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Robust passivity-based control of switched-reluctance motors

We propose a state-feedback controller for switched-reluctance motors as a preliminary step towards the solution of the sensorless control problem (without measurement of rotor variables). We establish global exponential stability. Furthermore, our controller renders the closed-loop system robust to external disturbances that is, input-to-state stable. Although there exist some works on sensorless control of switched-reluctance motors, these consist mainly on ad hoc solutions without theoretical foundation. The few theoretically-validated results in the literature are established under more stringent conditions such as knowledge of the load torque.

I. INTRODUCTION

In view of their many technological advantages such as their absence of permanent magnets or windings in the rotor, switched-reluctance machines are highly reliable and have lower costs than other synchronous motors. These make them particularly attractive in a number of applications such as transportation systems and the boosting industry of electrical vehicles -see [START_REF] Vasquez | Control of a 6/4 switched reluctance motor in a variable speed pumping application[END_REF], [START_REF] Daldaban | A novel linear switched reluctance motor for railway transportation systems[END_REF], [START_REF] Cajander | Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation[END_REF], [START_REF] Faiz | Design of switched reluctance machine for starter/generator of hybrid electric vehicle[END_REF]. However, technological simplicity comes at the cost of model mathematical complexity: due to magnetic saturation, the map flux-current is highly nonlinear; also, the mechanical torque is a nonlinear function of the stator currents and angular positions. Accounting for a few exceptions -see [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF], [START_REF] Hannoun | High performance current control of a switched reluctance machine based on a gain-scheduling pi controller[END_REF], magnetic saturation is commonly neglected in the dynamic model hence, it is assumed that the mapping from flux to current is linear (the inductance depends purely on rotor angles). Even under such simplification, the model of the switched-reluctance motor is a complex nonlinear multivariable system which posses significant challenges to the control theorist and the control practitioner.

In spite of a number of articles on control of switched-reluctance machines via full state feedback - [START_REF] Chen | Implementation of the three-phase switched reluctance machine system for motors and generators[END_REF], [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF], [START_REF] Hannoun | High performance current control of a switched reluctance machine based on a gain-scheduling pi controller[END_REF], [START_REF] Mademlis | Gain-scheduling regulator for high-performance position control of switched reluctance motor drives[END_REF] and partial state-feedback - [START_REF] Gao | Inductance model-based sensorless control of the switched reluctance motor drive at low speed[END_REF], [START_REF] Hossain | Four-quadrant and zero-speed sensorless control of a switched reluctance motor[END_REF], articles including a theoretical analysis are scarce. Certainly the same holds for ad hoc solutions based on methods such as model-predictive control - [START_REF] Peyrl | Model predictive torque control of a switched reluctance motor[END_REF].

As for other electro-mechanical machines, a natural approach is to use two loops in the control. The first to drive the rotor variables (velocity and position) to a desired reference; as a matter of fact, typically only the velocities account as variables of interest to be controlled. A second loop is closed around the stator dynamics via current feedback; the goal is to steer the currents to a regime such that the current drives the rotor velocities to the desired reference. Although appealing, this method is obstructed by the fact that currents enter nonlinearly in the mechanics equations. That is, the rotor dynamics consists in a drift-less system non-affine in the control input. To overcome the difficulty of control implementation, the torque sharing technique is adopted -see [START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF], [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF], [START_REF] Ilic-Spong | Feedback linearizing control of switched reluctance motors[END_REF]. It exploits the physical properties of the machine by 'allocating' the control action through one phase at a time.

In this paper we address the problem of velocity/position control of switched reluctance motors via the approach described above. We use full-state feedback that is, we assume that both velocities and positions as well as currents, are measured. It is also assumed that the load torque is unknown and constant. Although we use full-state measurement, we provide proofs of Lyapunov global exponential stability in closed loop. Also, we establish that the closed-loop system is globally input to state stable with respect to external additive disturbances. Therefore, the controller that we propose constitutes a first step towards control of reluctance drives under more realistic assumptions: partial state feedback, account of magnetic saturation, etc.

The rest of the paper is organized as follows. In the next section we present the dynamic model, we assume that the inductances are functions of the rotor angular positions only. For clarity of exposition, in Section IV we describe the first control loop: for the rotor dynamics; in Section V we present the stator-currents controller and in Section VI we present our main results.

II. THE MOTOR EQUATIONS

A. Problem statement

Considering the experimentally-validated fact that the mutual inductance among stator phases is negligible, a general three-phase dynamic model is given by -cf. [START_REF] Krishnan | Switched Reluctance Motor Drives[END_REF],

ψj (θ, x) + Rx j = u j , j = 1, 2, 3; (1a) J ω = T e (θ, x) -T L (θ, ω) (1b) θ = ω. (1c) 
Equation (1a) corresponds to the stator dynamics and Equations (1b), (1c) describe the rotor's motion.

For each phase j, u j is the voltage applied to the stator terminals, ψ j is the flux linkage and x j is the stator current; x = [x 1 , x 2 , x 3 ] ⊤ . Based on the assumption that the machine operates at relatively low current levels, it is common practice to express the inductance of each phase as a strictly positive Fourier series truncated at the first harmonic that is, the flux is represented by a linear function of the currents:

ψ j (θ, x) = L j (θ)x j where L j (θ) = ℓ 0 -ℓ 1 cos N r θ -(j -1) 2π 3
with ℓ 0 > ℓ 1 > 0 hence, the stator dynamics equation becomes

u j = L j (θ) ẋj + K j (θ)ωx j + Rx j (2) 
where

K j (θ) = ∂L j ∂θ = N r ℓ 1 sin N r θ -(j -1) 2π 3
corresponds to the phase-inductance variation relative to the rotor angular position.

In Equations (1b), (1c) R represents the stator resistance, J corresponds to the total rotor inertia, θ and ω denote the angular position and velocity respectively. The inputs are the mechanical torque of electrical origin, T e and the load torque, T L . Based on the assumption that inductances are decoupled, T e corresponds to the sum of the torques produced by each phase i.e.,

T e = 1 2 3 j=1 K j (θ)x 2 j .
Although the previously-described model is simplified for the purpose of control design and stability analysis, it is adopted in both the electrical-machines and the control research communities -cf. [START_REF] Krishnan | Switched Reluctance Motor Drives[END_REF]. Other models as for instance that used in [START_REF] Gao | Inductance model-based sensorless control of the switched reluctance motor drive at low speed[END_REF], account for variations of ℓ 0 and ℓ 1 depending on the stator currents but does not include theoretical validation the experimental results reported therein. A fully-nonlinear has been used in a few experimental works such as [START_REF] Cheok | A new torque and flux control method for switched reluctance motor drives[END_REF] and [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF] however, the controllers proposed therein use full state-feedback.

The control problem consists in driving the angular velocity ω to a set-point reference ω * . It is assumed that T L is constant and unknown. 1. Illustration of the control approach. A PID controller virtually injected through the variable T d steers ω → ω * -See Section IV. T d is also injected in the form of a reference current x * into the stator control loop and a nonlinear controller ensures current tracking control -see Section V. The systems are feedback interconnected through the nonlinear map Te. The proper definition of the reference model (dashed lines) ensures that the interconnection remains stable in view of a small-gain argument -see Section VI.

III. THE CONTROL APPROACH

Generally speaking, an appealing control approach for electro-mechanical machines is to design a control law for the mechanical part (the rotor) separately from a controller for the electrical part (the stator). The control action on the rotor dynamics enters through the mechanical torque; naturally, the current x may be seen as a virtual control input in (1b). Accordingly, a control law u may be designed for the stator equations (1a) and implemented by applying the corresponding input voltage. The control u must be such that the actual current x tracks a desired reference x * which is viewed as the control law for the rotor equations. See Figure 1.

However appealing, this approach is stymied by two major technical difficulties:

• the rotor equation (1b) is non-affine in the 'control input' x, • θ appears non-linearly.
The first difficulty is addressed in Section III-B via the so-called torque-sharing approach, adapted to the purpose of this paper -cf. [START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF], [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF], [START_REF] Ilic-Spong | Feedback linearizing control of switched reluctance motors[END_REF]. The second presents an obstacle to observer-design and output-feedback control. Although the controller that we present uses full-state feedback, it constitutes a first step towards sensorless control. The approach relies on a modified dynamic model, equivalent to (1b)-(1c), [START_REF] Daldaban | A novel linear switched reluctance motor for railway transportation systems[END_REF] and which is propitious to certainty-equivalence control; this is presented in Section III-A.

A. New coordinates

Following ideas from [START_REF] Ortega | Estimation of rotor position and speed of permanent magnet synchronous motors with guaranteed stability[END_REF] we introduce the function ̺ :

[-π, π] → S a where S a := {(̺ 1 , ̺ 2 ) ∈ R 2 : ̺ 2 1 + ̺ 2 2 = a}, with a ∈ R + . Let ϑ ∈ [-π, π], A > 0 and ̺ 1 := A cos N r [θ + ϑ] (3a) ̺ 2 := A sin N r [θ + ϑ] . (3b) 
Now, if we set ϑ = -θ(0) and for any ρ

• ∈ R + , A := ρ • we see that the solutions of ρ = ωJρ, ρ = [ρ 1 , ρ 2 ] ⊤ , ρ(0) = [ρ • , 0] ⊤ (4) 
where

J = N r 0 -1 1 0 .
satisfy ρ(t) ∈ S ρ• for all t ≥ 0 and are given by ρ(t) = ̺(θ(t)) where θ(t) is solution to (1c) i.e.,

ρ 1 (t) = ρ • cos N r [θ(t) -θ(0)] ρ 2 (t) = ρ • sin N r [θ(t) -θ(0)] .
Furthermore, without loss of generality we consider that θ(0) = 0. Then, the rotor dynamics (1b) takes the form

J ω = T e (ρ, x) -T L (5)
in which T L is constant and it is assumed that the mechanical torque is now expressed as a function of ρ that is,

T e (ρ, x) = 1 2 x ⊤ K(ρ)x (6) 
hence, although T e and T e are different functions T e (ρ(θ), x) and T e (θ, x) represent the same quantity.

The matrix

K(ρ) = ℓ 1 K ′ (ρ) with K ′ (ρ) = N r   ρ 2 0 0 0 1 2 ρ 2 - √ 3ρ 1 0 0 0 1 2 ρ 2 + √ 3ρ 1   . (7) 
In the new coordinates the stator equation becomes

L(ρ) ẋ + K(ρ)ωx + Rx = u (8) 
where

L(ρ) = ℓ 0 I + ℓ 1 L ′ (ρ) and L ′ (ρ) =   -ρ 1 0 0 0 -1 2 ρ 1 + √ 3ρ 2 0 0 0 -1 2 ρ 1 - √ 3ρ 2   . (9) 
It is clear that there exist positive constants ℓ m , ℓ M , k m and k M such that

ℓ m ≤ |L(ρ)| (10a) ℓ M |ρ 1 -ρ 2 | ≥ max {|L(ρ 1 -ρ 2 )| , |L(ρ 1 ) -L(ρ 2 )|} (10b) k M |ρ 1 -ρ 2 | ≥ max {|K(ρ 1 -ρ 2 )| , |K(ρ 1 ) -K(ρ 2 )|} . (10c) 
Thus, under the conditions described in Section II-A, the motor dynamics is defined by Equations ( 4), [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF] and [START_REF] Mademlis | Gain-scheduling regulator for high-performance position control of switched reluctance motor drives[END_REF]. The advantage of the rotor dynamics model ( 4), ( 5) is that it is linear in the new 'position' variables, ρ.

For the purpose of tracking control we introduce a reference oscillator dynamics for (4). Given a desired constant reference ω * , we introduce θ * as the angular position reference for θ that is, θ * = ω * and the reference oscillator dynamics

ρ * = ω * Jρ * , ρ * (0) = [ρ * • , 0] ⊤ (11) 
where the initial condition ρ * • ∈ R + is a free design parameter. The solutions to [START_REF] Peyrl | Model predictive torque control of a switched reluctance motor[END_REF] which define the angular reference trajectories, are

ρ * (t) = ρ * • cos N r [θ * (t) -θ * (0)] sin N r [θ * (t) -θ * (0)] (12) 
where θ * (t) = ω * t + θ * (0) and the initial reference angular position θ * (0) ∈ [-π, π]; without loss of generality we fix θ * (0) = 0. Note that ρ * (t) ∈ S ρ * • for all t ≥ 0.

B. Torque sharing

This technique is used to induce a virtual control input into the mechanical equation [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF]. Ideally, the virtual control input enters through the mechanical torque. That is, given a control law T d , one must solve the equation

ℓ 1 T * e (ρ, x * ) J = T d (13) 
for the current reference x * . Then, Equation ( 5) may be equivalently written as

J ω = JT d -T L + [T e -ℓ 1 T * e ] (14) 
which for control purposes, may be viewed as a nominal system ω = T d -T L /J perturbed by the term

[T e -ℓ 1 T * e ]. By design, T d is such that ω → ω * provided that [T e -ℓ 1 T * e ] ≡ 0 and [T e -ℓ 1 T * e ]
vanishes provided that current reference trajectories x * are asymptotically tracked.

Clearly, the difficulty to solve [START_REF] Ilic-Spong | Feedback linearizing control of switched reluctance motors[END_REF] relies on the fact that T e is quadratic in x * . The torque sharing approach as used in [START_REF] Taylor | Pulse-width modulated control of electromechanical systems[END_REF], [START_REF] Espinosa-Perez | Passivity-based control of switched reluctance motors with nonlinear magnetic circuits[END_REF], [START_REF] Ilic-Spong | Feedback linearizing control of switched reluctance motors[END_REF], exploits the fact that the mechanical torque T e corresponds to the sum of torques due to each phase therefore, we define

T * e = 1 2 K ′ 1 (ρ * )x * 1 2 + K ′ 2 (ρ * )x * 2 2 + K ′ 3 (ρ * )x * 3 2 .
and we solve (13) for x * j to obtain

x * j =      2J ℓ 1 1/2 m j (ρ * )T d K ′ j (ρ * ) 1/2 if K ′ j (ρ * ) = 0 0 otherwise ( 15 
)
where the functions m j ensure that x j exists for any ρ * and T d . That is, depending on the current phase of the reference model, the function m j ensures that the respective signs of the numerator and of the denominator in the previous expression are equal for at least one j ∈ {1, 2, 3}. To that end, we define the sets

Θ + j = ρ * ∈ S ρ * • : K ′ j (ρ * ) ≥ 0 Θ - j = ρ * ∈ S ρ * • : K ′ j (ρ *
) < 0 where the superscripts + and -stand for required positive and negative torque respectively. Accordingly, given T d , we define

m j (ρ * ) = m + j (ρ * ) if T d ≥ 0, m - j (ρ * ) if T d < 0. where m + j (ρ * ) > 0 ∀ρ * ∈ Θ + , m + j (ρ * ) = 0 ∀ρ * ∈ Θ -, m - j (ρ * ) > 0 ∀ρ * ∈ Θ -, m - j (ρ * ) = 0 ∀ρ * ∈ Θ + . Moreover, we impose that 3 j=1 m + j (ρ * ) = 1, 3 j=1 m - j (ρ * ) = 1.
so we have

T d = m 1 (ρ * )T d + m 2 (ρ * )T d + m 3 (ρ * )T d (16) 
and ( 13) holds.

Remark 3.1:

In the previously cited references the torque-sharing technique is implemented using θ instead of ρ * that is, the reference x * j depends on the current phase of the motor and not of the reference model.

For clarity of exposition, we divide the rest of the paper in three parts that are coherent with the control approach described above. First, we discuss the control of the rotor dynamics (design of T d ) then, we present a tracking (x → x * ) control law u for the stator dynamics. Finally, using a small-gain argument we establish that the the interconnection of the two subsystems schematically represented in Figure 1, is exponentially stable.

IV. ROTOR ROBUST STATE-FEEDBACK CONTROL

We present two preliminary results on robust state-feedback control of the rotor dynamics. In the first case, we establish a result of practical stability with respect to the uncompensated constant disturbance induced by the load-torque; in the second case, we add an integrator establish global exponential stability. In both scenarios we recover a property of input-to-state stability with respect to external inputs. This is significant to analyze the stability of the system interconnected with the stator dynamics.

A. Without load compensation

Let ν * = TL J then, the rotor model is given by

ω = T e J -ν * (17a) ρ = ωJρ. (17b) 
Define e ρ := ρ -ρ * and e ω := ω -ω * then, according to the policy described in Section III-B, we pose the state-feedback control law

T d = -k d e ω -k p ρ * ⊤ J ⊤ e ρ + ν + ω * . ( 18 
)
Define further, ν := ν -ν * and add T d -ℓ 1 T * e /J to the right-hand side of Equation (17a). Then, the latter may be rewritten as

ėω = -k d e ω -k p ρ * ⊤ J ⊤ e ρ + ν + ∆ 1 (t, e x , e ρ ) (19a) ∆ 1 (t, e x , e ρ ) = ℓ 1 2J x ⊤ K ′ (e ρ )x -x * ⊤ K ′ (ρ * )x * + x ⊤ K ′ (ρ * )x . (19b) 
Subtracting ( 11) from (17b) and defining v = ∆ 1 + ν, the mechanical error dynamics becomes

ėω = -k d e ω -k p ρ * (t) ⊤ J ⊤ e ρ + v (20a) ėρ = e ω Jρ * (t) + ωJe ρ (20b)
which may be viewed as a non-autonomous periodic system perturbed by the input v. The interest of this observation relies on the following statement.

Proposition 4.1 (GES by state-feedback, no load):

Let v be bounded. Then, the system (20) is inputto-state-stable with respect to the input v and the map v → e ω is output-strictly passive. In addition, in the case that v ≡ 0 the origin (e ρ , e ω ) = (0, 0) of ( 20) is globally exponentially stable. 

Output strict passivity of the map v → e ω follows by integrating on both sides of (22) since V c1 ≥ 0.

The proof of global asymptotic stability under the condition v ≡ 0, follows invoking Lasalle's theorem for periodic systems -see e.g. [START_REF] Vidyasagar | Nonlinear systems analysis[END_REF]Theorem 5.3.79]: note that e w = 0 implies that Vc1 = 0 and the only solution of k p ρ * (t) ⊤ J ⊤ e ρ = 0 for any t, is e ρ = 0 that is, the origin is the largest invariant set contained in { Vc1 = 0}. Global exponential stability is established invoking standard results from adaptive control literature, observing that Jρ * (t) is persistently exciting that is, there exist T c and µ c > 0 such that

t+Tc t Jρ * (τ )ρ * (τ ) ⊤ J ⊤ dτ ≥ µ c I. ( 23 
)
As a matter of fact, (23) holds with

T c = π/N r ω * and µ c = |ρ * • | 2 N 2 r T c /2 -see Appendix IX-A.
Inputto-state stability follows from the following statement. Lemma 4.1: Let ε 1 ∈ (0, 1) be a small parameter to be defined, let i ∈ {1, . . . 6}, λ i ≥ 0 be such that

6 i=1 λ i = 1, k di := λ i k d and kdj := 6 i=j k di ; similarly for k p . Define the functions V c2 , V c3 by V c2 (t, e ω , e ρ ) = ε 1 e ω ρ * (t) ⊤ J ⊤ e ρ (24a) V c3 (t, e ρ ) = -e ⊤ ρ t+Tc t e (t-τ ) Jρ * (τ )ρ * (τ ) ⊤ J ⊤ dτ e ρ . (24b) 
Then, if

|ρ * • | ≥ 1 2
e π/Nrω * (25

)
we have

3 i=1 Vci ≤ -kd3 e 2 ω - N r π 2ω * |ρ * • | |ρ * • | e -π/ω * - N r 2 |e ρ | 2 -ε 1 kp3 ρ * ⊤ J ⊤ e ρ 2 + ε 1 ρ * ⊤ J ⊤ e ρ + e ω v. (26) 
The proof of Lemma 4.1 is included in Appendix IX-B. Input-to-state stability with respect to the input v follows remarking that 3 i=1 V ci is an ISS-Lyapunov function; indeed, it is enough to choose a constant α sufficiently small such that |v| ≤ α |e ω , e ρ | implies that 3 i=1 Vc is negative definite.

B. With compensation of unknown load

Proposition 4.1 establishes global exponential stability for the system without load torque. As a byproduct, the system is robust with respect to additive disturbances such as torque-load uncertainty (ν = const.). By exploiting the passivity of (20) we add a second loop which we close with integral action, to compensate for ν. That is, let the variable ν in (18) be defined by

ν = -k i e ω + ε 1 ρ * ⊤ J ⊤ e ρ , k i > 0, (27) 
then, the e ω + ε 1 ρ * ⊤ J ⊤ e ρ → ν is passive, the passivity and robustness properties of (20) are conserved.

Proposition 4.2 (GES by state-feedback, with load compensation):

The system (20) with v = ν + ∆ 1 is input-to-state-stable with respect to ∆ 1 and the map

∆ 1 → e ω + ε 1 ρ * ⊤ J ⊤ e ρ is output-strictly passive. Moreover, if ∆ 1 ≡ 0 that is if v = ν,
then the origin (e ρ , e ω , ν) = (0, 0, 0) of ( 20) is globally exponentially stable for appropriate values of the gains k p , k d and k i .

Proof. Consider the system (20) with v = ν + ∆ 1 and the function

V c4 (ν) := 1 2k i ν2 . (28) 
The total time derivative of 4 i=1 V ci along the trajectories of (20), and ν = -k i e ω + ε 1 ρ * ⊤ J ⊤ e ρ , k i > 0 (29) satisfies ( 26) with v = ∆ 1 . Integrating the resulting expression of 4 i=1 Vci on both sides, we see that the map ∆ 1 → e ω + ε 1 ρ * ⊤ J ⊤ e ρ is output-strictly passive. Furthermore, if ∆ 1 ≡ 0 global asymptotic stability follows invoking Lasalle's principle, as in the proof of Proposition 4.1.

Now we proceed to show that

5 i=1 V ci with V c5 (e ρ , e ω , ν) := -ε 3 νe ω - 1 2 ε 1 ε 3 k i |e ρ | 2 (30) 
qualifies as an ISS-Lyapunov function. The total time derivative of V c5 along the trajectories generated by ( 20), (29) yields

Vc5 = ε 3 k i e ω + ε 1 ρ * ⊤ J ⊤ e ρ e ω -ε 3 ν2 -ε 3 ν -k d e ω -k p ρ * ⊤ J ⊤ e ρ + ∆ 1 -ε 1 ε 3 k i e ⊤ ρ ωJe ρ + e ω Jρ * . (31) 
Adding Vc4 and the latter to (26), we obtain

5 i=1 Vci ≤ -[ kd4 -ε 3 k i ]e 2 ω - N r π 2ω * |ρ * • | |ρ * • | e -π/Nrω * - N r 2 |e ρ | 2 -ε 1 kp4 ρ * ⊤ J ⊤ e ρ 2 - ε 3 2 ν2 -δ 2 + ∆ 1 ε 1 ρ * ⊤ J ⊤ e ρ + e ω -ε 3 ν (32) 
where we recall (see Lemma 4.1) that kdj = 6 i=j k di , k di = λ i k d (similarly for k p ) and we defined

δ 2 := 1 2   e ω ρ * ⊤ J ⊤ e ρ ν     2k d3 0 ε 3 k d 0 2ε 1 k p3 ε 3 k p ε 3 k d ε 3 k p ε 3     e ω ρ * ⊤ J ⊤ e ρ ν   . Let ε 3 satisfy min k d4 k i , λ 3 k d , ε 1 λ 3 k p ≥ ε 3 (33) 
then, δ 2 ≥ 0 and 5 i=1 V ci is an ISS-Lyapunov function for system (20) with v = ν + ∆ 1 and (29), with respect to the input ∆ 1 . Furthermore, if ∆ 1 ≡ 0, 5 i=1 Vci is bounded by a quadratic negative definite function of the state; global exponential stability follows invoking standard Lyapunov theory.

V. STATOR ROBUST STATE-FEEDBACK CONTROL

In the previous section we established input-to-state stability for the rotor dynamics with respect to inputs ∆ 1 which vanish with e x = x -x * . In this section we focus on the tracking control of the stator dynamics that is, the control goal is to make x → x * where x * := [x * 1 x * 2 x * 3 ] ⊤ and the latter is defined by [START_REF] Cheok | A new torque and flux control method for switched reluctance motor drives[END_REF]. The controller that we propose establishes global exponential stability in the case of perfect velocity tracking (e ω = 0) and input to state stability with respect to external inputs which vanish as e w → 0.

For Equation ( 8) we introduce the control law

u * (t, x) := L(ρ * ) ẋ * + K(ρ * )ω * x + Rx * -k px e x (34) 
where k px is shorthand notation for k px (t, |e x |) and is defined by a continuous function k px : R + ×R + → R + such that k px (t, •) is non-decreasing. Note that ẋ * is a function of time, Ṫd and T d which depend only on measured states and computed quantities. Indeed, defining

σ j (ρ * ) := m j (ρ * ) K ′ j (ρ * ) we have, after (15), ẋ * j =    2J ℓ 1 1/2 [σ j (ρ * )T d ] -1/2 σj T d + σ j Ṫd if K ′ j (ρ * ) = 0 0 otherwise. ( 35 
)
Applying u = u * into [START_REF] Mademlis | Gain-scheduling regulator for high-performance position control of switched reluctance motor drives[END_REF] we see that

L(ρ) ėx + [R + k px ] e x = ∆ 2 (t, e ρ , e x , ẋ * ) (36a) ∆ 2 (t, e ρ , e x , ẋ * ) = -L ′ (e ρ ) ẋ * + K(e ρ )ω * x + K(ρ)e ω x (36b) 
and, from [START_REF] Hossain | Four-quadrant and zero-speed sensorless control of a switched reluctance motor[END_REF] we have

|∆ 2 | ≤ ℓ M | ẋ * | + k M ω * |x| |e ρ | + k M |ρ * • | |x| |e ω | . ( 37 
)
That is, the origin {e x = 0} of the the stator closed-loop system is exponentially stable in the case that the rotor controller achieves perfect velocity tracking. Global exponential stability for (36), implies local input to state stability; the global property is established next.

Proposition 5.1: Let ρ • = ρ * • and let 1 u = u * -ℓ M | ẋ * | + k M ω * |x| |e ρ | sgn(e x ) . (38) 
Assume further that

k px := k px1 + 1 2 k M |ρ * • | |x| 2 , k px1 > 0 (39)
then, the closed-loop system [START_REF] Mademlis | Gain-scheduling regulator for high-performance position control of switched reluctance motor drives[END_REF] with ( 38) is input-to-state stable from the input e ω . Moreover, in the case that |∆ 2 | ≡ 0, the origin {e x = 0} is globally exponentially stable with u = u * and k px := k px1 .

Proof. The total time derivative of

V c6 (e x ) := 1 2 |e x | 2 (40)
along the closed-loop trajectories2 yields

Vc6 ≤ -[R + k px ] |e x | 2 + k M |ρ * • | |x| |e ω | |e x | (41) 
which, in view of (39), implies that

Vc6 ≤ -[R + k px1 ] |e x | 2 + 1 2 |e ω | 2 (42)
hence, V c6 is an ISS-Lyapunov function for the stator closed-loop system. The proof of the second statement follows directly observing that

|∆ 2 | ≡ 0 implies that Vc6 ≤ -[R + k px ] |e x | 2 .

VI. ROBUST CONTROL OF SWITCHED-RELUCTANCE MOTOR

Now we present our main results, we establish global exponential stability for the controlled switchedreluctance via state feedback. We also establish that the interconnection of the two control loops for the rotor dynamics and the stator dynamics, remains input-to state stable with respect to external inputs. Proposition 6.1: Consider the system (1) under the assumptions described in Section II-A in closed loop with the controller defined by ( 38), (35) with ρ • = ρ *

• and ( 18), [START_REF] Cheok | A new torque and flux control method for switched reluctance motor drives[END_REF]. Let k px be given by (39) where

k px1 ≥ 1 2 k M |ρ * • | (|x * | + |x|) 2 (ε 1 + 2ε 3 + 1) (43) 
where ε 1 and ε 3 are small positive constants and let (25) hold. Then, the origin of the closed-loop system is globally exponentially stable.

Proof. The motor model under the conditions described in Section II-A corresponds to the equations ( 8) and [START_REF] Vidyasagar | Nonlinear systems analysis[END_REF]. Therefore, the closed-loop system corresponds to (19), (20b), ( 29) and (36). The term

∆ 1 in (19b) satisfies 2J∆ 1 = x ⊤ K(e ρ )x + e ⊤ x K(ρ * )x * + e ⊤ x K(ρ * )x hence, using |K(ρ * )| ≤ k M |ρ * • | we see that |∆ 1 | ≤ k M J |ρ * • | |e x | |x * | + |x| . (44) 
In view of the latter, (32), (33) and (42), it follows that the total time derivative of V c :=

6 i=1 V ci satisfies Vc ≤ -[ kd5 -0.5]e 2 ω - N r π 2ω * |ρ * • | |ρ * • | e -π/Nrω * - N r 2 |e ρ | 2 -ε 1 kp4 ρ * ⊤ J ⊤ e ρ 2 - ε 3 2 ν2 -[R + k px1 ] |e x | 2 + k M J |ρ * • | |e x | |x * | + |x| ε 1 ρ * ⊤ J ⊤ e ρ + |e ω | + ε 3 |ν| (45) 
which, in virtue of the triangle inequality, (43) and provided that k p4 , k d5 ≥ 1, implies that Vc ≤ -W (e x , e ρ , e ω , ρ * ⊤ J ⊤ e ρ ) (46a)

W ≤ kd6 e 2 ω + R + 1 2 k px1 |e x | 2 + ε 1 kp5 ρ * ⊤ J ⊤ e ρ 2 + ε 3 4 ν2 + N r π 2ω * |ρ * • | |ρ * • | e -π/Nrω * - N r 2 |e ρ | 2 (46b)
hence, Vc is negative definite. Global exponential stability follows invoking standard Lyapunov theory. Now, let v m and v s be bounded external inputs and reconsider (20a) with v = ν + ∆ 1 + v m and let u = u * + v s . Then, from the previous development we obtain

Vc ≤ W (e x , e ρ , e ω , ρ * ⊤ J ⊤ e ρ ) + e x v s + v m ε 1 ρ * ⊤ J ⊤ e ρ + e ω -ε 3 ν (47) 
That is, V c qualifies as an ISS Lyapunov function for the closed-loop system with inputs v s , v m . 

VIII. CONCLUSIONS

We have presented a control approach to the robust stabilization of the switched-reluctance motor. The control approach that we presented consists in stabilizing separately the stator and the rotor dynamics. We have established global exponential stability. In addition, our control scheme has the special feature of being tailored to be implemented as a certainty-equivalence controller, with a state estimator. The design of the latter is under current research. 

IX. APPENDIX

A. Properties of the reference oscillator

  Fig.1. Illustration of the control approach. A PID controller virtually injected through the variable T d steers ω → ω * -See Section IV. T d is also injected in the form of a reference current x * into the stator control loop and a nonlinear controller ensures current tracking control -see Section V. The systems are feedback interconnected through the nonlinear map Te. The proper definition of the reference model (dashed lines) ensures that the interconnection remains stable in view of a small-gain argument -see Section VI.

Proof.2 e 2 ω

 2 Consider the positive definite radially unbounded function V c1 , V c1 (e ω , e ρ ) = 1 + k p |e ρ | 2 (21) whose time derivative along the trajectories of (20) yields Vc1 (e ω , e ρ ) = -k d e 2 ω + e ω v .

Fig. 2 .Fig. 3 . 3 Fig. 4 .Fig. 5 .

 23345 Fig. 2. Construction of functions mj(ρ * )

  By design θ * (0) = 0 therefore θ * (t) = ω * t and we have Jρ * (τ )ρ * (τ) ⊤ J ⊤ = N 2 r |ρ * • | 2 Ψ(τ ) where the matrix Ψ(τ ) := sin(N r θ * (τ )) 2 -sin(N r θ * (τ )) cos(N r θ * (τ )) -sin(N r θ * (τ )) cos(N r θ * (τ )) cos(N r θ * (τ )) 2is periodic with period π/N r ω * . Also, we havet+π/Nrω * t sin(N r θ * (τ )) 2 dτ = 1 N r ω * Nrω * [t+π/Nrω * ] Nrω * t sin(θ * ) 2 dθ * * ) Nrω * [t+π/Nrω * ] Nrω * t = π 2N r ω * -1 4N r ω * [-sin(2N r ω * [t + π/N r ω * ])) + sin(2N r ω * t)] = π 2N r ω *while a similar computation yields t+π/Nrω * t cos(N r θ * (τ )) * ) Nrω * [t+π/Nrω * ] Nrω * t = π 2N r ω * On the other hand, t+π/Nrω * t sin(N r θ * (τ )) cos(N r θ * (τ ))dτ = t+π/Nrω * t sin(2N r ω * τ )dτ = 0 so finally, we obtain t+π/Nrω * t Ψ(τ )dτ = π 2N r ω * I. (51) By the same reasoning we see that the product ΨJ = -sin(N r θ * ) cos(N r θ * ) -sin(N r θ * ) 2 cos(N r θ * ) 2 sin(N r θ * ) cos(N r θ * ) N r satisfies the following. The matrix Υ := t+π/Nrω * t Ψ(τ )Jdτ = 0 -π/2ω * π/2ω * 0 (52)

As usual, the sign function is defined as sign(0) ∈ [-1, 1] and sign(x) = abs(x)/x if x = 0. By an abuse of notation, the vector sgn(ex) = col[sign(exi)].

It is considered that solutions are defined in Filippov's sense.
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VII. SIMULATION RESULTS

We have tested our main result in simulations using SIMULINK TM of MATLAB TM . The parameters of the motors are R = 5, l 0 = 0.030H, J = 0.01kg -m 2 and N r = 8. The applied load-torque is constant and equals 0.1 [Nm]. The control gains are fixed to k p = 2000, k i = 5e -4, k d = 15000 and k px = 50.

The reference consists in a smooth function which gradually increases from an initial value (here, 0[rad/s]) to the constant desired speed and is defined using the function, which in turn is set up in 50[rad/s].

The initial velocity ω 0 is set to 25[rad/s] that is, 50% of initial error with respect to the set-point reference.

The construction of the functions m j is as follows. First, we define θ * as a function of ρ * i.e.

where

. Then, θ * ∈ [0, 2π /Nr] is used in the construction of the auxiliary functions m+ j (•) and m- j (•),

) is larger than zero only when K j (ρ * ) > 0 and it equals zero when K j (ρ * ) < 0. Similarly m - j (ρ * ) = mj (θ * (ρ * )) is larger than zero only when K j (ρ * ) < 0, the last guarantees that it is always possible to compute x * as is expressed in [START_REF] Cheok | A new torque and flux control method for switched reluctance motor drives[END_REF]. See Figure 2.

The corresponding reference currents are depicted in the zoomed window showed in Figure 3 against the actual currents and the commutation functions m j along trajectories. The good current tracking performance as well as the commutation among the three phases of the reference oscillator are clearly appreciated.

The voltage inputs for the three phases are showed in Figure 4.

Finally, we show the good velocity tracking performance in Figure 5 both for ρ(t) and ω(t). Note that in both cases the errors e ρ (t) converge to zero asymptotically that is, the rotor synchronizes with the virtual rotor, generated by the reference oscillator.

Simulation results are encouraging to pursue this avenue towards the solution of full-sensorless control via certainty-equivalence control. hence, it is skew-symmetric and

B. Proof of Lemma 4.1

The derivative of V c2 along the trajectories of (20) yields

Next, we expose some properties of V c3 . Firstly, note that

and since Ψ(τ ) ≥ 0 and e (t-τ ) ≥ e (t-[t+Tc]) we have

Then, setting T c = π/N r ω * and using (51) we obtain

in which ρ * • is a design parameter. Furthermore, the total derivative of V c3 along the trajectories of (20) satisfies

Substituting (20b) in the first term we obtain see (52). We conclude that

The last term satisfies

Then, recalling that k di = λ i k d and k pi = λ i k p , let

and

Under these conditions, putting together the expressions ( 22), ( 53) and (57) we obtain (26).