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SUMMARY

We contribute with a linear time-varying controller for thepermanent magnet synchronous motor. We
solve the open problem of speed-tracking control by measuring only stator currents and the rotor angular
positions, under parametric uncertainty. Integral actionis used to compensate for the effects of the unknown
load-torque and adaptation is employed to estimate the unknown parameters. In the case that parameters
are known (except for the load) we show that the origin of the closed-loop system is uniformly globally
exponentially stable. For the case of unknown parameters weprove uniform global asymptotic stability
hence, we establish parametric convergence. In contrast toother adaptive control schemes for electrical
machines, we use a reduced-order adaptive controller. Indeed, adaptation is used only for the electrical
dynamics equations. Moreover, not surprisingly, the closed-loop system has a structure well-studied in
adaptive-control literature. Performance is illustratedin a numerical setting. Copyrightc© 2012 John Wiley
& Sons, Ltd.

Received . . .
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1. INTRODUCTION

Control of electrical machines has been deeply studied bothfrom a practical and from a theoretical
perspective for a long time –see [15], [22]. On one hand, field-oriented control is the preferred
scheme in industrial applications, due to its structure based on nested proportional-integral loops
–[11]. On the other hand, academic contributions which have better captured the attention of
practitioners, are those obtained from a passivity-based perspective [17] and those using feedback
linearization –[5]. In [7] the authors present an injection-and-damping-assignment controller for
the permanent-magnet synchronous motor in Hamiltonian coordinates; the control design is carried
out following a procedure designed for general Hamiltoniansystems to which integral action is
added. In [25] the authors use a feedback linearizing controller and then, design a Luenberger-type
observer and apply a certainty-equivalence controller; (local) asymptotic stability is established via
Lyapunov’s first method. In [19] it has been shown that there exists a downward compatibility
between a passivity-based control for induction motors andits corresponding field-oriented control.
Some proportional-integral control tuning rules for field-oriented control of induction motors have
been proposed in [4] by exploiting its passivity properties, and in [14] a feedback linearization
controller was proposed based on the stability properties of field-oriented control of induction
motors. The article [24] presents a locally exponentially stabilizing controllerwithout velocity nor

∗Correspondence to: FI – UNAM, A.P. 70-256, 04510 México D.F., MEXICO.gerardoe@unam.mx.
†Part of this work was developed during a sabbatical stay of G.Espinosa–Perez at LSS–SUPELEC, France sponsored by
Fondation Supelec. Part of this work was supported by DGAPA–UNAM (IN111211).
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2 A. LORIA ET. AL.

position measurements however, it relies on parametric knowledge (except for the load torque) and
internal viscous friction.

Control of the permanent-magnet synchronous motor under parametric uncertainty and partial
state feedback has also been addressed via a range of complexnonlinear control approaches –
see [23, 3] for sensorless schemes and [2, 8] for adaptive controllers. The authors of [2] solved a
problem of adaptive control without velocity measurementsand established asymptotic convergence
of tracking errors (for induction motors). In [8] an adaptive controller for permanent-magnet
synchronous motors is proposed using measurement of currents and positions only. Although in
[8] exponential stability is claimed, it relies on a conditionof persistency of excitation along the
closed-loop trajectories which is (clearly) impossible toverify. Furthermore, as the main proof in
[8] relies on tools forlinear time-varying systems, it is implicitly required that the closed-loop
trajectories are bounded. Although this is proved and not assumed, exponential stability can be
established only on compact subsets of the state-space thatis, it may be established that the origin is
globally asymptotically stable and locally exponentiallystable. Since the analysis does not establish
that stability and convergence are uniform in the initial times robustness cannot be guaranteed†.

In this note we solve the speed-tracking problem without velocity measurement and under
parametric uncertainty, for permanent-magnet synchronous motors via (adaptive) PID control. Our
controller is composed of two parts conceived separately: on one hand, a PI2D controller –see
[16], for the rotor dynamics and on the other, a linear time-varying “tracking” for the stator current
dynamics. The PI2D controller consists in a proportional (to the position error) term, a derivative
term in which velocities are replaced by approximate differentiation and integral feedback of
the position errors and the approximate derivative. The integral action, and not adaptive control,
compensates for the effects of the unknown constant torque-load.

The application of PI2D control for the permanent-magnet synchronous motor relies on the
structural properties of the machine –mainly passivity. Indeed, the PI2D controller forms an outer
control loop which acts on the rotor (the mechanical part of the machine). This control law enters
as avirtual input through a reference trajectory purposely designed for one of the stator currents.
An inner loop is composed of control laws to drive the stator currents to the appropriate operating
point.

We address two cases: first, with known parameters but unknown constant load-torque and
second, with all unknown parameters. In the first case we establish uniform global exponential
stability. In the second we establishuniform global asymptotic stability under a persistency of
excitation condition on (a function of) thereferencetrajectories and for sufficiently large control
gains (independent of the initial conditions). The technical tools to establish our main results are
tailored for nonlinear time-varying systems –see [20]; in particular, we establish that the unknown
parameters are asymptotically estimated if and only if the aforementioned persistency-of-excitation
condition holds.

We emphasize that for non-autonomous systems the uniform stability properties that we establish
guarantee local input to state stability hence, our main results supersede others in the literature by
guaranteeing robustness to bounded additive disturbances. Furthermore, using converse Lyapunov
functions, our main results may be extended to address the sensorless problem via certainty-
equivalence output feedback. Last but not least, our controllers (PID control for the mechanical
variables and linear time-varying for the electrical part)are comparably much simpler than others
in the literature.

The rest of the paper is organized as follows. In the following section we formulate the problem
and discuss its solution, under the assumption that the parameters (except load torque) are known;
a formal statement is made in Section3. Then, this result is extended to the case of unknown
parameters in Section4. Numerical simulations are presented in Section5. We conclude with some
remarks in Section6.

†This is a drawback encountered in numerous articles on ModelReference Adaptive Control (MRAC) where classic
linear systems theory is inappropriately used to analyze nonlinear systems. The readers are invited to see [20] for further
discussions.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2012)
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GLOBAL ADAPTIVE LINEAR CONTROL OF PMSM 3

2. PROBLEM FORMULATION AND ITS SOLUTION

2.1. The model

Consider the well–knowndq model of the non–salient permanent-magnet synchronous motor –
[5, 21],

L
di

dt
= −Ri− ωΦJ̺− ωJLi+ U

Jω̇ = npΦiq − τ̃L

θ̇ = ω

wherei = [id, iq]
⊤ andU = [u1, u2]

⊤ are the stator currents and voltages respectively,θ andω are
the mechanical (position and speed) variables,τ̃L is the load torque,L is the proper inductance of
the stator windings,R corresponds to the stator resistance,Φ is the magnetic field,J is the moment
of inertia andnp is the number of pole pairs and

J =

[

0 −1
1 0

]

; ̺ =

[

1
0

]

.

For the purpose of control design and analysis we introduce the statex ∈ R
4, x = [x1, x2, x3, x4]

with [x1, x2] = i, x3 = ω, x4 = θ and the parameters

τL =
τ̃L
J
, σ =

npΦ

J
.

Then,

Lẋ1 = −Rx1 + Lx2x3 + u1 (1a)

Lẋ2 = −Rx2 − Lx1x3 − Φx3 + u2 (1b)
ẋ3

σ
= x2 −

τL
σ

(1c)

ẋ4 = x3 (1d)

Given any rotor angular velocity referencex∗
3 : R≥0 → R, twice differentiable, bounded and

with bounded derivatives (almost everywhere), the controlgoal is to design a dynamic position-
feedback controller for the system (1) with measurable states[x1, x2, x4]

⊤ and unknown (constant)
perturbationτL, such that

lim
t→∞

(x3 − x∗
3) = 0

and Lyapunov stability is ensured.

2.2. Ideal state-feedback control

The control design method is reminiscent of backstepping control; it also exploits the structure of
the model (1) and the natural properties of the motor,passivityin particular. Firstly, we regardx2

as a virtual control input to Equation (1c) and introduce the PI2D controller for the mechanical
dynamics (1c), (1d). The PI2D controller in closed loop with the rotor dynamics defines a passive
map. Then, we design a tracking controller(u1, u2) for the electrical dynamicsi.e., Equations (1a)
and (1b).

For clarity of exposition we depart from anideal control scheme that could be used if all the
parameters were known and the velocities were available from measurement. Although these are
restrictive conditions whichwe do not assumeto hold in our main statements, by describing such
scenario we identify the difficulties that arise in the context of angular-position feedback control
and parametric uncertainty.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2012)
Prepared usingacsauth.cls DOI: 10.1002/acs



4 A. LORIA ET. AL.

Consider Equations (1c), (1d) and let us regardx2 as a virtual control input. Let

x∗
2 =

τL
σ

+
ẋ∗
3

σ
+ v3 (2a)

v3 = −kpe4 − kde3, kp, kd > 0 (2b)

wherex∗
3 is the velocity reference, henceẋ∗

4 = x∗
3; let the tracking errors be defined asei = xi − x∗

i .
Usingx2 = e2 + x∗

2 in (1c) and subtractinġx∗
4 = x∗

3 from (1d) we obtain

1

σ
ė3 = −kpe4 − kde3 + e2 (3a)

ė4 = e3 (3b)

whose origin is globally exponentially stable for any positive kp and kd, provided thate2 = 0.
Moreover, this system is input to state stable from the inpute2 and defines an output-strictly-passive
mape2 7→ e3. In other words,x∗

2 stabilizes (1c), (1d) at the equilibrium‡ x4 = x∗
4 andx3 = x∗

3.
With this in mind, we proceed to design the second part of the controller, in order to steere2 → 0

asymptotically. Under ideal conditions (parameter knowledge and state measurement feedback) this
is achieved via the control laws

u∗
1 = Rx∗

1 + Lẋ∗
1 − Lx2x

∗
3 − k′1e1, k′1 > 0 (4a)

u∗
2 = Φx∗

3 + Lx1x
∗
3 +Rx∗

2 + Lẋ∗
2 − k′2e2, k′2 > 0 (4b)

with x∗
2 as in (2a) andx∗

1 being a continuously differentiable function, given as reference forx1;
typically,x∗

1 is chosen constant. Under these conditions the closed-loopelectrical system is

Lė1 − Lx2e3 +Re1 + k′1e1 = 0 (5a)

Lė2 + Lx1e3 +Φe3 +Re2 + k′2e2 = 0. (5b)

The interest of these equations relies in their structure; notice that, defininge12 := [e1 e2]
⊤, the

previous equations have the form

ė12 = Ae12 +B(e3)e12 + Ce3 (6)

where the poles ofA depend on the control gainsk′1 andk′2 hence it may be easily rendered Hurwitz,
B(e3) is a skew-symmetric matrix such thatB(0) = 0 andC depends onx∗

1 andx∗
2. Therefore, using

the quadratic Lyapunov functionV = |e12|
2 one may easily establish global exponential stability for

ė12 = Ae12 +B(e3)e12.

Furthermore, provided thatC in (6) is bounded, exponential stability ofe12 = 0 is conserved if
e3 → 0 exponentially. The latter may be established invoking output-injection arguments –see [1].
In addition to this, input-to-state stability of (6) with input e3 may be established using Lyapunov
theory. Thus, stability of the origin of the overall closed-loop equations (3), (5) follows invoking
small-gain arguments. The proof of these claims follows as acorollary of our results, presented in
Section3 below.

Besides the stability properties that it ensures, the controller (2)–(4) is attractive due to its
simplicity; note that the right-hand side of (2) corresponds to a simple Proportional Derivative
controller with load compensation and a feedforward term, while the control laws (4) are linear
time-varying and ensure tracking control for the stator current dynamics with referencex∗

2. However,
simplicity comes at the price of conservatism; on one hand, for the mechanical part (2) the controller
requires the exact value of load-torque as well as velocity measurements. On the other hand, to
computeu∗

2 in (4a) one requires the time derivative ofx∗
2 in (2a). In the next section we relax these

conservative assumptions and present a modification of the state-feedback controller previously
discussed. The controller is of PID type and the velocities are replaced with approximate derivatives.

‡Note that the definition ofx∗
4

is of little importance in regards to the control objective.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2012)
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GLOBAL ADAPTIVE LINEAR CONTROL OF PMSM 5

2.3. Position–feedback control with unknown load–torque

Inspired by the ideal structure (2) we redefine the virtual rotor controller as

x∗
2 := ν +

ẋ∗
3

σ
+ v3 (7a)

v3 = −kpe4 − kdϑ, kp, kd > 0. (7b)

As before,v3 is of Proportional “Derivative” type except for the fact that the unavailable velocity
x3 is replaced by the variableϑ which is the output of the approximate-differentiation filter,

q̇c = −a(qc + be4) (8a)

ϑ = qc + be4, a, b > 0 (8b)

whose outputϑ satisfies
ϑ̇ = −aϑ+ be3 . (9)

The effect of the load-torque, that is the constant perturbation τL/σ in (1c), is compensated for by
integral action that is,ν in (7a) is defined as

ν̇ = −ki(e4 − ϑ) (10)

whereki is a constant positive gain. Thus, the uncertainty in the load-torque can be coped with by
modifying the current referencex∗

2.
With the redefinition of the referencex∗

2 the stator control laws (4) would remain unchanged if
not because the new definition ofx∗

2, in (7a), implies that

ẋ∗
2 = [ ˙̃ν +

ẍ∗
3

σ
+ akdϑ]− (kp + bkd)e3 (11)

where (recalling that the load-torque is assumed constant)we introduced̃ν = ν − τL/σ. From here,
it is clear thatẋ∗

2 may not be part ofu∗
2 since it depends on the unmeasurable velocity errorse3.

Therefore, in the control implementation we shall only use the first three terms in brackets on the
right-hand-side of (11), that is, let

u∗
2 = Φx∗

3 + Lx1x
∗
3 +Rx∗

2 + v2 + ρ− k′2e2 (12a)

ρ = L[ ˙̃ν +
ẍ∗
3

σ
+ akdϑ] (12b)

v2 = −ε(e4 − ϑ) . (12c)

The role ofv2 shall become clear from the proof; it corresponds to a Lyapunov-redesign term –see
[10] which is added to enhance negative semi-definiteness of thetime derivative of a Lyapunov
function candidate –see next section.

Remark 2.1
It is important to stress that contrary to other works in the literature, we do not use adaptive
control to estimate the constant load-torque. The controller relies on the much simpler approach,
commonly used in control practice, of compensating the perturbation via integral action. The fact
that velocities are replaced by dirty derivatives, requires that the Proportional Integral controller
involves integration of angular positionse4 and filter outputsϑ. For simplicity, we use a unique gain
for both integrators. See [18] for an analysis of the PI2D controller from a passivity viewpoint.

3. PI2D CONTROL WITH KNOWN PARAMETERS

Proposition 3.1
Consider the system (1) in closed loop withu1 = u∗

1, u2 = u∗
2, given by Equations (4a), (12), (7),

(8) and (10). The origin of the closed-loop system with stateς := [e1 e2 e3 e4 ϑ ν̃]⊤, is uniformly
globally exponentially stable, for sufficiently large gains. �

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2012)
Prepared usingacsauth.cls DOI: 10.1002/acs



6 A. LORIA ET. AL.

The proof is established in three essential steps. Firstly,we derive the closed-loop equations then,
we introduce a Lyapunov function and finally, we evaluate uniform integrability conditions of the
trajectories, which lead to the conclusion of exponential stability. More precisely, according to [20,
Lemma 3] uniform global exponential stability is equivalent to the existence of constantsc1, c2 > 0,
p ∈ [1,∞) such that for allt◦ ∈ R≥0, x◦ ∈ R

n, all solutionsx(·, t◦, x◦) satisfy the

uniformL∞ bound: supt≥t◦ |x(t)| ≤ c1|x◦|; (13a)

uniformLp bound:
(

limt→∞

∫ t

t◦
|x(t)|p

)1/p

≤ c2|x◦|. (13b)

Note that the previous conditions are reminiscent of boundedness andp-integrability, commonly
used in adaptive control to establish (using Barbalăt’s lemma)convergenceto zero. The bounds
(13) are more conservative since they are uniform in the initialtimes and have linear growth in
the normalized initial states however, they implyuniform global exponential stabilitywhich clearly
is a much stronger property than convergence. The essence ofthe proof consists in verifying the
Inequalities (13) for ς(t).

3.1. The closed-loop equations

From (11) we see thatρ = L [ẋ∗
2 + (kp + bkd)e3]. Using this in (12a) andu∗

2 (as defined in the latter)
in (1b) we obtain

Lė1 = −k1e1 + Lx2e3; k1 = k′1 +R (14)

Lė2 = −k2e2 +∆e3 + v2; k2 = k′2 +R (15)

∆ = L(kp + bkd)− (Φ + Lx1). (16)

The introduction of∆ is motivated by the possibility of writing the equations as anominale12–
dynamics perturbed by the ‘input’e3, as done in Section2.2.

On the other hand, the dynamics equation for the rotor speed can be written as

1

σ

(

ẋ3 − ẋ∗
3

)

= x2 −
τL
σ

−
ẋ∗
3

σ
+ x∗

2 − x∗
2

which is equivalent to
1

σ
ė3 = e2 + ν̃ − kpe4 − kdϑ . (17)

Furthermore, we define

z = ν̃ −
ki
ε
e4, 0 < ki < ε ≪ 1 (18)

k′p = kp −
ki
ε

(19)

so that

1

σ
ė3 = e2 − k′pe4 − kdϑ+ z (20)

ż = −ki(e4 − ϑ)−
ki
ε
e3. (21)

Let x = [e1, e2, e3, e4, ϑ, z]
⊤; note that stability of{x = 0} is equivalent to that of{ς = 0}. Thus,

in the sequel we seek to establish (13) for the trajectories generated by Equations (14), (15), (20),
(21) andė4 = e3.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2012)
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GLOBAL ADAPTIVE LINEAR CONTROL OF PMSM 7

3.2. Stability analysis

Consider the following functions which are proposed after [16],

V1 =
L

2
(e21 + e22) (22a)

V2 =
1

2

(

e23
σ

+ k′pe
2
4 +

kd
b
ϑ2 +

ε

ki
z2
)

(22b)

V3 =
1

σ
εe3(e4 − ϑ), ε ≪ 1 (22c)

V := V1 + V2 + V3 . (22d)

We establish thatV is positive definite and its derivative is negative semidefinite.

3.2.1. Positivity ofV . Using the triangle inequality we see that

−
1

2σ
ε
(

e23 + e24 + ϑ2
)

≤ V3 ≤
1

2σ
ε
(

e23 + e24 + ϑ2
)

(23)

therefore, given any control gains, there always exists a constant1 ≫ ε > 0 and for suchε, there
exist positive realsα1, α2 such that the functionV satisfies

α1|x|
2 ≤ V (x) ≤ α2|x|

2 ∀x ∈ R
6. (24)

3.2.2. Negativity oḟV . The total time derivative ofV1 along the trajectories of (14), (15) yields

V̇1 = −k1e
2
1 + Lx2e1e3 − k2e

2
2 +∆e2e3 + v2e2; (25)

the derivative ofV2 is given by

V̇2 = e2e3 −
kda

b
ϑ2 − εz(e4 − ϑ) (26)

where we useḋe4 = e3. Finally, the derivative ofV3 satisfies

V̇3 =
kda

2b
ϑ2 −

εb′

2σ
e23 −

εk′p
2

e24 + ε(e4 − ϑ)(z + e2)

−
1

2





e3
e4
ϑ





⊤






εb′

σ 0 − εa
σ

0 εk′p ε(k′p − kd)

− εa
σ ε(k′p − kd) kd

(

a

b
− 2ε

)











e3
e4
ϑ





where we usedb′ := b− 1. The matrix above is positive semidefinite if

kda

b
≥ ε

[

2kd +
a
2

σb′
+

(k′p − kd)
2

k′p

]

(27)

which holds for sufficiently small values ofε. Note, from (18), that this restricts the choice ofki but
not of the other control gains. Next, we use (12c) to see that, under the condition (27), the total time
derivative ofV satisfies

V̇ ≤ −
1

2

[

k1e
2
1 + k2e

2
2 +

kda

b
ϑ2 +

εb′

2σ
e23 + εk′pe

2
4

]

−
1

2





e1
e2
e3





⊤ 



k1 0 Lx2

0 k2 (∆ + 1)

Lx2 (∆ + 1) εb′

σ









e1
e2
e3



 . (28)

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2012)
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8 A. LORIA ET. AL.

The matrix in the expression above is positive semidefinite for positive values of all the control gains
and ifk1k2εb′ ≥ 2σ(∆ + 1)2k1 + 2σL2k2x

2
2, which holds if

k2εb
′ ≥ 4σ(∆ + 1)2 (29a)

k1εb
′ ≥ 4σL2x2

2. (29b)

Note that the expressions above impose thatk1 andk2 depend on measurable states hence, these
may be chosen as strictly positive functions ofx2 andx1 respectively.

We conclude that there exists a constantα3 > 0 such that, definingy⊤ := [e1, e2, e3, e4, ϑ],

V̇ (x) ≤ −α3|y|
2 ≤ 0 ∀x ∈ R

6. (30)

That is,V is negative semidefinite and the origin of the system,{x = 0}, is uniformly globally
stablei.e., the solutions are uniformly globally bounded and the origin is Lyapunov stable –see [9].
It is left to show uniform global exponential convergence ofthe error trajectories.

Remark 3.1
Note thatV̇ is negative semidefinite. One may not invoke Lasalle’s principle because the system is
non-autonomous. Now, (30) implies thaty ∈ L2 and all signals are bounded. From this, it follows
from Barbalăt’s lemma thaty(t) → 0. However, on one hand, this argumentation does not lead to
the convergence ofz hence of the integrator variablẽν. On the other, from Babrbalăt’s lemma, the
convergence may not be guaranteed to be uniform in the initialconditions hence our purpose to
verify the uniform bounds in (13).

3.2.3. Uniform global exponential stability.To complete the proof we show that the conditions (13)
hold. From (30) we see that

V̇ (x(t)) ≤ −α3|y(t, t◦, x◦)|
2 ≤ 0 ∀ t◦ ∈ R≥0, x◦ ∈ R

6

which is equivalent to

V (x(t)) − V (x(t◦)) ≤ −α3

∫ t

t◦

|y(s, t◦, x◦)|
2ds x(t◦) = x◦

hence, in view of the positivity and boundedness ofV –see (24), we have

α1|x(t)|
2 ≤ V (x(t)) ≤ V (x(t◦)) ≤ α2|x◦|

2. (31)

It follows that for allt ≥ t◦ ≥ 0 and allx◦ ∈ R
6

∫ t

t◦

|y(s, t◦, x◦)|
2ds ≤

α2

α3

|x◦|
2 ; (32)

|x(t)| ≤ c1|x◦| c1 :=

√

α2

α1

(33)

so (13a) holds. It is left to find a uniformL2 bound onz(t). For this, consider the function

V4 =
1

σ
e3z . (34)

Its total time derivative along the closed-loop trajectories yields

V̇4 = −z2 − z(e2 − kdϑ− k′pe4)−
1

σ
e3(−ki(e4 − ϑ)−

ki

ε
e3) (35)

which after the triangle inequality, satisfies

V̇4 ≤ −z2 +
1

2

[

z2 + δ|y|2
]

(36)

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2012)
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for an appropriate but innocuous choice ofδ. Integrating on both sides of (36) along the trajectories,
from t◦ to t we obtain

2e3(t)z(t)− 2e3(t◦)z(t◦) ≤ −σ

∫ t

t◦

z(s)2ds+ σ

∫ t

t◦

δ|y(s)|2ds . (37)

Now, even though they are of indefinite sign, the terms on the left hand side of the inequality are
bounded by2|x◦|

2 hence, using (32) we obtain
∫ t

t◦

z(s)2ds ≤
[

δα2

α3

+ 2σ
]

|x◦|
2 ∀ t ≥ t◦ ≥ 0. (38)

Uniform global exponential stability follows from (32), (33) and (38) since the conditions (13) are
satisfied.

Remark 3.2
It may be showed that the functionV + ε2V4 is a strict Lyapunov function for the closed-loop
system with a negative definite derivative (forε2 ≪ 1). However, this may be established under
further restrictions on the control gains hence, it is beyond interest in this paper.

Remark 3.3(Robustness)
The property of uniform global exponential stability cannot be overestimated. It implies (local)
Input to State Stability that is, under the presence of relatively small additive disturbances, one
recovers asymptotic stability of a residual compact set whose “size” depends on the disturbances’
magnitudes. In particular, consider the case of slowly-varying load torques; sayτL = τ∗L +∆τL(t)
whereτ∗L is constant and∆τL is bounded with continuous and bounded first derivative. Then, a
simple inspection shows that the closed-loop system takes the form

ẋ = F (t, x) + d(t) (39)

whereẋ = F (t, x) corresponds to the closed-loop dynamics (14), (15), (20), (21) and (9), and the
disturbanced(t) consists in terms∆τL(t) and∆̇τL(t) which enter in equations (15), (20) and (21).
From Proposition3.1and converse Lyapunov theory we deduce that (39) is input to state stable with
inputd.

4. CONTROL UNDER PARAMETRIC UNCERTAINTY

Now we relax the assumption thatR, L, Φ andσ(J, np) are known and we introduce an adaptive
control law to estimate online,R, L andΦ. We establish a necessary and sufficient condition for
these parameters to be estimated. In addition, we show that the controller is robust with respect
to the uncertainty onσ. In the case that the reference accelerationẋ∗

3 is piece-wise constant, we
establish uniform global asymptotic stability for the overall closed-loop system. The proof follows
from the analysis in Section3 and using familiar arguments based on persistency of excitation,
to conclude parametric convergence. However, we stress theimportance of using technical tools
tailored fornonlinearsystems –see [20], as opposed to classical adaptive control systems theory for
linear systems.

Let θ1 = L, θ2 = R, θ3 = Φ, θ4 = 1/σ and§ θ = [θ1 θ2 θ3]
⊤. We denote bŷθ the estimate ofθ

and the estimation errors bỹθ = θ̂ − θ. Then, Equations (1) become

θ1ẋ1 = −θ2x1 + θ1x2x3 + u1 (40a)

θ1ẋ2 = −θ2x2 − θ1x1x3 − θ3x3 + u2 (40b)

θ4ẋ3 = x2 −
τL
σ

(40c)

ẋ4 = x3 (40d)

§θ4 is not estimated online but is dealt with separately, hence the definition ofθ and the explicit appearance ofσ.
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10 A. LORIA ET. AL.

and we introduce the certainty-equivalence adaptive controller

u1 = −θ̂1x2x
∗
3 + θ̂2x1 + θ̂1ẋ

∗
1 − k1e1 (41a)

u2 = θ̂3x
∗
3 + θ̂1x1x

∗
3 + θ̂2x2 − k2ê2 + θ̂1α+ v2 (41b)

˙̂
θ := −γΨe12, γ > 0 (41c)

whereê2 := x2 − x̂∗
2, e12 := [e1, ê2]

⊤,

x̂∗
2 := θ̂4ẋ

∗
3 + ν + v3,

˙̂
θ4 = 0 (42a)

α := −ki(e4 − ϑ) + kdaϑ (42b)

Ψ⊤ :=

[

ẋ∗
1 − x2x

∗
3 x1 0

α+ x1x
∗
3 x2 x∗

3

]

. (42c)

Note that ˙̂x∗
2 = ν̇ + v̇3 = α− (kp + kdb)e3 since ˙̂

θ4 = 0 andẋ∗
3 is (piece-wise) constant.

Furthermore, we remark that in contrast to other adaptive control schemes for electrical machines,
we use a reduced-order adaptive controller. Indeed, adaptation is used only for the electrical
dynamics equations. To obtain the closed-loop equations corresponding to the electrical dynamics,
let ϕ = [Lx2e3 ∆e3+v2]

⊤ and K12 :=diag[k1 k2] where the latter are functions of the state,
according to (29) and (16). Then, using (41) and (42) we obtain

[

Lė12
˙̃
θ

]

=

[

−K12(t, ξ1) Ψ(t, ξ1)
⊤

−γΨ(t, ξ1) 0

] [

e12
θ̃

]

+

[

ϕ
0

]

. (43)

Not surprisingly, forϕ = 0, the previous system (43) has the familiar structure of model-reference-
adaptive control systems. The analysis of Equation (43) with ϕ = 0 is standard routine under
the following observations: if̃θ = 0 the system reduces to that studied in the previous section
otherwise, Barbalăt’s lemma and standard signal-chasingarguments lead to the conclusion that
e12 → 0. Moreover, persistency of excitation ofΨ may be invoked to conclude thatθ̃ → 0. See
for instance [2, 8]. Finally, a converse Lyapunov function for the system withϕ = 0 might be used
to analyze the perturbed dynamics (43).

The simplicity of such argumentation hides several technical fallacies which lead to wrong
conclusions. Firstly, for notational simplicityΨ is written in (42c) without arguments however,
we emphasize thatΨ : R≥0 ×R

6 → R
3×2 i.e., it is a function of time through the functionst 7→ x∗

1,
t 7→ x∗

3 and their derivatives, as well as of the stateξ1 = [e1 ê2 e3 e4 ϑ z]⊤. More precisely, in place
of x2 one must read̂e2 + x̂∗

2 wherex̂∗
2 is a function of the closed-loop stateξ1. Correspondingly, one

must reade1 + x∗
1(t) in place ofx1, etc. Therefore, invoking standard results as forlinear systems

–such as those in [1], requires to impose persistency of excitation onΨ(t, ξ1(t)) that is, along closed-
loop trajectories –cf.[23, 2, 6]. Not only this is un-necessary but clearly impossible to verify for all
t. Moreover, such reasoning may only lead to non-uniform attractivity which in turn, invalidates the
invocation of converse Lyapunov theorems. To overcome these difficulties, we shall use the tools
reported in [20], tailored for nonlinear-time-varying systems.

At this point we introduce the dynamics corresponding to therotor variables; this may be
computed as follows. We replacex2 = ê2 + x̂∗

2 in (1c) and use (42a) to obtain

θ4ẋ3 = ê2 + θ̂4ẋ
∗
3 + ν + v3 −

τL

σ
± θ4ẋ

∗
3

and we redefineν∗ := τL/σ − (θ̂4 − θ4)ẋ
∗
3 where ẋ∗

3 is (piece-wise) constant hence, so isν∗.
Therefore,

θ4ė3 = ê2 + ν̃ + v3

which is exactly of the form (17) and therefore, leads to (20) with the only difference laying in the
redefinition ofν∗ hence, ofz. In other words, the additional uncertaintyθ̃4 = θ̂4 − θ4 only changes
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the equilibrium of thez-dynamics part of the closed-loop system. The latter is








θ4ė3
ė4
ϑ̇
ż









=









0 −k′p −kd 1
1 0 0 0
b 0 −a 0

−ki/ε −ki ki 0















e3
e4
ϑ
z







+







ê2
0
0
0







(44)

in which it is clear that the control gains may be chosen appropriately to ensure that the matrix
above is Hurwitz.

The system (44) corresponds to the tracking control dynamics for the mechanical variables, under
the action of the virtual control̂x∗

2. The absence of a term involving parametric uncertainty in (44)
(as it might be expected) comes on one hand from the fact that we chose to maintain̂θ4 constant and
ẋ∗
3 is assumed piece-wise constant and on the other hand, becauseν∗ is compensated for by integral

action. Note that by replacinĝe2 with e2, system (44) also corresponds to the closed-loop equations
(20), (21) and (9) hence, in the case thatê2 = 0, the origin is exponentially stable for suitable values
of the control gains; also, the dynamics is input to state stable with inputê2.

Thus, the overall closed-loop system (43), (44) may be regarded as the feedback interconnection
of two input-to-state stable systems and uniform global asymptotic stability of the origin of (43),
(44) may be inferred invoking a small-gain argument. This simple rationale hides the difficulty
that ϕ in (43) depends on all ofξ1 and not only on the “mechanical” variables; in turn, this
imposes the challenge of actually constructing a strict Lyapunov function for the overall system
–see [12, 13]. Instead, in order to show that the origin of the closed-loop system is uniformly
globally asymptotically stable, we follow a direct but rigorous method of proof which relies on
[20, Proposition 3]. The latter is an output-injection statement for nonlinear systems, analogous
to the well-known output-injection lemma for linear adaptive systems –cf. [1]. In words, the
output-injection lemma in [1] establishes that uniform complete observability is invariant under
an output injection provided that the output is inL2. Its nonlinear “counterpart”, [20, Proposition
3], establishes that uniform global asymptotic stability is invariant under (a uniformlyL2) output
injection.

Proposition 4.1
Let t 7→ x∗

1 and t 7→ x∗
3 be given bounded reference trajectories. Letx∗

1 be twice continuously
differentiable with bounded derivatives and letx∗

3 be piece-wise continuous witḣx∗
3 piece-wise

constant. Consider the system (40) in closed loop with the adaptive controller (41), (42). Let σm,
σM , LM andΦM be known constants such thatσ ∈ [σm, σM ], LM ≥ L andΦM ≥ Φ. Then, all
tracking errorse1, e2, e3, e4, ν̃ andϑ converge to zero asymptotically provided the control gains
(dependent onσm, σM , LM andΦM ) are sufficiently large. Furthermore, defineΨ̃ : R≥0 ×R →
R

3×2 as

Ψ̃(t, δ)⊤ =

[

ẋ∗
1(t)− δx∗

3(t) x∗
1(t) 0

x∗
1(t)x

∗
3(t) δ x∗

3(t)

]

then, the origin of the closed loop system is uniformly globally asymptotically stable ifand only if
there existµ > 0 andT > 0 such that

M(t) :=

∫ t+T

t

Ψ̃(s, 1)Ψ̃(s, 1)⊤ds ≥ µI ∀ t ≥ 0. (45)

Proof of Proposition4.1: To apply [20, Proposition 3] we start by establishing uniform global
stability hence, uniform boundedness of all trajectoriest 7→ ξ whereξ = [ξ⊤1 θ̃⊤]⊤. Following the
developments of Section3 we see that the total derivative of

V(ξ) = V (ξ1) +
1

2γ
|θ̃|2

along the trajectories of (43), (44) yieldsV̇(ξ) = V̇ (ξ1) whereV̇ (ξ1) is upper-bounded by the right-
hand side of (28) with e2 replaced bŷe2. Define

∆M = LM (kp + bkd) + (ΦM + LM |x1|),
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and let (29) and (27) hold with∆M in place of∆, with σm in (27), σM in (29) instead ofσ and with
LM in place ofL. Then, similarly to (30) we have

V̇ (ξ1) ≤ −α3|ŷ|
2 ≤ 0, ŷ⊤ := [e1 ê2 e3 e4 ϑ] (46)

hence, uniform global stability of the origin as well as uniform square integrability ofe1, ê2, e3,
e4 andϑ follow. Invoking standard signal-chasing arguments whichinvolve Barbalăt’s lemma, one
obtains the convergence of|ŷ(t)| to zero.

To establish uniform global asymptotic stability of the origin note that the analysis in Paragraph
3.2.3) holds,mutatis mutandisfor the trajectories of (43)–(44) hence, from (32) and (46), there
existsc > 0 such that

∫ t

t◦

|ξ1(s)|
2ds ≤ c|ξ◦|

2 ∀ t ≥ t◦ ≥ 0. (47)

Next, note that the inequality in (45) holds if and only if there existT ′, µ′ > 0 such that
∫ t+T

t

Ψ̃(s, δ)Ψ̃(s, δ)⊤ds ≥ µI ∀ t ≥ 0, ∀δ ∈ R; (48)

this follows from the fact that the choice ofδ does not modify the rank ofM(t). In what follows we
setδ = x̂∗

2(0) and observe that̃Ψ(t, x̂∗
2(0)) = Ψ(t, 0). Moreover,K12 is a diagonal matrix bounded

from below, say by the constant diagonal matrixKm
12 > 0 then, letK ′

12(t, ξ1) := K12(t, ξ1)−Km
12

so the equations (43) may be rewritten as
[

ė12
˙̃θ

]

=

[

−Km
12/L Ψ̃(t, x̂∗

2(0))
⊤/L

−γΨ̃(t, x̂∗
2(0)) 0

] [

e12
θ̃

]

+K1(t, ξ) (49)

where the output-injection term

K1(t, ξ) :=

[

ϕ
0

]

+

[

K ′
12(t, ξ1)/L (Ψ(t, ξ1)

⊤ − Ψ(t, 0)⊤)/L
−γ(Ψ(t, ξ1)

⊤ −Ψ(t, 0)⊤) 0

] [

e12
θ̃

]

(50)

satisfiesK1 ≡ 0 if ξ1 = 0. Indeed, note that there existsc > 0 such that|Ψ(t, ξ1)
⊤ −Ψ(t, 0)⊤| ≤

c|ξ1| while¶ |ϕ| ≤ c|ξ1|(c+ |ξ1|) therefore|K1(t, ξ)| ≤ c|ξ1|(c+ |ξ|). That is,K1 is a vanishing
output injection. More precisely, in view of (46) and (47) we have

∫ t

t◦

|K1(s, ξ1(s))|
2ds ≤ β(|ξ◦|)|ξ◦|

2 ∀ t ≥ t◦ ≥ 0

whereβ : R≥0 → R≥0 is non-decreasing. To invoke [20, Proposition 3] it is only left to show
uniform global asymptotic stability of the origin of (49), (44) under the condition thatK1 ≡ 0 in
(49) and ê2 ≡ 0 in (44). Note that in this case, the two dynamics are decoupled. Uniform global
asymptotic stability of the origin of (44) follows from the analysis in Section3 while uniform
global exponential stability of the origin of (49) with K1 ≡ 0 follows invoking standard theorems
on linear time-varying adaptive control systems: observe thatKm

12 > 0 is constant,̃Ψ(t, x̂∗
2(0)) and

˙̃Ψ(t, x̂∗
2(0)) are bounded a.e. and the PE condition (48) holds. Necessity of the PE condition also

follows. See [1]. 2

Remark 4.1
We stress that the origin is also uniformly (locally) exponentially stable; this follows from [20,
Proposition 4] however,global exponential stability under the PI2D controller seems out of reach,
in view of the output-injection terms which may be seen as a nonlinear non-globally-Lipschitz
vanishing perturbation. Nonetheless, the robustness properties described in Remark3.3 still hold,
notably for the case thaẗx∗

3 6≡ 0.
The previous result may be compared with related literature,such as [2] which establishes

convergence of the tracking errors but also [8] where the PE condition on the regressor is imposed
on a regressorΓ(t, x(t)) that is, along reference trajectories.

¶Without loss of generalityc denotes a generic constant whose value is unimportant.
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5. SIMULATION RESULTS

We have performed some numerical simulations using the parameters reported in [8] with the
aim of evaluating the proposed controller and of comparing it with one of the existing reported
schemes. We useR = 3Ω, L = 0.006H, Φ = 0.33Wb, np = 6 and J = 0.01Kgm2. In order
to work under a more stringent condition than in [8] the damping coefficient is set to zero.
The evaluation consists in imposing a speed reference inspired by the signal profile proposed
as a benchmark, by the French Working GroupCommande des Entraı̂nements Electriques–
seehttp://www2.irccyn.ec-nantes.fr/CE2/. The desired motor speed starts at zero,
increases with a slope of 5.25rads2 until it reaches the value 5.25rads , at t = 1s. This value is kept
constant untilt = 3s when it is increased again, with a slope of 3.675rad

s2 , up to 12.6rads during 2
seconds. Then, the reference decreases (with a slope of 6.3rad

s2 ) and remains at zero for the rest of
the simulation time. The applied load torque is constant andequals1Nm.

Following field-orientation control ideas, the desired value forx1 is set to zero while the controller
gains are set tok1 = 40, k2 = 65, kp = 5, kd = 10, ki = 0.005, a = 50, b = 50, ε = 0.02 andγ = 5;
the last one is used when parametric uncertainty is considered. It is assumed that the motor is at
stand-still at the beginning of the simulation,i.e., all the motor states are set to zero, and in a similar
way the initial value of the derivative filter stateqc, the estimated load torque and the parameter
estimates are considered equal to zero. The estimated valuefor the unknown parameterθ4 was set
to θ̂4 = 0.5θ4. Such is the worst-case scenario with respect to the uncertainty, both for the load
torque and the parameters.

Three different simulations were carried out. The first one illustrates the controller performance
under the conditions stated in Proposition3.1 i.e., that all physical parameters except for the
load torque are known. The second is related to Proposition4.1, under parametric uncertainty. In
this case, in addition to uncertainty on the model parameters, we added400% uncertainty of the
nominal value ofτL i.e., it was set to5Nm, from t = 10s to t = 15s. One last simulation illustrates
the robustness property mentioned in Remark3.3 by adding a slowly time-varying sinusoidal
perturbation of amplitude2Nm and frequency0.5Hz.
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Figure 1. First scenario: with uncertainty in the load torque only and continuous speed reference

The simulation results for the first scenario (with known parameters) are showed in Figure1. The
reference speed profile together with the actual speed response in Figure1(a), while the currents and
speed error behaviors in Figure1(b). It can be observed the remarkable performance of the PI2D
controller. The position error,e4, is not showed to avoid graphical saturation and due to the fact that
its behavior is unimportant for achieving the control objective, although it must be recognized that
its rate of convergence to zero is considerably slower than that corresponding to the other errors.

In Figure2(a)we show the required stator voltages. The noticeable spikesin the stator variables
are due to sudden changes in the first and second derivatives of the reference speed. These spikes are
avoided if a smooth reference is designed or a filter for the reference is included, but with the aim
at evaluating the controller under stringer conditions, the discontinuities are not avoided during this
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Figure 2. First scenario

simulation. In Figure2(b) we depict the integral correctionν which compensates for the constant
disturbanceτL/σ. As expected, the convergence of this variable to its steady-state is very slow due
to the small value of the integral gainki.
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Figure 3. Second scenario: full parametric uncertainty andunder the effect of an additional disturbance
appearing att = 10s
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Figure 4. Second scenario: the unknown parameters are estimated as expected, in view of the persistency of
excitation.

In the second and third scenarios we use the adaptive controller (41) by filtering the referencex∗
3

using a second order filter of the form

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

whereωn = 100 while ζ = 20. The numerical results obtained under uncertainty in both,the load
torque and the motor parameters, are showed in Figures3 and4. It can be observed in Figure3(a)
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the capability of the control scheme to achieve the control objective even when, att = 10s, the
constant unknown disturbance in the load-torque is applied. As expected, the transient response at
the beginning of the simulation exhibits some oscillationsdue to the error in the parameter values.
This behavior is attenuated by using better values as initialconditions instead of zero. In Figure
3(b) is depicted the convergence of the state errors to zero, in spite of the perturbation. Figure4(a)
shows that the estimation errors converge to zero asymptotically and for completeness, in Figure
4(b) we depict the eigenvalues ofM(t) in (45). To induce the necessary excitation we have used
x∗
1(t) := sin(2πt). Finally, Figure5(a) shows the speed behavior under the aforementioned time–

varying load torque disturbance. Input-to-state stability may be appreciated.
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Figure 5. Third scenario: the system works under the influence of a time-varying disturbance. A steady state
error is appreciated, the controlled system is robust in theinput-to-state sense

6. CONCLUDING REMARKS

We showed that a position-feedback controller of PID type solves the speed tracking control
problem for permanent-magnet synchronous motors even in the case of unknown parameters. From
a practical perspective, besides the remarkable dynamic performance achieved by the closed–loop
system, the proposed design avoids the use of (noisy) speed sensor and does not rely on the
knowledge of the load torque. The controller’s robustness established analytically is also evident
from the numerical simulations.
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4. G. W. Chang, G. Espinosa-Pérez, R. Ortega, and E. Mendes.Tuning rules for the PI gains of field–oriented
controllers of induction motors.IEEE Transactions on Industrial Electronics, 47(3):592–602, 2000.

5. J. Chiasson.Modeling and High Performance Control of AC Drives. Wiley, 2005.
6. Jun Hu D. Dawson and T. Burg.Nonlinear control of electric machinery. Marcel Dekker Inc, 1998.
7. A. Donaire and S. Junco. On the addition of integral actionto port-controlled Hamiltonian systems.Automatica,

45(4):1910–1916, 2009.
8. S. Di Gennaro. Adaptive output feedback control of synchronous motors. International Journal of Control,

73:1475–1490, 2000.
9. W. Hahn. Stability of motion. Springer–Verlag, Berlin, 1967.

10. H. Khalil. Nonlinear systems. Prentice Hall, 3rd ed., New York, 2002.
11. W. Leonhard.Control of Electrical Drives. Springer, 2001.
12. A. Lorı́a R. Kelly, and A. Teel. Uniform parametric convergence in the adaptive control of mechanical systems.

European J. of Contr., 11(2):87–100, 2005.
13. M. Malisoff and F. Mazenc.Constructions of Strict Lyapunov Functions. Springer, 2009.
14. R. Marino, S. Peresada, and P. Tomei. Adaptive input-output linearizing control of induction motors.IEEE

Transactions on Automatic Control, 38(2):208–221, 1993.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.(2012)
Prepared usingacsauth.cls DOI: 10.1002/acs



16 A. LORIA ET. AL.

15. J. Meisel.Principles of Electromechanical Energy Conversion. Mc. Graw Hill, 1961.
16. R. Ortega, A. Lorı́a, and R. Kelly. A semiglobally stableoutput feedback PI2D regulator for robot manipulators.

IEEE Transactions on Automatic Control, 40(8):1432–1436, 1995.
17. R. Ortega, A. Lorı́a P. J. Nicklasson, and H. Sira-Ramı́rez. Passivity–based Control of Euler–Lagrange Systems.

Springer-Verlag, London, 1998.
18. R. Ortega, A. Lorı́a P. J. Nicklasson, and H. Sira-Ramı́rez. Passivity-based Control of Euler-Lagrange Systems:

Mechanical, Electrical and Electromechanical Applications. Series Comunications and Control Engineering.
Springer Verlag, London, 1998. ISBN 1-85233-016-3.
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