⊤eρ

])

eω

−ε3ν̃2 − ε3ν̃
(

−kdeω − kpρ
∗⊤

J
⊤eρ +∆1

)

−ε1ε3kie⊤ρ
[

ωJeρ + eωJρ
∗

]

. (31)

Adding V̇c4 and the latter to (26), we obtain

5
∑

i=1

V̇ci ≤ −[k̄d4 − ε3ki]e
2
ω − Nrπ

2ω∗
|ρ∗◦|

(

|ρ∗◦| e−π/Nrω∗ − Nr

2

)

|eρ|2 − ε1k̄p4

[

ρ∗⊤J⊤eρ

]2
− ε3

2
ν̃2

− δ2 + ∆1

(

ε1

[

ρ∗⊤J⊤eρ

]

+ eω − ε3ν̃
)

(32)
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where we recall (see Lemma 4.1) that k̄dj =
∑6

i=j kdi, kdi = λikd (similarly for kp) and we defined

δ2 :=
1

2





eω
ρ∗⊤J⊤eρ

ν̃









2kd3 0 ε3kd
0 2ε1kp3 ε3kp

ε3kd ε3kp ε3









eω
ρ∗⊤J⊤eρ

ν̃



 .

Let ε3 satisfy

min

{

kd4
ki
,
λ3
kd
,
ε1λ3
kp

}

≥ ε3 (33)

then, δ2 ≥ 0 and
∑5

i=1 Vci is an ISS-Lyapunov function for system (20) with v = ν̃ +∆1 and (29), with

respect to the input ∆1. Furthermore, if ∆1 ≡ 0,
∑5

i=1 V̇ci is bounded by a quadratic negative definite

function of the state; global exponential stability follows invoking standard Lyapunov theory. �

V. STATOR ROBUST STATE-FEEDBACK CONTROL

In the previous section we established input-to-state stability for the rotor dynamics with respect to

inputs ∆1 which vanish with ex = x− x∗. In this section we focus on the tracking control of the stator

dynamics that is, the control goal is to make x→ x∗ where x∗ := [x∗1 x
∗
2 x

∗
3]
⊤ and the latter is defined by

(15). The controller that we propose establishes global exponential stability in the case of perfect velocity

tracking (eω = 0) and input to state stability with respect to external inputs which vanish as ew → 0.

For Equation (8) we introduce the control law

u∗(t, x) := L(ρ∗)ẋ∗ +K(ρ∗)ω∗x+Rx∗ − kpxex (34)

where kpx is shorthand notation for kpx(t, |ex|) and is defined by a continuous function kpx : R+×R+ →
R+ such that kpx(t, ·) is non-decreasing. Note that ẋ∗ is a function of time, Ṫd and Td which depend

only on measured states and computed quantities. Indeed, defining

σj(ρ
∗) :=

mj(ρ
∗)

K ′

j(ρ
∗)

we have, after (15),

ẋ∗j =







[

2J

ℓ1

]1/2

[σj(ρ
∗)Td]

−1/2
[

σ̇jTd + σj Ṫd

]

if K ′

j(ρ
∗) 6= 0

0 otherwise.

(35)

Applying u = u∗ into (8) we see that

L(ρ)ėx + [R+ kpx] ex = ∆2(t, eρ, ex, ẋ
∗) (36a)

∆2(t, eρ, ex, ẋ
∗) = −

[

L′(eρ)ẋ
∗ +K(eρ)ω

∗x+K(ρ)eωx
]

(36b)

and, from (10) we have

|∆2| ≤
[

ℓM |ẋ∗|+ kMω
∗ |x|

]

|eρ|+ kM |ρ∗◦| |x| |eω| . (37)

That is, the origin {ex = 0} of the the stator closed-loop system is exponentially stable in the case that

the rotor controller achieves perfect velocity tracking. Global exponential stability for (36), implies local

input to state stability; the global property is established next.

Proposition 5.1: Let ρ◦ = ρ∗◦ and let1

u = u∗ −
[

ℓM |ẋ∗|+ kMω
∗ |x|

]

|eρ| sgn(ex) . (38)

Assume further that

kpx := kpx1 +
1

2

[

kM |ρ∗◦| |x|
]2
, kpx1 > 0 (39)

1As usual, the sign function is defined as sign(0) ∈ [−1, 1] and sign(x) = abs(x)/x if x 6= 0. By an abuse of notation, the

vector sgn(ex) = col[sign(exi)].
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then, the closed-loop system (8) with (38) is input-to-state stable from the input eω. Moreover, in the

case that |∆2| ≡ 0, the origin {ex = 0} is globally exponentially stable with u = u∗ and kpx := kpx1.

Proof. The total time derivative of

Vc6(ex) :=
1

2
|ex|2 (40)

along the closed-loop trajectories2 yields

V̇c6 ≤ −[R+ kpx] |ex|2 +
[

kM |ρ∗◦| |x|
]

|eω| |ex| (41)

which, in view of (39), implies that

V̇c6 ≤ −[R+ kpx1] |ex|2 +
1

2
|eω|2 (42)

hence, Vc6 is an ISS-Lyapunov function for the stator closed-loop system. The proof of the second

statement follows directly observing that |∆2| ≡ 0 implies that V̇c6 ≤ −[R+ kpx] |ex|2. �

VI. ROBUST CONTROL OF SWITCHED-RELUCTANCE MOTOR

Now we present our main results, we establish global exponential stability for the controlled switched-

reluctance via state feedback. We also establish that the interconnection of the two control loops for the

rotor dynamics and the stator dynamics, remains input-to state stable with respect to external inputs.

Proposition 6.1: Consider the system (1) under the assumptions described in Section II-A in closed

loop with the controller defined by (38), (35) with ρ◦ = ρ∗◦ and (18), (15). Let kpx be given by (39)

where

kpx1 ≥
1

2

[

kM |ρ∗◦| (|x∗|+ |x|)
]2

(ε1 + 2ε3 + 1) (43)

where ε1 and ε3 are small positive constants and let (25) hold. Then, the origin of the closed-loop system

is globally exponentially stable.

Proof. The motor model under the conditions described in Section II-A corresponds to the equations (8)

and (17). Therefore, the closed-loop system corresponds to (19), (20b), (29) and (36). The term ∆1 in

(19b) satisfies 2J∆1 = x⊤K(eρ)x + e⊤xK(ρ∗)x∗ + e⊤xK(ρ∗)x hence, using |K(ρ∗)| ≤ kM |ρ∗◦| we see

that

|∆1| ≤
kM
J

|ρ∗◦| |ex|
[

|x∗|+ |x|
]

. (44)

In view of the latter, (32), (33) and (42), it follows that the total time derivative of Vc :=
∑6

i=1 Vci
satisfies

V̇c ≤ −[k̄d5 − 0.5]e2ω −
[

Nrπ

2ω∗
|ρ∗◦|

(

|ρ∗◦| e−π/Nrω∗ − Nr

2

)

]

|eρ|2 − ε1k̄p4

[

ρ∗⊤J⊤eρ

]2
− ε3

2
ν̃2

−[R+ kpx1] |ex|2 +
kM
J

|ρ∗◦| |ex|
[

|x∗|+ |x|
] (

ε1

∣

∣

∣
ρ∗⊤J⊤eρ

∣

∣

∣
+ |eω|+ ε3 |ν̃|

)

(45)

which, in virtue of the triangle inequality, (43) and provided that kp4, kd5 ≥ 1, implies that

V̇c ≤ −W (ex, eρ, eω, ρ
∗⊤

J
⊤eρ) (46a)

W ≤ k̄d6e
2
ω +

[

R+
1

2
kpx1

]

|ex|2 + ε1k̄p5

[

ρ∗⊤J⊤eρ

]2
+
ε3
4
ν̃2

+

[

Nrπ

2ω∗
|ρ∗◦|

(

|ρ∗◦| e−π/Nrω∗ − Nr

2

)

]

|eρ|2 (46b)

hence, V̇c is negative definite. Global exponential stability follows invoking standard Lyapunov theory.

Now, let vm and vs be bounded external inputs and reconsider (20a) with v = ν̃ +∆1 + vm and let

u = u∗ + vs. Then, from the previous development we obtain

V̇c ≤ W (ex, eρ, eω, ρ
∗⊤

J
⊤eρ) + exvs + vm

(

ε1

[

ρ∗⊤J⊤eρ

]

+ eω − ε3ν̃
)

(47)

That is, Vc qualifies as an ISS Lyapunov function for the closed-loop system with inputs vs, vm. �

2It is considered that solutions are defined in Filippov’s sense.
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VII. SIMULATION RESULTS

We have tested our main result in simulations using SIMULINKTMof MATLABTM. The parameters of

the motors are R = 5, l0 = 0.030H , J = 0.01kg −m2 and Nr = 8. The applied load-torque is constant

and equals 0.1[Nm]. The control gains are fixed to kp = 2000, ki = 5e− 4, kd = 15000 and kpx = 50.

The reference consists in a smooth function which gradually increases from an initial value (here,

0[rad/s]) to the constant desired speed and is defined using the function, which in turn is set up in

50[rad/s].

ω∗(t) =
(

1− e−α(t−T )

1 + e−α(t−T )
+ 1

)(ω∗

f − ω∗

0

2

)

+ ω∗

0. (48)

The initial velocity ω0 is set to 25[rad/s] that is, 50% of initial error with respect to the set-point reference.

The construction of the functions mj is as follows. First, we define θ∗ as a function of ρ∗ i.e.

θ∗(ρ∗) =







β(ρ∗) if ρ∗2 > ρ∗1 > 0
β(ρ∗) + π

4 if ρ∗1 > ρ∗2 > 0 or ρ∗1 > 0 > ρ∗2
β(ρ∗) + π

8 if ρ∗1 < 0
(49)

where β(ρ∗) =
tg−1 (ρ

∗

2/ρ∗

1
)− 2π/Nr

Nr

. Then, θ∗ ∈ [0, 2π/Nr] is used in the construction of the auxiliary

functions m̃+
j (·) and m̃−

j (·),

m̃+
j (θ

∗) =















f(θ∗1) if 0 < θ∗1 ≤ π
3Nr

1 if π
3Nr

< θ∗1 ≤ 2π
3Nr

1− f(θ∗1 − 2π/Nr) if 2π
3Nr

< θ∗1 ≤ π
Nr

0 otherwise

and

m̃−

j (θ
∗) =















f(θ∗j − π
Nr

) if π
Nr

< θ∗1 ≤ 4π
3Nr

1 if 4π
3Nr

< θ∗1 ≤ 5π
3Nr

1− f(θ∗1 − 5π/3Nr) if 5π
3Nr

< θ∗1
0 otherwise

with θ∗1 = θ∗, θ∗2 = θ∗ − 2π/3Nr, θ∗3 = θ∗ + 2π/3Nr. Finally, mj(ρ
∗) is obtained from

mj(ρ
∗) =

{

m̃+
j (θ

∗(ρ∗)) if Td ≥ 0

m̃−

j (θ
∗(ρ∗)) if Td < 0

(50)

in Fig. (2) is noticed that for each j ∈ {1, 2, 3}, m+
j (ρ

∗) = m̃+
j (θ

∗(ρ∗)) is larger than zero only when

Kj(ρ
∗) > 0 and it equals zero when Kj(ρ

∗) < 0. Similarly m−

j (ρ
∗) = m̃−

j (θ
∗(ρ∗)) is larger than zero

only when Kj(ρ
∗) < 0, the last guarantees that it is always possible to compute x∗ as is expressed in

(15). See Figure 2.

The corresponding reference currents are depicted in the zoomed window showed in Figure 3 against

the actual currents and the commutation functions mj along trajectories. The good current tracking

performance as well as the commutation among the three phases of the reference oscillator are clearly

appreciated.

The voltage inputs for the three phases are showed in Figure 4.

Finally, we show the good velocity tracking performance in Figure 5 both for ρ(t) and ω(t). Note that

in both cases the errors eρ(t) converge to zero asymptotically that is, the rotor synchronizes with the

virtual rotor, generated by the reference oscillator.

Simulation results are encouraging to pursue this avenue towards the solution of full-sensorless control

via certainty-equivalence control.
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VIII. CONCLUSIONS

We have presented a control approach to the robust stabilization of the switched-reluctance motor. The

control approach that we presented consists in stabilizing separately the stator and the rotor dynamics.

We have established global exponential stability. In addition, our control scheme has the special feature

of being tailored to be implemented as a certainty-equivalence controller, with a state estimator. The

design of the latter is under current research.
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IX. APPENDIX

A. Properties of the reference oscillator

By design θ∗(0) = 0 therefore θ∗(t) = ω∗t and we have Jρ∗(τ)ρ∗(τ)⊤J⊤ = N2
r |ρ∗◦|2Ψ(τ) where the

matrix

Ψ(τ) :=

[

sin(Nrθ
∗(τ))2 − sin(Nrθ

∗(τ)) cos(Nrθ
∗(τ))

− sin(Nrθ
∗(τ)) cos(Nrθ

∗(τ)) cos(Nrθ
∗(τ))2

]

is periodic with period π/Nrω
∗. Also, we have

∫ t+π/Nrω∗

t
sin(Nrθ

∗(τ))2dτ =
1

Nrω∗

∫ Nrω∗[t+π/Nrω∗]

Nrω∗t
sin(θ∗)2dθ∗

=
1

Nrω∗

[

1

2
θ∗ − 1

4
sin(2θ∗)

] Nrω∗[t+π/Nrω∗]

Nrω∗t

=
π

2Nrω∗
− 1

4Nrω∗
[− sin(2Nrω

∗[t+ π/Nrω
∗])) + sin(2Nrω

∗t)]

=
π

2Nrω∗

while a similar computation yields
∫ t+π/Nrω∗

t
cos(Nrθ

∗(τ))2dτ =

1

Nrω∗

[

1

2
θ∗ +

1

4
sin(2θ∗)

] Nrω∗[t+π/Nrω∗]

Nrω∗t

=
π

2Nrω∗

On the other hand,
∫ t+π/Nrω∗

t
sin(Nrθ

∗(τ)) cos(Nrθ
∗(τ))dτ =

∫ t+π/Nrω∗

t
sin(2Nrω

∗τ)dτ = 0

so finally, we obtain
∫ t+π/Nrω∗

t
Ψ(τ)dτ =

π

2Nrω∗
I. (51)

By the same reasoning we see that the product

ΨJ =

[

− sin(Nrθ
∗) cos(Nrθ

∗) − sin(Nrθ
∗)2

cos(Nrθ
∗)2 sin(Nrθ

∗) cos(Nrθ
∗)

]

Nr

satisfies the following. The matrix

Υ :=

∫ t+π/Nrω∗

t
Ψ(τ)Jdτ =

[

0 −π/2ω∗

π/2ω∗ 0

]

(52)
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hence, it is skew-symmetric and

|Υ| :=
√

λM

(

Υ⊤Υ
)

= π/2ω∗.

B. Proof of Lemma 4.1

The derivative of Vc2 along the trajectories of (20) yields

V̇c2 = ε1

[

−kdeω − kpρ
∗⊤

J
⊤eρ + v

]

ρ∗⊤J⊤eρ

+ε1eωρ̇
∗⊤

J
⊤eρ + ε1eωρ

∗⊤
J
⊤

[

Jρ∗eω + ωJeρ

]

= −ε1kdeωρ∗⊤J⊤eρ − ε1kp

[

ρ∗⊤J⊤eρ

]2
+ ε1vρ

∗⊤J⊤eρ

+ε1eωρ
∗⊤J⊤J⊤eρω

∗ +N2
r ε1 |ρ∗◦|2 e2w + ε1ewρ

∗⊤J⊤Jeρω

= −ε1kp
[

ρ∗⊤J⊤eρ

]2
+N2

r ε1

[

ρ∗⊤eρ + |ρ∗◦|2
]

e2ω

−ε1kd
[

ρ∗⊤J⊤eρ

]

eω + ε1

[

ρ∗⊤J⊤eρ

]

v . (53)

Next, we expose some properties of Vc3. Firstly, note that

Vc3 = −e⊤ρ
[
∫ t+Tc

t
e(t−τ)Ψ(τ)dτ

]

eρN
2
r |ρ∗◦|2

and since Ψ(τ) ≥ 0 and e(t−τ) ≥ e(t−[t+Tc]) we have

Vc3 ≤ −e⊤ρ
[
∫ t+Tc

t
Ψ(τ)dτ

]

eρN
2
r |ρ∗◦|2 e−Tc .

Then, setting Tc = π/Nrω
∗ and using (51) we obtain

Vc3 ≤ −
(

Nrπ

2ω∗
|ρ∗◦|2 e−π/Nrω∗

)

|eρ|2 (54)

in which ρ∗◦ is a design parameter. Furthermore, the total derivative of Vc3 along the trajectories of (20)

satisfies

V̇c3 ≤ −
∫ t+Tc

t
e(t−τ)2e⊤ρ Jρ

∗(τ)ρ∗(τ)⊤J⊤ėρdτ

+
∣

∣

∣
ρ∗(t)⊤J⊤eρ

∣

∣

∣

2
+ Vc3 . (55)

Substituting (20b) in the first term we obtain

−
∫ t+Tc

t
e(t−τ)2e⊤ρ Jρ

∗(τ)ρ∗(τ)⊤J⊤ėρdτ =

−N2
r |ρ∗◦|2

∫ t+Tc

t
e(t−τ)e⊤ρ Ψ(τ)Jρ∗(τ)dτeω

−N2
r |ρ∗◦|2 ωe⊤ρ

(
∫ t+Tc

t
e(t−τ)Ψ(τ)Jdτ

)

eρ . (56)

Set Tc = π/Nrω
∗. Then, we use (52) to see that the first term on the right-hand side of (56) is bounded

by πN2
r |ρ∗◦|3 |eρ| |eω| /2ω∗ while the second term is bounded by

N2
r |ρ∗◦|2 |ω|

∣

∣

∣

∣

∣

e⊤ρ

∫ t+π/Nrω∗

t
Ψ(τ)Jdτeρ

∣

∣

∣

∣

∣

= 0;
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see (52). We conclude that

V̇c3 ≤
∣

∣

∣
ρ∗(t)⊤J⊤eρ

∣

∣

∣

2
−
(

Nrπ

2ω∗
|ρ∗◦|2 e−π/Nrω∗

)

|eρ|2

+
Nrπ

2ω∗
|ρ∗◦|3 |eρ| |eω| . (57)

The last term satisfies

N2
r π

2ω∗
|ρ∗◦|3 |eρ| |eω| ≤

N2
r π

4ω∗
|ρ∗◦|

(

|eρ|2 + |ρ∗◦|4 |eω|2
)

.

Then, recalling that kdi = λikd and kpi = λikp, let

kd1 ≥ N2
r |ρ∗◦|2

(

3ε1 +
π

4ω∗
|ρ∗◦|3

)

(58)

kp1 = 1/ε1 (59)

and

δ1 :=
1

2

[

eω
ρ∗⊤J⊤eρ

] [

kd2 ε1kd
ε1kd ε1kp2

] [

eω
ρ∗⊤J⊤eρ

]

which is non-negative if
kpλ

2
2

kd
≥ ε1 . (60)

Under these conditions, putting together the expressions (22), (53) and (57) we obtain (26).


