N
N

N

HAL

open science

Global adaptive linear control of the permanent-magnet
synchronous motor

Antonio Loria, G. Espinosa-Pérez, Sofia Avila-Becerril

» To cite this version:

Antonio Loria, G. Espinosa-Pérez, Sofia Avila-Becerril.
permanent-magnet synchronous motor. International Journal of Adaptive Control and Signal Pro-

cessing, 2014, 28 (10), pp.971-986. 10.1002/acs.2421 . hal-00831451

HAL Id: hal-00831451
https://hal.science/hal-00831451
Submitted on 7 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Global adaptive linear control of the


https://hal.science/hal-00831451
https://hal.archives-ouvertes.fr

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCISSING
Int. J. Adapt. Control Signal Proces2012;00:1-16
Published online in Wiley InterScience (www.intersciemgiey.com). DOI: 10.1002/acs

Global Adaptive Linear Control of the Permanent-Magnet
Synchronous Motor

Antonio Lorig, Gerardo Espinosa—Péfeand Sofia Avila—Becertil

2 CNRS, at LSS-Supelec, 3 Rue Joliot Curie, Gif sur YvettecErdfrmail:l ori a@ ss. supel ec. fr
b FI — UNAM, A.P. 70-256, 04510 México D.F., MEXIC@er ar doe@nam nx, soavbec @nwi | . com

SUMMARY

We contribute with a linear time-varying controller for tipermanent magnet synchronous motor. We
solve the open problem of speed-tracking control by meaguwily stator currents and the rotor angular
positions, under parametric uncertainty. Integral acisamsed to compensate for the effects of the unknown
load-torque and adaptation is employed to estimate theamkrparameters. In the case that parameters
are known (except for the load) we show that the origin of tesed-loop system is uniformly globally
exponentially stable. For the case of unknown parameterprave uniform global asymptotic stability
hence, we establish parametric convergence. In contrasther adaptive control schemes for electrical
machines, we use a reduced-order adaptive controllerethdedaptation is used only for the electrical
dynamics equations. Moreover, not surprisingly, the dedsep system has a structure well-studied in
adaptive-control literature. Performance is illustrated numerical setting. Copyrigl@® 2012 John Wiley

& Sons, Ltd.

Received ...
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1. INTRODUCTION

Control of electrical machines has been deeply studied fooih a practical and from a theoretical
perspective for a long time —se&q, [22]. On one hand, field-oriented control is the preferred
scheme in industrial applications, due to its structureebam nested proportional-integral loops
—[11]. On the other hand, academic contributions which haveebetptured the attention of
practitioners, are those obtained from a passivity-basespegctive 17] and those using feedback
linearization —§]. In [7] the authors present an injection-and-damping-assighewntroller for
the permanent-magnet synchronous motor in Hamiltoniandioates; the control design is carried
out following a procedure designed for general Hamiltorsgatems to which integral action is
added. In 25] the authors use a feedback linearizing controller and,ttiesign a Luenberger-type
observer and apply a certainty-equivalence controllecall) asymptotic stability is established via
Lyapunov's first method. In19] it has been shown that there exists a downward compayibilit
between a passivity-based control for induction motorsitsncbrresponding field-oriented control.
Some proportional-integral control tuning rules for fieldented control of induction motors have
been proposed in4] by exploiting its passivity properties, and if4 a feedback linearization
controller was proposed based on the stability propertfeieta-oriented control of induction
motors. The articleg4] presents a locally exponentially stabilizing controlgthout velocity nor
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2 A.LORIA ET. AL.

position measurements however, it relies on parametrivledge (except for the load torque) and
internal viscous friction.

Control of the permanent-magnet synchronous motor und@mpetric uncertainty and partial
state feedback has also been addressed via a range of conmgplxear control approaches —
see P3, 3] for sensorless schemes arit] §] for adaptive controllers. The authors & [solved a
problem of adaptive control without velocity measuremamis established asymptotic convergence
of tracking errors (for induction motors). Ir8]] an adaptive controller for permanent-magnet
synchronous motors is proposed using measurement of ¢simed positions only. Although in
[8] exponential stability is claimed, it relies on a conditiohpersistency of excitation along the
closed-loop trajectories which is (clearly) impossiblev&ify. Furthermore, as the main proof in
[8] relies on tools forlinear time-varying systems, it is implicitly required that theoskd-loop
trajectories are bounded. Although this is proved and nstiragd, exponential stability can be
established only on compact subsets of the state-spads,thiamay be established that the origin is
globally asymptotically stable and locally exponentiaigble. Since the analysis does not establish
that stability and convergence are uniform in the initiadeis robustness cannot be guaranteed

In this note we solve the speed-tracking problem withoubei®y measurement and under
parametric uncertainty, for permanent-magnet synchrenoators via (adaptive) PID control. Our
controller is composed of two parts conceived separatelyome hand, a PD controller —see
[16], for the rotor dynamics and on the other, a linear time-wagytracking” for the stator current
dynamics. The PD controller consists in a proportional (to the positionogrterm, a derivative
term in which velocities are replaced by approximate déffeiation and integral feedback of
the position errors and the approximate derivative. Thegiratl action, and not adaptive control,
compensates for the effects of the unknown constant tolmpc-

The application of PID control for the permanent-magnet synchronous motor gedie the
structural properties of the machine —mainly passivitgeled, the PD controller forms an outer
control loop which acts on the rotor (the mechanical parhefrnachine). This control law enters
as avirtual input through a reference trajectory purposely designedre of the stator currents.
An inner loop is composed of control laws to drive the statarenis to the appropriate operating
point.

We address two cases: first, with known parameters but unkmmwstant load-torque and
second, with all unknown parameters. In the first case webksiauniform global exponential
stability. In the second we establismiform global asymptotic stability under a persistency of
excitation condition on (a function of) theferencetrajectories and for sufficiently large control
gains (independent of the initial conditions). The techhiools to establish our main results are
tailored for nonlinear time-varying systems —sg€]]in particular, we establish that the unknown
parameters are asymptotically estimated if and only if tiheemhentioned persistency-of-excitation
condition holds.

We emphasize that for non-autonomous systems the unifaioilist properties that we establish
guarantee local input to state stability hence, our mainlt®supersede others in the literature by
guaranteeing robustness to bounded additive disturbaRuethermore, using converse Lyapunov
functions, our main results may be extended to address thsoidess problem via certainty-
equivalence output feedback. Last but not least, our cheitso(PID control for the mechanical
variables and linear time-varying for the electrical parg comparably much simpler than others
in the literature.

The rest of the paper is organized as follows. In the follgisection we formulate the problem
and discuss its solution, under the assumption that thergdeas (except load torque) are known;
a formal statement is made in SectiBnThen, this result is extended to the case of unknown
parameters in Sectioh Numerical simulations are presented in Sectiowe conclude with some
remarks in SectioB.

TThis is a drawback encountered in numerous articles on MBdérence Adaptive Control (MRAC) where classic
linear systems theory is inappropriately used to analyzdimear systems. The readers are invited to 86fpr further
discussions.

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces®012)
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GLOBAL ADAPTIVE LINEAR CONTROL OF PMSM 3

2. PROBLEM FORMULATION AND ITS SOLUTION

2.1. The model

Consider the well-knowraq model of the non—salient permanent-magnet synchronousrmot
[5, 21],

L% = —Ri—wdJo—wILi+U
Jo = ny®i,— 7L
6 = w

wherei = [ig, i,] " andU = [u1, us] " are the stator currents and voltages respectivedyydw are
the mechanical (position and speed) variabfess the load torquel is the proper inductance of
the stator windingsRk corresponds to the stator resistantés the magnetic field/ is the moment
of inertia andnr,, is the number of pole pairs and

0 -1 1
=[]
For the purpose of control design and analysis we introdveesstater € R*, z = [z1, 22, 23, 74]
with [z1, 2] = i, 25 = w, x4 = 0 and the parameters

B
L — Ja - Ni .
Then,
L1 = —Rxy+ Lxoxs+ up (1a)
ij‘g = 7Rl‘2 - Ll'11'3 - q)lﬂd + usg (1b)
e (1c)
g g

j;‘4 = I3 (1d)

Given any rotor angular velocity referenag : R>o — R, twice differentiable, bounded and
with bounded derivatives (almost everywhere), the corgodl is to design a dynamic position-
feedback controller for the syster) (with measurable statés; , 2o, z4] " and unknown (constant)
perturbationr, such that

Jim 1= 25) =0

and Lyapunov stability is ensured.

2.2. ldeal state-feedback control

The control design method is reminiscent of backsteppimgrog it also exploits the structure of
the model {) and the natural properties of the motpassivityin particular. Firstly, we regard,
as a virtual control input to Equatiori€) and introduce the PD controller for the mechanical
dynamics {c), (1d). The PFD controller in closed loop with the rotor dynamics definesaagive
map. Then, we design a tracking controller, u) for the electrical dynamicise., Equations 18
and (Lb).

For clarity of exposition we depart from adeal control scheme that could be used if all the
parameters were known and the velocities were availabte freasurement. Although these are
restrictive conditions whickve do not assuméo hold in our main statements, by describing such
scenario we identify the difficulties that arise in the comtef angular-position feedback control
and parametric uncertainty.

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces®012)
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4 A.LORIA ET. AL.

Consider Equationsl€), (1d) and let us regard; as a virtual control input. Let

7y = 2424y (22)
ag g
R — 7kp€4 — kdeg, kp, kg >0 (Zb)

wherez} is the velocity reference, heng¢ = z3; let the tracking errors be definedgs= z; — .
Usingz, = ez + o5 in (1¢) and subtracting; = =% from (1d) we obtain
1

;ég = —k:pe4 — kqges + ea (33.)

e4 = e (3b)

whose origin is globally exponentially stable for any pivsit,, and k4, provided thate; = 0.
Moreover, this system is input to state stable from the impaind defines an output-strictly-passive
mape; + e3. In other wordsy} stabilizes (c), (1d) at the equilibrium x4 = 2} andzz = 3.

With this in mind, we proceed to design the second part of timéroller, in order to steer; — 0
asymptotically. Under ideal conditions (parameter knalgkeand state measurement feedback) this
is achieved via the control laws

uj = Rax}+ Li} — Lasxh — kler, ki >0 (4a)
Ozl + Lryxl + Rl + Lis — khea, kb >0 (4b)

*
Ug

with =} as in Q&) andz} being a continuously differentiable function, given asrehce forz;;
typically, 23 is chosen constant. Under these conditions the closedeleafrical system is

Léy — Laxses + Req + kll(il = 0 (53.)
Lég + LSC1€3 + (1)63 + R€2 + k/2€2 = 0. (Sb)

The interest of these equations relies in their structuogice that, defining:12 := [e; es] ", the
previous equations have the form

€19 = Aelg -+ B(eg)elg + Ces (6)

where the poles oft depend on the control gaii$ andk’, hence it may be easily rendered Hurwitz,
B(es) is a skew-symmetric matrix such thaf0) = 0 andC depends om} andz3. Therefore, using
the quadratic Lyapunov functidn = |e;2|?> one may easily establish global exponential stability for

élg = A€12 —+ B((ig)elg.

Furthermore, provided that' in (6) is bounded, exponential stability ef, = 0 is conserved if
es — 0 exponentially. The latter may be established invoking otstpjection arguments —seé][

In addition to this, input-to-state stability of)with input e; may be established using Lyapunov
theory. Thus, stability of the origin of the overall closkedp equations3), (5) follows invoking
small-gain arguments. The proof of these claims follows esrallary of our results, presented in
Section3 below.

Besides the stability properties that it ensures, the otlatr (2)—(4) is attractive due to its
simplicity; note that the right-hand side of)(corresponds to a simple Proportional Derivative
controller with load compensation and a feedforward termilevthe control laws4) are linear
time-varying and ensure tracking control for the statorenirdynamics with referenes;. However,
simplicity comes at the price of conservatism; on one hasrdhie mechanical parg) the controller
requires the exact value of load-torque as well as velociasurements. On the other hand, to
computeus in (48) one requires the time derivative @f in (23). In the next section we relax these
conservative assumptions and present a modification oftdte-feedback controller previously
discussed. The controller is of PID type and the velocitieseplaced with approximate derivatives.

tNote that the definition af is of little importance in regards to the control objective.

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces®012)
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GLOBAL ADAPTIVE LINEAR CONTROL OF PMSM 5

2.3. Position—feedback control with unknown load—torque

Inspired by the ideal structur@)(we redefine the virtual rotor controller as
Ty = V+ 7 + v3 (78)
vy = 7kp€4 — kdﬂ, kp, kq > 0. (7b)

As before,vs is of Proportional “Derivative” type except for the fact ttihe unavailable velocity
x3 is replaced by the variabl&éwhich is the output of the approximate-differentiationgiilt

de = —alge+ beys) (8a)
9 = q.+bey, a,b>0 (8b)

whose output) satisfies _
¥ = —ad + bes . )

The effect of the load-torque, that is the constant pertioha;, /o in (1), is compensated for by
integral action that isy in (78) is defined as

U= —k,‘(64 - 19) (10)

wherek; is a constant positive gain. Thus, the uncertainty in thd-toaque can be coped with by
modifying the current reference.

With the redefinition of the reference the stator control laws4§ would remain unchanged if
not because the new definitionef, in (78), implies that

i = [0+ =2 + akad] — (ky + bka)es (11)

where (recalling that the load-torque is assumed constamintroduced> = v — 7, /o. From here,

it is clear thati; may not be part of:; since it depends on the unmeasurable velocity er@rs
Therefore, in the control implementation we shall only usefirst three terms in brackets on the
right-hand-side of11), that is, let

uy = ®zi+ Lrixh + Raly + v + p — kheo (12a)

p = L[i+ 23 4 aky] (12b)
o

vy = —e(eq —10). (12c¢)

The role ofvy shall become clear from the proof; it corresponds to a Lyaptnedesign term —see
[10] which is added to enhance negative semi-definiteness dfirties derivative of a Lyapunov
function candidate —see next section.

Remark 2.1

It is important to stress that contrary to other works in therdture, we do not use adaptive
control to estimate the constant load-torque. The cortro#lies on the much simpler approach,
commonly used in control practice, of compensating theupleation via integral action. The fact

that velocities are replaced by dirty derivatives, recpiitteat the Proportional Integral controller
involves integration of angular positioagand filter outputs). For simplicity, we use a unique gain

for both integrators. Sed § for an analysis of the PD controller from a passivity viewpoint.

3. PPD CONTROL WITH KNOWN PARAMETERS

Proposition 3.1

Consider the systeni) in closed loop withu; = u}, us = u}, given by Equations4@), (12), (7),
(8) and (L0). The origin of the closed-loop system with state= [e; ez e3e49 7] T, is uniformly
globally exponentially stable, for sufficiently large gsin O

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Procesg012)
Prepared usingacsauth.cls DOI: 10.1002/acs



6 A.LORIA ET. AL.

The proof is established in three essential steps. Firgdyjerive the closed-loop equations then,
we introduce a Lyapunov function and finally, we evaluatdarm integrability conditions of the
trajectories, which lead to the conclusion of exponentibiiity. More precisely, according t@0,
Lemma 3] uniform global exponential stability is equivelemthe existence of constants ¢, > 0,

p € [1, 00) such that for alk, € R>o, z, € R", all solutionsz(-, t., =) satisfy the

uniform L., bound: sup;>¢, [#(t)] < erfzol; (13a)

. . + 1/p
uniform £, bound: (hmHoo ft |x(t)|p> < eolwo)- (13b)

Note that the previous conditions are reminiscent of bodndss angb-integrability, commonly
used in adaptive control to establish (using Barbalatsna) convergencedo zero. The bounds
(13) are more conservative since they are uniform in the inttrabs and have linear growth in
the normalized initial states however, they implyiform global exponential stabilitywhich clearly
is a much stronger property than convergence. The esseribe pfoof consists in verifying the
Inequalities {3) for ¢(t).

3.1. The closed-loop equations

From (L1) we see thap = L [i5 + (k, + bkq)es]. Using this in (28 anduj (as defined in the latter)
in (1b) we obtain

Léy = —kiep+ Lages; ki =ki +R (14)
Lég = —koeo + Aez+v9; ko = k?é + R (15)
A = L(kp —+ bkd) — (q) + LCEl) (16)

The introduction ofA is motivated by the possibility of writing the equations asaminale;o—
dynamics perturbed by the ‘input3, as done in Sectioh.2
On the other hand, the dynamics equation for the rotor spaede written as

which is equivalent to

lég =ey+U— kp€4 — kg0 . (17)
ag
Furthermore, we define
ok
z = U- ey O<ki<exl (18)
Bo— k- (19)
g
so that
1. ,
—e3 = ey —kpea—kal +2 (20)
ag
z = —k?i(€4 - 19) - %63. (21)

Letz = [e1, ea, €3, eq, ¥, 2] ; note that stability of z = 0} is equivalent to that of¢ = 0}. Thus,
in the sequel we seek to establigts) for the trajectories generated by Equatiohd)( (15), (20),
(21) andéy = es.

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces012)
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GLOBAL ADAPTIVE LINEAR CONTROL OF PMSM 7

3.2. Stability analysis

Consider the following functions which are proposed aftéi,[

L
no= S+ (22a)
_ 1 3 12 kago € o
Vo = 2<U+kpe4+bz9 +kiz (22b)
1
Vs = —ceg(es — ), ekl (22¢)
g
V = Vi+Va+Vs. (22d)
We establish thal’ is positive definite and its derivative is negative semidtfin
3.2.1. Positivity of’. Using the triangle inequality we see that
1
—205(e§+ei+ﬂ2) <Va< e (e5+ef+0%) (23)

therefore, given any control gains, there always existsrstemtl > ¢ > 0 and for sucte, there
exist positive reals:;, as such that the functiol” satisfies

|z < V(z) < aglz|* Vo e RC. (24)

3.2.2. Negativity of/. The total time derivative of; along the trajectories ofL@), (15) yields

V= —kie? + Lageies — kpea + Aeges + vgea; (25)
the derivative ofi; is given by
. kda 2
Vo = eses — Tﬂ —ez(eg — V) (26)
where we used, = e3. Finally, the derivative o5 satisfies
o haa o eV 5 cky
Vs = 2V T 5, +e(eg — 9)(z + e2)
T &b 0 _ea
19 2 / ; €3
5 |es 0 ek, e(ky, —ka) | |e,
a a
0] |- ey —ka) ka(G-2)| LY
where we used’ := b — 1. The matrix above is positive semidefinite if
kda a2 (k;) - kd)Q
ra® > [ T S S T
> e [ong+ 24 B2 @

which holds for sufficiently small values ef Note, from (L8), that this restricts the choice bf but
not of the other control gains. Next, we ude() to see that, under the conditia®, the total time
derivative ofVV satisfies

. 1 kqa eb’
Vo< - {kle% + koe2 + 7192 - %eg + ekje}
1 €1 T kl 0 L$2 €1
e| [0 k@] e (28)
es Lxo (A+1) % es

Copyright© 2012 John Wiley & Sons, Ltd.
Prepared usingacsauth.cls
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8 A.LORIA ET. AL.

The matrix in the expression above is positive semidefinitpbsitive values of all the control gains
and if k1kaoeb’ > 20(A + 1)2k; + 20 L%ko22, which holds if
koeh! > do(A+1)? (29a)
ket > 4doL’x2. (29b)
Note that the expressions above impose thaand k, depend on measurable states hence, these

may be chosen as strictly positive functionsrgfandz; respectively.
We conclude that there exists a constant> 0 such that, defining " := [e1, ea, e3, €4, V],

Viz) < —azly? <0 VzecRS (30)

That is, V' is negative semidefinite and the origin of the systém= 0}, is uniformly globally
stablei.e., the solutions are uniformly globally bounded and the arigiLyapunov stable —se8][
It is left to show uniform global exponential convergencétaf error trajectories.

Remark 3.1

Note thatV is negative semidefinite. One may not invoke Lasalle’s fpiecbecause the system is
non-autonomous. Now3() implies thaty € £, and all signals are bounded. From this, it follows
from Barbalat's lemma thaj(t) — 0. However, on one hand, this argumentation does not lead to
the convergence of hence of the integrator variabie On the other, from Babrbalat's lemma, the
convergence may not be guaranteed to be uniform in the imitiatiitions hence our purpose to
verify the uniform bounds in1(3).

3.2.3. Uniform global exponential stabilitf'o complete the proof we show that the conditioh3) (
hold. From B0) we see that

V(z(t)) < —asly(t,to,z0)|> <0 Vito € Rsg, 2o € RO

which is equivalent to

V@m>Wﬂm»S%1WMaMxm%sx@ﬂ%

hence, in view of the positivity and boundednes$’ofsee p4), we have
arle(t)? < V(a(t)) < V(a(t)) < asfzol®. (31)

It follows that for allt > ¢, > 0 and allz, € RS

t
[ ot s < 221 32)
to
()| < cilwo] e i= Z—i (33)

s0 (L339 holds. It is left to find a uniformC, bound onz(t). For this, consider the function

Vi= Lo, (34)

g

Its total time derivative along the closed-loop trajeastyields

Vi= 2 a(en — kab) — Kies) — %eg(—kji(&l ) By (35)

which after the triangle inequality, satisfies
Vi < =22+ 3 [ + olyf?] (36)
Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces®012)
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GLOBAL ADAPTIVE LINEAR CONTROL OF PMSM 9

for an appropriate but innocuous choicejofntegrating on both sides a8§) along the trajectories,
from ¢, to ¢ we obtain

2e3(t)z(t) — 2e3(to)z(to) < —a/t 2(s)%ds + a/t Sly(s)|ds . (37)

Now, even though they are of indefinite sign, the terms onéfienland side of the inequality are
bounded by2|z,|? hence, using3d2) we obtain
! 5
/ 2(s)2ds < [ﬂ + 20} 202 Vit >to > 0. (38)
to a3

Uniform global exponential stability follows fron8g), (33) and @8) since the conditionsl@) are
satisfied.

Remark 3.2

It may be showed that the functidn + e,V is a strict Lyapunov function for the closed-loop
system with a negative definite derivative (foy < 1). However, this may be established under
further restrictions on the control gains hence, it is beyioerest in this paper.

Remark 3.3Robustness)

The property of uniform global exponential stability cahibe overestimated. It implies (local)
Input to State Stability that is, under the presence of ikegt small additive disturbances, one
recovers asymptotic stability of a residual compact setsghgize” depends on the disturbances’
magnitudes. In particular, consider the case of slowlyivayload torques; say;, = 7; + A7z (¢)
wherer; is constant and\r;, is bounded with continuous and bounded first derivative. Then
simple inspection shows that the closed-loop system tdleefotm

&= F(t,x) +d(t) (39)

wherei = F(t,z) corresponds to the closed-loop dynamité)( (15), (20), (21) and @), and the
disturbancel(t) consists in termar;, (¢) and A7, (t) which enter in equations ), (20) and @1).
From Propositior8.1and converse Lyapunov theory we deduce tB8)is input to state stable with
inputd.

4. CONTROL UNDER PARAMETRIC UNCERTAINTY

Now we relax the assumption th&t L, ® ando(J, n,) are known and we introduce an adaptive
control law to estimate onling?, L and ®. We establish a necessary and sufficient condition for
these parameters to be estimated. In addition, we showtlibatdntroller is robust with respect
to the uncertainty om. In the case that the reference accelerati§ns piece-wise constant, we
establish uniform global asymptotic stability for the aadéclosed-loop system. The proof follows
from the analysis in Sectiof and using familiar arguments based on persistency of dxuita
to conclude parametric convergence. However, we stressripertance of using technical tools
tailored fornonlinearsystems —se&[)], as opposed to classical adaptive control systems theory f
linear systems.

Letd; =L, 0, =R, 03 =®, 0, =1/c and 9 = [0, 6, 63]T. We denote by the estimate of
and the estimation errors y= 6 — 6. Then, Equationsl) become

0121 = —boxy + 01073 + Uy (40a)

912&2 = 79212 — 911‘11‘3 — 93%5 + usg (40b)

94£t3 = X2 — T—L (40C)
(o2

86, is not estimated online but is dealt with separately, heheal&finition of9 and the explicit appearance of

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces012)
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10 A.LORIA ET. AL.

and we introduce the certainty-equivalence adaptive otiair

uy = 7@1%21‘3 —+ éQlEl —+ éll"{ — kiep (4la)
Uy = é3l‘§ + 91x1m§ + égxg — koés + éla + V9 (41b)
6 = —qUen, ~>0 (41c)
Whereég = X9 — .f;, €1 1= [61, ég]—r,
&5 = il 4vtus, 0,=0 (42a)
= —k; (64 — 19) + kqa? (42b)

o7 7 —xoxy w1 0O (42¢)
' o+ ey xo 25|

Note that%; =0+ 03 =a— (kp + kqb)es sincef, =0 andg} is (piece-wise) constant.

Furthermore, we remark that in contrast to other adaptimérobschemes for electrical machines,
we use a reduced-order adaptive controller. Indeed, atitaptes used only for the electrical
dynamics equations. To obtain the closed-loop equatiorregmonding to the electrical dynamics,
let ¢ = [Lases Aes+vo]' and Ko :=diagk; ko] where the latter are functions of the state,
according to 29) and (L6). Then, using41) and ¢2) we obtain

- e T ) )

Not surprisingly, forp = 0, the previous systend8) has the familiar structure of model-reference-
adaptive control systems. The analysis of Equatié8) (vith » = 0 is standard routine under
the following observations: i = 0 the system reduces to that studied in the previous section
otherwise, Barbalat's lemma and standard signal-chaaiggments lead to the conclusion that
e12 — 0. Moreover, persistency of excitation @ may be invoked to conclude thét— 0. See
for instance 2, 8]. Finally, a converse Lyapunov function for the system witk- 0 might be used
to analyze the perturbed dynamids).

The simplicity of such argumentation hides several techrfedéacies which lead to wrong
conclusions. Firstly, for notational simplicity is written in @2¢) without arguments however,
we emphasize thalt : R>, x RS — R3*2 j.e, itis a function of time through the functiomns— =7,

t = z and their derivatives, as well as of the stéte= [e; é2 e3 e4 ¥ 2] 7. More precisely, in place
of zo one must read, + &3 wherez} is a function of the closed-loop stage Correspondingly, one
must reack; + z7(¢) in place ofz,, etc. Therefore, invoking standard results aslfoear systems
—such as those ifi], requires to impose persistency of excitationlof, & (¢)) that is, along closed-
loop trajectories ef[23, 2, 6]. Not only this is un-necessary but clearly impossible tafydor all

t. Moreover, such reasoning may only lead to non-unifornaetivity which in turn, invalidates the
invocation of converse Lyapunov theorems. To overcomeetd@culties, we shall use the tools
reported in R0], tailored for nonlinear-time-varying systems.

At this point we introduce the dynamics corresponding to thir variables; this may be
computed as follows. We replage = é; + 25 in (1¢) and use42g to obtain

&m:@+@%+y+m7%i&@

and we redefine* := 7, /0 — (é4 — 04)@% where i} is (piece-wise) constant hence, sous.
Therefore,

94é3 :é2+l~/+’05
which is exactly of the form(7) and therefore, leads t@Q) with the only difference laying in the
redefinition ofv* hence, ok. In other words, the additional uncertairtty= 6, — 6, only changes
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the equilibrium of the:-dynamics part of the closed-loop system. The latter is

94é3 0 7]{;) 7k7d 1 €3 ég
€4 _ 1 0 0 0 |es 0
b1 T b 0 —a of|v|T]o (44)
z —k?i/E —k?i k’i 0 z 0

in which it is clear that the control gains may be chosen gmpaitely to ensure that the matrix
above is Hurwitz.

The system44) corresponds to the tracking control dynamics for the meidahvariables, under
the action of the virtual contrat’. The absence of a term involving parametric uncertaintyti) (
(as it might be expected) comes on one hand from the fact taahase to maintaify constant and
4% is assumed piece-wise constant and on the other hand, leecagssompensated for by integral
action. Note that by replacing with e,, system 44) also corresponds to the closed-loop equations
(20), (22) and @) hence, in the case th&t = 0, the origin is exponentially stable for suitable values
of the control gains; also, the dynamics is input to statelstaith inputé,.

Thus, the overall closed-loop systedB), (44) may be regarded as the feedback interconnection
of two input-to-state stable systems and uniform globahgsgtic stability of the origin of43),
(44) may be inferred invoking a small-gain argument. This sien@tionale hides the difficulty
that ¢ in (43) depends on all of; and not only on the “mechanical” variables; in turn, this
imposes the challenge of actually constructing a strictpyeov function for the overall system
—see [2, 13]. Instead, in order to show that the origin of the closedsl@ystem is uniformly
globally asymptotically stable, we follow a direct but rigas method of proof which relies on
[20, Proposition 3]. The latter is an output-injection statetfen nonlinear systems, analogous
to the well-known output-injection lemma for linear adaptisystems €f. [1]. In words, the
output-injection lemma inl] establishes that uniform complete observability is ifeatr under
an output injection provided that the output isdn. Its nonlinear “counterpart”,20, Proposition
3], establishes that uniform global asymptotic stabil#yirivariant under (a uniformly,) output
injection.

Proposition 4.1

Let t — 27 andt — 23 be given bounded reference trajectories. kgtbe twice continuously
differentiable with bounded derivatives and let be piece-wise continuous with piece-wise
constant. Consider the systes?) in closed loop with the adaptive controlletl), (42). Let o,,,

om, Ly and @y, be known constants such thate [0,,, 0], Ly > L and @, > ®. Then, all
tracking errorsey, eq, e3, e4, 7 andd converge to zero asymptotically provided the control gains
(dependent ow,,,, oar, Las and®,,) are sufficiently large. Furthermore, defife: Rs>g xR —
RSXQ as

oy (t) —oa3(t) xi(t) 0O

1 (t)a3(t) 5 x3(t)
then, the origin of the closed loop system is uniformly glhbasymptotically stable iind only if
there exisfu > 0 andT > 0 such that

U(t,0)" = [

t+T
M(t) := / U(s,1)¥(s,1) ds > pZ Vit >0. (45)
t

Proof of Proposition4.1: To apply 0, Proposition 3] we start by establishing uniform global
stability hence, uniform boundedness of all trajectoties ¢ where¢ = [¢] 67]T. Following the
developments of Sectidhwe see that the total derivative of

V(E) = V(E) + %W

along the trajectories ofi@), (44) yieldsV (&) = V(&,) whereV (¢,) is upper-bounded by the right-
hand side ofZ8) with e, replaced by,. Define

Anr = Lar(kp + bkq) + (Par + Laslxq]),
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and let 9) and @7) hold with A, in place ofA, with o,,, in (27), o3 in (29) instead ofr and with
Ly in place ofL. Then, similarly to 80) we have

V(fl) S —Oé3|ﬁl)|2 S 0, @T = [61 ég €3 €4 19] (46)

hence, uniform global stability of the origin as well as wnih square integrability of,, é, es,
e4 andd follow. Invoking standard signal-chasing arguments whisiolve Barbalat's lemma, one
obtains the convergence @f(t)| to zero.

To establish uniform global asymptotic stability of thegini note that the analysis in Paragraph
3.23) holds,mutatis mutandigor the trajectories of43)—(44) hence, from §2) and @6), there
existsc > 0 such that

/t [€1(s)ds < cléo? Vit >to > 0. (47)
Next, note that the inequaliz)ol idt6) holds if and only if there exist’, ;/ > 0 such that
/HT U(s,0)W(s,8) ds>puZ Vt>0,Y5 €R; (48)
t
this follows from the fact that the choice &tloes not modify the rank a¥/(¢). In what follows we
setd = 25(0) and observe thab(¢, #5(0)) = ¥(¢,0). Moreover,K is a diagonal matrix bounded

from below, say by the constant diagonal matkig; > 0 then, letK/,(¢,&1) := Ki2(t,&1) — K73
so the equationg!@3) may be rewritten as

12| —K3/L @(t,i*(O))T/L €12
T = ey T B e 9
where the output-injection term
.7 ¥ Ki (tag )/L (\P(tag )T - \P(taO)T>/L €12
S ] I A %] o
satisfiesiC; = 0 if & = 0. Indeed, note that there exists> 0 such thaf ¥ (¢,&,)" — ¥(¢,0)7| <

cl& | whileY || < clér|(c+ |€1]) therefore|KCy(t,€)| < c|é1|(c+ |€]). That is, K, is a vanishing
output injection. More precisely, in view ofi§) and @7) we have

t
/ Kr (s, €1(5))2ds < BEDIE? Ve > to >0
to

where 5 : R>y — R is non-decreasing. To invoke&(), Proposition 3] it is only left to show
uniform global asymptotic stability of the origin ofi9), (44) under the condition that; =0 in
(49) andé, = 0 in (44). Note that in this case, the two dynamics are decouplediotmiglobal
asymptotic stability of the origin of4@) follows from the analysis in Sectiod while uniform
global exponential stability of the origin ofi9) with K; = 0 follows invoking standard theorems
on linear time-varying adaptive control systems: obsenee &7 > 0 is constant¥ (¢, &:3(0)) and

U(t,#5(0)) are bounded a.e. and the PE conditidB) (holds. Necessity of the PE condition also
follows. See {]. |

Remark 4.1
We stress that the origin is also uniformly (locally) expotiglly stable; this follows from 70,
Proposition 4] howeveglobal exponential stability under the ) controller seems out of reach,
in view of the output-injection terms which may be seen as mlinear non-globally-Lipschitz
vanishing perturbation. Nonetheless, the robustnessepiep described in Rema#fk3 still hold,
notably for the case that; # 0.

The previous result may be compared with related literatsueh as 2] which establishes
convergence of the tracking errors but al8pwWhere the PE condition on the regressor is imposed
on a regressdr (¢, z(t)) that is, along reference trajectories.

fTwithout loss of generality denotes a generic constant whose value is unimportant.
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5. SIMULATION RESULTS

We have performed some numerical simulations using the peeasreported ing] with the
aim of evaluating the proposed controller and of compartngith one of the existing reported
schemes. We usé& = 3, L =0.006H, ® = 0.33Wb, n, =6 and J = 0.01Kgm?. In order
to work under a more stringent condition than & the damping coefficient is set to zero.
The evaluation consists in imposing a speed referenceratsfiy the signal profile proposed
as a benchmark, by the French Working Grodpmmande des Enfirements Electriques
seehttp://ww2.irccyn. ec-nantes. fr/ CE2/. The desired motor speed starts at zero,
increases with a slope of 5.28¢ until it reaches the value 5.28!, att = 1s. This value is kept
constant untit = 3s when it is increased again, with a slope of 3.6%3, up to 12.8“¢ during 2
seconds. Then, the reference decreases (with a slope éga.and remains at zero for the rest of
the simulation time. The applied load torque is constanteandilsl Nm.

Following field-orientation control ideas, the desiredaeforz; is set to zero while the controller
gains are settb; = 40, ks = 65, k, =5, kq = 10, k; = 0.005, a = 50, b = 50, ¢ = 0.02 andy = 5;
the last one is used when parametric uncertainty is coregiddris assumed that the motor is at
stand-still at the beginning of the simulatiom,, all the motor states are set to zero, and in a similar
way the initial value of the derivative filter statg, the estimated load torque and the parameter
estimates are considered equal to zero. The estimated fealtree unknown parametdy was set
to 6, = 0.50,. Such is the worst-case scenario with respect to the unertéoth for the load
torque and the parameters.

Three different simulations were carried out. The first dhestrates the controller performance
under the conditions stated in Propositi8ri i.e., that all physical parameters except for the
load torque are known. The second is related to Propositibnunder parametric uncertainty. In
this case, in addition to uncertainty on the model paramaetee added00% uncertainty of the
nominal value ofr;, i.e., it was sett& Nm, fromt¢ = 10s tot = 15s. One last simulation illustrates
the robustness property mentioned in Remark by adding a slowly time-varying sinusoidal
perturbation of amplitudeNm and frequency.5H z.

15 T T _ 1xlO
<
—actual speed o O
10 o desired speed | -~ : ‘
0 5 10 15
w . 0.05 : .
3 st e L
= ®_ ' [
8 -0.05 ' :
Q 9 - 0 5 10 15
& S o2 : :
B 0
s ‘ 3 7
0 5 10 15 a-0.2 - -
t[s] @ 0 5 t[s] 10 15
(a) Actual (continuous line) and desired (dashed line) (b) Currents and speed errors
speeds

Figure 1. First scenario: with uncertainty in the load t@&aquly and continuous speed reference

The simulation results for the first scenario (with knowngraeters) are showed in FiguteThe
reference speed profile together with the actual speedmespo Figurel (a), while the currents and
speed error behaviors in Figuig€b). It can be observed the remarkable performance of thB PI
controller. The position erroey, is not showed to avoid graphical saturation and due to tteliat
its behavior is unimportant for achieving the control olijeg; although it must be recognized that
its rate of convergence to zero is considerably slower thahdorresponding to the other errors.

In Figure2(a)we show the required stator voltages. The noticeable spikibe stator variables
are due to sudden changes in the first and second derivatitresreference speed. These spikes are
avoided if a smooth reference is designed or a filter for tfereace is included, but with the aim
at evaluating the controller under stringer conditions,discontinuities are not avoided during this
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control inputs [V]

t[s] 0 é t[s] 1‘0 15

(a) Stator voltages (b) Integral correctionv
Figure 2. First scenario
simulation. In Figure2(b) we depict the integral correctianwhich compensates for the constant

disturbance, /o. As expected, the convergence of this variable to its stssate is very slow due
to the small value of the integral gaisn.

15 5 02
z S VA
© —° _0.2 ;
= — o 5 10 5
£ s -
3 : i
o o
) =% 02 ;
g _ 5 10 5
%) o >
5 o
-5 : : 3 5 ‘ ‘
0 5 t[s] 10 15 0 5 t[s] 10 15

(a) Speed behavior under constant disturbance appear- (b) State errors under constant disturbance
ing att = 10s

Figure 3. Second scenario: full parametric uncertainty ander the effect of an additional disturbance
appearing at = 10s

4 600l %0
~ 20
2 3 w8 error | ORIV S ey B IS S
= ! 05 1 15 4
s |! ‘‘‘‘‘ 92 error <"‘ 2007/ '____,,
5 2r ' —8, error| | o it -’ :
IR , — of 5 10 15
E "
: - 10’/_/_,_,_//
_1 0 L L

0 5 t[s] 10 15 0 5 U] 10 15

(a) Parameter estimation errors under the influence of a  (b) Eigen-values of\/ (¢) defined in 45)
constant disturbance

Figure 4. Second scenario: the unknown parameters areatstiras expected, in view of the persistency of
excitation.

In the second and third scenarios we use the adaptive clentf®l) by filtering the references
using a second order filter of the form

w2

G(S) — n

§2 4+ 2Cwns + w2

wherew,, = 100 while ¢ = 20. The numerical results obtained under uncertainty in bibign Joad
torque and the motor parameters, are showed in Figueesl4. It can be observed in FigufEa)
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the capability of the control scheme to achieve the contbjdative even when, at= 10s, the
constant unknown disturbance in the load-torque is apphstxpected, the transient response at
the beginning of the simulation exhibits some oscillatidne to the error in the parameter values.
This behavior is attenuated by using better values as imtiatitions instead of zero. In Figure
3(b)is depicted the convergence of the state errors to zerojte afothe perturbation. Figuré(a)
shows that the estimation errors converge to zero asyroptiytiand for completeness, in Figure
4(b) we depict the eigenvalues éf (¢) in (45). To induce the necessary excitation we have used
27 (t) := sin(27t). Finally, Figure5(a) shows the speed behavior under the aforementioned time—
varying load torque disturbance. Input-to-state stabitiny be appreciated.

15

—w
w

vy

-0.2

=
o

10.2 10.4 10.6

speed win [rad/s]
(=] ol

5 ‘ ‘
0 5 t[s] 10 15

(a) Speed behavior under time—varying disturbance

Figure 5. Third scenario: the system works under the inflaef@ time-varying disturbance. A steady state
error is appreciated, the controlled system is robust inrtpet-to-state sense

6. CONCLUDING REMARKS

We showed that a position-feedback controller of PID typlvesothe speed tracking control

problem for permanent-magnet synchronous motors everioabe of unknown parameters. From
a practical perspective, besides the remarkable dynamiarpeance achieved by the closed-loop
system, the proposed design avoids the use of (noisy) spmesbrsand does not rely on the
knowledge of the load torque. The controller’s robustnesaldished analytically is also evident
from the numerical simulations.
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