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Uniform Global Position Feedback Tracking Control

of Mechanical Systems Without Friction

Antonio Loría

Abstract— We establish, as far as we know, the first proof of
uniform global asymptotic stability for a mechanical system
(Euler-Lagrange) in closed loop with a dynamic controller
which makes use only of position measurements. The controller
is fairly simple, it is reminiscent of the so-called Paden-
Panja controller [20] where unavailable generalized velocities
are replaced by approximate differentiation (dirty derivatives).
The controller has been reported previously however, only
semiglobal1 asymptotic stability has been established so far. The
novelty of this paper relies in establishing a global property
as well as in the method of proof, which does not follow
Lyapunov’s. However, the problem of finding a strict control
Lyapunov function remains open.

I. INTRODUCTION

We study Euler-Lagrange systems, given by the equation

D(q)q̈ + C(q, q̇)q̇ + g(q) = u (1)

where q ∈ R
n denotes the generalized positions, q̇ denotes

the generalized velocities, D : R
n → R

n×n corresponds

to the inertia matrix function, C : R
n × R

n → R
n×n

corresponds to the Coriolis and centrifugal forces matrix,

g : R
n → R

n represents the vector of forces which are

derived from the potential energy function U : R → R i.e.,

g(q) := ∂U
∂q

(q) and u ∈ R
n is the vector of control inputs.

All functions are smooth in their arguments.

We revisit the problem of output-feedback tracking con-

trol, which consists in designing a dynamic controller with

output u that makes use of q as the only plant measurement

and ensures that given a smooth bounded trajectory t 7→ qd
the generalized coordinates satisfy

lim
t→∞

q(t) → qd(t), lim
t→∞

q̇(t) → q̇d(t).

More precisely (and of much higher difficulty) the problem

consists in establishing uniform global asymptotic stability of

the origin of the closed-loop system. We put special emphasis

on the qualifier global which implies that the property must

hold for all initial states of the closed-loop system, including

the tracking errors in R
2n as well as the controller’s states.

Not to be confused with terminologies such as “global on the

set X ⊂ R
n” or the weaker property “global in the plant’s

variables and semi-global in the controller’s”.

In the last 30 years or so there have been numerous

attempts to solve the problem mentioned above, as a par-

ticular paradigm of dynamic output feedback control of
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1That is, the domain of attraction may be arbitrarily enlarged by enlarging
the control gains.

nonlinear systems. See for instance [16] and other works

by the same authors on output feedback linearization that

are collected in [15]. In a similar train of thought we find

methods that rely on the ability to perform a coordinate

transformation of system (1) into models that are linear

in the unmeasured velocities. See for instance the work of

G. Besançon –[1], [2] and subsequent references, includ-

ing [13]. However, it has been long recognized that such

transformations are inapplicable to many physical systems;

even to simple two-degrees-of-freedom planar robots with

revolute joints –see [25]. In the article [11] we intend to

circumvent the difficulties encountered in preceding literature

by exploring a change of coordinates which yields a non-

minimal realization. However, the resulting controller (for the

system of augmented dimension) is not implementable via

output-feedback since it must satisfy a mechanical constraint

whose verification requires the knowledge of the unmeasured

velocities. During the preparation of this final manuscript we

became aware of [23] where the author presents a global

result for Hamiltonian systems which relies on a clever but

intricate observer-design and a change of coordinates that

involves the computation of the square root of D(q)−1.

Other works focus on robot tracking control. For instance,

the classic paper [4] presented a proof of uniform asymptotic

stability using Kelly’s controller [8] originally proposed for

set-point control. The author in [4] invokes Tychonov’s

theorem on singularly perturbed systems to show uniform

global asymptotic stability provided that the unique pole of

the dirty-derivatives filter used in [8] is placed at −∞ that

is, the result actually establishes semi-global asymptotic sta-

bility. The same property is achieved via Lyapunov’s direct

method in [12]. Relying on the practically reasonable but

theoretically restrictive assumption that the system possesses

(natural) viscous friction which induces damping, the authors

in [18] established global asymptotic stability. That is, the

model considered is

D(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = u (2)

where F is symmetric positive definite. However, under these

conditions, it is direct to extend the stability property from

semi-global to global, for a number of results in the literature.

To the best of the author’s knowledge it has not been estab-

lished either, that uniform for system (1) global asymptotic

stability via output feedback is out of reach. What is more,

it rather seems that the absence of proof or disproof has

simply eluded the efforts of many researchers throughout



the years and is not due to a structural impediment. This

is investigated in the seminal article [17] where the concept

of unboundedness observability is introduced. Roughly, from

the main results in [17] it may be concluded that the system

dq̈ + cq̇2 = u, q, u ∈ R

cannot be stabilized globally by dynamic output feedback

with output q. The obstacle is that the system does not

possess the unboundedness observability property that is,

the solution [q̇(t), q(t)] may escape to infinity even for

bounded values of q(t). Notice that this is not the case of

Lagrangian systems which possess the structural property

of skew-symmetry of the matrix
˙︷ ︷

D(q) − 2C(q, q̇). Indeed,

uniform global asymptotic stability of systems

d(q)q̈ + c(q)q̇2 + g(q) = u

is established in [10] provided that
˙︷ ︷

d(q) = 2c(q)q̇2. As a

matter of fact this is probably the only article that presents

a dynamic output-feedback controller for Euler-Lagrange

systems together with a strict Lyapunov function albeit for

one-degree-of-freedom systems. The extension to the case

of n-degree-of-freedom systems has not been obtained yet:

attempts include [27], [3] however, the controller from [27]

is guaranteed (in the non-adaptive case, only) to achieve uni-

form asymptotic stability for any system’s initial conditions

provided that the controller’s trajectories lay in a forward-

invariant set. Yet, the result in [27] relies on the restrictive

assumption that the model includes viscous friction (of

known magnitude in the non-adaptive case) i.e., as in (2) and

that the forces derived from potential energy are bounded.

The controller of [3] is not implementable without velocity

measurements.

In summary, to the best of the author’s knowledge es-

tablishing uniform global asymptotic stability remains open;

roughly speaking, there are two types of results addressing

this problem. Those based on Lyapunov’s direct method and

those which intended to exploit structural properties. In the

first case, stability is global only with respect to part of

the states –as in [27] or is semiglobal –as in [4], [12] etc.

In the second case, the structural assumptions needed to

perform convenient changes of coordinates do not hold for

EL systems –cf. [25].

The rest of the paper is organized as follows. For the sake

of clarity we recall basic stability definitions in Section II.

In Section III we present our main result and in Section IV.

II. PRELIMINARIES

To remove all possible ambiguity we start by recalling

a few definitions of stability from [6] and some statements

which are either known or are re-stated in an original manner,

for the purposes of this article. Consider the dynamic system

ẋ = f(t, x), x ∈ R
n, t ∈ R≥0. (3)

We denote by x(t, t◦, x◦) or when the context is clear by

x(t), the solutions of (3) with initial times t◦ ∈ R≥0 and

initial states x◦ ∈ R that is, we have x(t◦, t◦, x◦) = x◦.

Recall that a continuous function α : R≥0 → R≥0 is of

class K if it is strictly increasing and α(0) = 0, a continuous

function σ : R≥0 → R≥0 is of class L if it is strictly

decreasing and σ(s) → 0 as s → ∞; a continuous function

β : R≥0 × R≥0 → R≥0 is of class KL if β(r, ·) ∈ L and

β(·, s) ∈ K; a continuous function α : R≥0 → R≥0 is of

class K∞ if α ∈ K and α(s) → ∞ as s → ∞. We denote

by |·|, the Euclidean norm of vectors (or any other compatible

norm) and the induced norm of matrices.

Definition 1 (Uniform global boundedness) The solutions

of (3) are said to be uniformly globally bounded if there exist

γ ∈ K∞ and c > 0 such that, for all (t◦, x◦) ∈ R≥0 × R
n

each solution x(·, t◦, x◦) satisfies

|x(t, t◦, x◦)| ≤ γ(|x◦|) + c ∀ t ≥ t◦ . (4)

Note that for any r there exists R independent of t◦ such

that |x◦| ≤ r implies that |x(t, t◦, x◦)| ≤ R. This property

is commonly established via auxiliary functions.

Theorem 1 Let V : R≥0 × R
n → R≥0 be continuously

differentiable; α1, α2 be functions of class K∞ and let a ∈ R

and c > 0 be such that

α1(|x|) ≥ V (t, x) ≥ α2(|x|) + a ∀ (t, x) ∈ R≥0 × R
n

V̇ (t, x) :=
∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0 ∀ t ∈ R≥0, x : |x| ≥ c

Then, the solutions of (3) are uniformly globally bounded.

The following definition may be found in [6].

Definition 2 (Uniform global stability) The origin of sys-

tem (3) is said to be uniformly globally stable if there exists

γ ∈ K∞ such that for each (t◦, x◦) ∈ R≥0 × R
n, each

solution x(·, t◦, x◦) satisfies

|x(t, t◦, x◦)| ≤ γ(|x◦|) ∀ t ≥ t◦ . (5)

Note that uniform global stability tantamounts to uniform

stability plus uniform global boundedness.

Theorem 2 Let the conditions of Theorem 1 hold for a =
c = 0. Then, the origin of (3) is uniformly globally stable.

If the conditions hold only in an open neighborhood of the

origin with α1, α2 ∈ K, the latter is uniformly stable.

Proof. The global statement: following the proof of Theorem

1 we have |x(t)| ≤ α−1

2
◦
(

α1(|x◦|)
)

. The local statement is

due to Persidskĭi –[22] and appears in numerous textbooks.

�

Definition 3 (Uniform global attractivity) The origin of

system (3) is said to be uniformly globally attractive if for

each r, σ > 0 there exists T > 0 such that

|x◦| ≤ r =⇒ |x(t, t◦, x◦)| ≤ σ ∀ t ≥ t◦ + T . (6)

Proof. The proof follows along similar lines as [26, Theorem

25, p. 165]. �

Definition 4 (Uniform Global Asymptotic Stability)

The origin of system (3) is said to be uniformly globally

asymptotically stable if it is



• uniformly stable;
• the solutions are uniformly globally bounded;
• the origin is uniformly globally attractive.

It is important to emphasize that only all three conditions

in Definition 4 together, imply the existence of a class KL
function β such that the solutions of (3) satisfy

|x(t)| ≤ β(|x◦| , t− t◦) ∀ t ≥ t◦ ≥ 0

which leads to the construction of converse Lyapunov func-

tions and in turn, implies robustness with respect to external

perturbations but the latter cannot be concluded from uniform

stability plus uniform global attractivity alone. Whence the

importance of uniform global boundedness in nonlinear time-

varying systems.

The following statement establishes uniform global

asymptotic stability using integral conditions, in the spirit

of Barbălat’s lemma however, we recall that the latter may

not be used to establish uniform convergence.

Lemma 1 [21] Let F : R≥0 × R
n → R

n be continuous. If

the origin of the system ẋ = F (t, x) is uniformly globally

stable and there exists a continuous positive definite function

γ : Rn → R≥0 and for each r, ν > 0 there exists βrν > 0,

such that for all (t◦, x◦) ∈ R≥0×Br, all solutions x(·, t◦, x◦)
and all t ≥ t◦,

∫ t

t◦

[γ(x(τ, t◦, x◦))− ν] dτ ≤ βrν (7)

then the origin of the system ẋ = F (t, x) is uniformly

globally asymptotically stable.

III. MAIN RESULT

The following assumptions are fairly standard in the

literature of robot control but are also satisfied by a number

of Euler-Lagrange systems such as electrical and electro-

mechanical –see [19], as well as some marine systems –see

[5]. In particular, these hypotheses hold for robot manipu-

lators composed of revolute joints only or prismatic joints

only.

Assumption 1

1) There exist positive real numbers dm and dM such that

dm ≤ |D(q)| ≤ dM , ∀q ∈ R
n;

2) there exists kc > 0 such that

|C(x, y)| ≤ kc |y| ∀x, y ∈ R
n

C(x, y)z = C(x, z)y ∀x, y, z ∈ R
n;

3) the matrix
˙︷ ︷

D(q)− 2C(q, q̇) is skew symmetric.

Definition 5 (global output-feedback tracking control)

Consider the EL system (1). Suppose that only position

measurements are available and that the properties

enumerated in Assumption 1 hold. Furthermore, assume

that the reference trajectory t 7→ qd is of class C2 and that

there exists kδ > 0 such that

max

{

sup
t≥0

|qd(t)| , sup
t≥0

|q̇d(t)| , sup
t≥0

|q̈d(t)|

}

≤ kδ . (9)

Under these conditions, find a dynamic output-feedback

controller

q̇c = f(t, qc, q) (10a)

u = u(t, qc, q) (10b)

such that the closed-loop system

D(q)q̈ + C(q, q̇)q̇ + g(q) = u(t, qc, q) (11)

q̇c = f(t, qc, q)

has a unique equilibrium at

(qc − q∗c , q̃, ˙̃q) = (0, 0, 0),

q̃ := q − qd(t), ˙̃q := q̇ − q̇d(t)

where q∗c is a solution to (10) with q ≡ qd, which is uniformly

globally asymptotically stable.

Theorem 3 Consider the system (1) under Assumption 1.

Let a, b, kp and kd be positive constants satisfying

min
{

kp

4dM
,

kd

4bdM

}

> 1 (12a)

kb(kd − kckbkδ) > kckδ. (12b)

where kb := a/b and consider the dynamic position-feedback

controller

q̇c = −a(qc + bq̃) (13a)

ϑ = qc + bq̃ (13b)

u = −kpq̃ − kdϑ+D(q)q̈d + C(q, q̇d)q̇d + g(q) (13c)

Then, there exist a∗ and b∗ independent of the initial

conditions such that if a ≥ a∗, b ≥ b∗ the origin {z = 0}
with z := [q̃⊤, ˙̃q⊤, q⊤c ]

⊤ is uniformly globally asymptotically

stable.

We show that there exist minimal values of the filter param-

eters a and b such that, provided that the controller gains

satisfy (12), the origin is uniformly asymptotically stable for

any initial conditions in t◦, [q̃(t◦), ˙̃q(t◦), qc(t◦)] ∈ R≥0 ×
R

3n. However, the proof is (unfortunately) not constructive

in the sense that we do not use Lyapunov’s direct method.

Remark 1 We stress that the controller (13) corresponds

to that from [12] where semiglobal asymptotic stability

is established. The controller is also reminiscent of that

published in [4] whose author relies on singular perturbation

theory to establish that the domain of attraction may be

extended to R
3n provided that a → ∞.

A. Proof of Theorem 3

The closed-loop equations are obtained by replacing u
from (13c) in (1) and subtracting C(q, q̇d)q̇ to both sides

of (13c) hence,

D(q)¨̃q + [C(q, q̇) + C(q, q̇d)] ˙̃q + kpq̃ + kdϑ = 0. (14)

Now, for the purpose of analysis we differentiate (13b) and

use (13a) to obtain

ϑ̇ = −aϑ+ b ˙̃q. (15)



Note that the point [q̃, ˙̃q, ϑ] = [0, 0, 0] is an equilibrium of

(14), (15) and is unique. Then, a direct computation shows

that [q̃, ˙̃q, qc] = [0, 0, 0] is a unique equilibrium of the closed-

loop equations (13a), (14).

The stability proof is divided in three main steps which

establish the three properties listed in Definition 4. Uniform

stability trivially follows using Lyapunov’s first method; it

is also implicitly contained in the proof of the main result

in [12] as well as in the proof of Proposition 2, below.

Proposition 1 below, establishes uniform global boundedness

and Proposition 2 establishes uniform global attractivity.

Proposition 1 The closed-loop trajectories of the system

(1), (13) under the conditions of Theorem 3 are uniformly

globally bounded.

Proof. We analyze the solutions to (14), (15) with initial

conditions t◦ ≥ 0 and x(t◦) = x◦ ∈ Br where r > 0 is

arbitrarily fixed.

First, we consider the Lyapunov function candidate

V1(t, q̃, ˙̃q, ϑ) =
1

2

(

˙̃q⊤D(q̃ + qd(t)) ˙̃q + kp |q̃|
2
+

kd
b
|ϑ|

2

)

(16)

which, under Assumption 1 and in view of (14), (15),

satisfies

V̇1 = −
kda

b
|ϑ|

2
+ ˙̃q⊤C(q, q̇d) ˙̃q

≤ −
kda

b
|ϑ|

2
+ kckδ

∣

∣ ˙̃q
∣

∣

2

. (17)

Next, we introduce the following statement which follows as

a corollary of [7, Theorem 2].

Lemma 2 Consider the differential equation

ϑ̇(t) = −aϑ(t) + ν(t), ν : R≥0 → R
n, t ≥ 0 (18)

where ν(t) is uniformly continuous and bounded. Let τ >
t◦ > 0 and ǫ := 1/a; if ν is uniformly continuous then

lim
ǫ→0

ϑ̇(t) = 0 (19)

uniformly on [τ,∞).

We apply Lemma 2 to the equation (15) with ν(t) = b ˙̃q(t).
To that end, we observe that (17) implies, by Assumption

1.1), that there exists c > 0 such that V̇1 ≤ cV1. Integrating

the latter we obtain that the trajectories are defined on [t◦,∞)
for any t◦ ≥ 0 therefore, for any tmax > t◦ and r there

exists M such that max{|x(t)| , |ẋ(t)|} ≤ M(tmax, r) for all2

t ∈ [t◦, t
max) and all x◦ ∈ Br. Therefore, ν(t) is bounded

and uniformly continuous on [t◦, t
max). Now, the expression

(19) implies that for any ∆ > 0 there exists a∗ such that

a ≥ a∗(∆) ⇒
∣

∣

∣ϑ̇(t)
∣

∣

∣ ≤ ∆, ∀ t ∈ [τ, tmax). (20)

We emphasize that a∗ depends on ∆ only and the latter may

be chosen independent of M (hence, independent of r) since

the rate of convergence of ϑ̇ in (19) is independent of the

bound on ν(t) and is uniform in t –see [7]. Let ∆ = ∆∗

2The inequality for |ẋ(t)| follows under Assumption 1.

generate a∗ via (20). From (15) we see that for any t ∈
[τ, tmax) and a ≥ a∗,

b
∣

∣ ˙̃q(t)
∣

∣ ≤ ∆∗ + a |ϑ(t)| .

Hence, defining v1(t) := V1(t, q̃(t), ˙̃q(t), ϑ(t)) we obtain,

from (17),

v̇1(t) ≤ −
a

b

(

kd −
akckδ
b

)

|ϑ(t)|
2
+ kckδ

∆∗2

b2
(21)

for all t ∈ [τ, tmax) and a ≥ a∗. Let b∗ ≥ ∆∗ then, for any

b ≥ b∗

v̇1(t) ≤ −kb(kd − kckδkb) |ϑ(t)|
2
+ kckδ. (22)

Now, assume that |x(t)| → ∞ as t → ∞ then, either |ϑ(t)|
grows unboundedly as t → ∞ or it remains bounded. In

the first case, since (21) holds for any tmax by continuity

of solutions and since ∆ is independent of tmax we can (if

necessary) extend the interval so that for sufficiently large

t ∈ [τ, tmax) we have |ϑ(t)| ≥ 1 so in view of (12b),

v̇1(t) ≤ 0 which implies that v1(t) is bounded. Since V1

is radially unbounded we also obtain that |x(t)| is uniformly

bounded. Next, assume that |ϑ(t)| is uniformly bounded

for any t then, and either
∣

∣ ˙̃q(t)
∣

∣ or |q̃(t)| (or both) grow

unboundedly. If
∣

∣ ˙̃q(t)
∣

∣ grows unboundedly it follows, in view

of (15), that |ϑ(t)| → ∞ and the previous reasoning applies

again. Finally, consider the case that |x(t)| → ∞ due to

the unbounded growth of |q̃(t)| and consider the function

V2 : R≥0 × R
3n → R≥0,

V2(t, q̃, ˙̃q, ϑ) = (ε1q̃ − ε2ϑ)
⊤D(q̃ + qd(t)) ˙̃q, ε1, ε2 < 1

(23)

which in view of (14) and (15), satisfies

V̇2 =(ε1q̃ − ε2ϑ)
⊤
(

−kdϑ− kpq̃ − [C(q, q̇) + C(q, q̇d)] ˙̃q
)

+ ε1 ˙̃q
⊤D(q) ˙̃q − ε2(−aϑ+ b ˙̃q)⊤D(q) ˙̃q

+ (ε1q̃ − ε2ϑ)
⊤

˙︷ ︷

D(q) ˙̃q. (24)

Let R be an arbitrary positive number and define

Ω :=
{

x ∈ R
3n : q̃ ∈ R

n, max{
∣

∣ ˙̃q
∣

∣ , |ϑ|} ≤ R
}

.

Then,
∣

∣ε1q̃
⊤C(q, q̇)⊤ ˙̃q

∣

∣ ≤ ε1 |q̃|
∣

∣ ˙̃q
∣

∣ kc(R+ kδ) (25a)
∣

∣ε2ϑ
⊤C(q, q̇)⊤ ˙̃q

∣

∣ ≤ ε2 |ϑ|
∣

∣ ˙̃q
∣

∣ kc(R+ kδ) (25b)

–see (9). Under these conditions, note that the right-hand side

of (24) may be upper bounded by a first-order polynomial

of |q̃| with coefficients which depend on
∣

∣ ˙̃q
∣

∣ and |ϑ| which

are bounded for all x ∈ Ω. Therefore, using Assumption 1

and (25) we see that there exist positive numbers c1, c2 such

that, defining v2(t) := V2(t, q̃(t), ˙̃q(t), ϑ(t)),

v̇2(t) ≤ −ε1kp |q̃(t)|
2
+ c1 |q̃(t)|+ c2 (26)

for all t ≥ t◦ and x(t) ∈ Ω that is, v̇2(t) becomes negative

as |q̃(t)| → ∞.

Next, define V : R≥0 × R
3n → R,

V (t, x) := V1(t, q̃, ˙̃q, ϑ) + V2(t, q̃, ˙̃q, ϑ) (27)



which is positive definite for sufficiently large control gains,

independently of the initial conditions. To see this, note that

V (t, x) =
1

2

(

q̃
˙̃q

)⊤
(

kpI ε1D

ε1D
⊤ 1

2
D

)

(

q̃
˙̃q

)

+
1

2

(

ϑ
˙̃q

)⊤





kd

b
I −ε2D

−ε2D
⊤ 1

2
D





(

ϑ
˙̃q

)

where both matrices are positive definite respectively if

kp

4dM
> ε2

1
,

kd

4bdM
> ε2

2

which hold in view of (12a), since ε1, ε2 < 1. It is also clear

from Assumption 1.2, that V is proper since D is bounded.

Using (21) and (26) we see that v(t) := V (t, x(t)) satisfies

v̇(t) ≤ −ε1kp |q̃(t)|
2
+ c′

1
|q̃(t)|+ c′

2

for all x(t) ∈ Ω, t ∈ [τ, tmax) and appropriate (innocuous)

values of c′
1

and c′
2
. If |q̃(t)| grows unboundedly, there exists

t ∈ [τ, tmax) (if necessary, replace tmax with tmax
new > tmax)

such that v̇(t) ≤ 0. By continuity we may extend [τ, tmax) to

[τ,∞) and conclude that v(t) is uniformly bounded. Since

x 7→ V is proper |x(t)| is also uniformly bounded on [τ,∞).
Using forward completeness again, we obtain uniform global

boundedness on [t◦,∞).

This completes the proof of the proposition. �

The standing assumption in the following proposition is

that the solutions are uniformly globally bounded, which has

been established above.

Proposition 2 Consider the system (1) under the conditions

of Theorem 3. Assume that for each r > 0 there exists R(r)
such that if x(t◦) ∈ Br then x(t) ∈ BR for all t ≥ t◦. Under

these conditions, the origin is uniformly globally attractive.

Proof. Let the control gains be fixed according to (12).

Consider a function V : R≥0 × BR → R defined as in

(27). Under Assumption 1 its total time-derivative along the

trajectories of (14), (15) satisfies, for all (t, x) ∈ R≥0×BR,

V̇ ≤ −
ε1kp |q̃|

2

4
−

ε2bdm
∣

∣ ˙̃q
∣

∣

2

8
−

[

ε2bdm
8

− ε1dM

]

∣

∣ ˙̃q
∣

∣

2

−
1

2

[

|q̃|
∣

∣ ˙̃q
∣

∣

]⊤ [

ε1kp/2 −ε1kc (R+ kδ)

∗ ε2bdm/2

][

|q̃|
∣

∣ ˙̃q
∣

∣

]

−
1

2

[

|q̃|

|ϑ|

]⊤ [

ε1kp/2 −(ε1kd + ε2kp)

∗ kda/2b

][

|q̃|

|ϑ|

]

−
1

2

[
∣

∣ ˙̃q
∣

∣

|ϑ|

]⊤[
ε2bdm

2
−ε2 (kc(R+ kckδ) + adM )

∗ kda/b

]
[
∣

∣ ˙̃q
∣

∣

|ϑ|

]

−

(

kda

4b
− ε2kd

)

|ϑ|
2
+ kckδ

∣

∣ ˙̃q
∣

∣

2

(28)

where “*” stands for the opposite element in the matrix with

respect to the main diagonal. The factor of −
∣

∣ ˙̃q
∣

∣

2

in the third

term above is positive, as well as the first matrix above is

positive definite, if

ε2

4ε1
bdm ≥

k
2

c (R+ kδ)
2

kp
+ 2dM

which holds for control gains independent of the initial

conditions and of R, if

ε2

ε1
= O

(

R2
)

. (29)

The second matrix is positive if

ε1kpkda

4b
≥ (ε1kd + ε2kp)

2

which holds for sufficiently small values of ε1 and ε2.

Finally, the third matrix is positive definite if

kdadm

4
≥ ε2

[

(R+ kckδ)kc + kδkc + adM
]2

which holds for sufficiently small values of

ε2 = O
(

1

R2

)

(30)

which in turn, in view of (29), imposes that

ε1 = O
(

1

R4

)

. (31)

Hence, there exists c > 0 such that

V̇ (t, x) ≤ −c |x|
2
+ kckδ

∣

∣ ˙̃q
∣

∣

2

∀ (t, x) ∈ R≥0 ×BR. (32)

Now let the property of uniform global boundedness generate

a number r > 0 such that x(t◦) ∈ Br implies that x(t) ∈ BR

for all t ≥ t◦ and for any t◦ ≥ 0. From (32) we have

v̇(t) ≤ −
[

c |x(t)|
2
− ν
]

∀ (t, x◦) ∈ R≥0 ×Br. (33)

where ν = kckδR
2. The claim follows observing that the

previous development holds for arbitrary r > 0, ν > 0,

integrating on both sides of (33) and invoking Lemma 1

with γ(s) = c|s|2. �

To the best of our knowledge, constructing a strict (con-

trol) Lyapunov function is an open problem which is il-

lustrated by but not limited to the case of the controller

(13). In a general nonlinear context, the state of the art in

constructing Lyapunov functions for nonlinear time-varying

systems relies on Lyapunov functions that have negative

semi-definite derivatives —see [14]. That is, in the present

context, the methods in the latter reference require that

V̇1 ≤ 0 as opposed to (17).

IV. CONCLUSIONS

The problem solved in this paper may not be

overestimated; Euler-Lagrange systems are of a special

kind in the sense that they belong to the class of systems

studied in the seminal paper [17] for which it is proved that

global output feedback stabilization is impossible, if not for

the structural property that the Coriolis forces (the highly

nonlinear terms) produce no work. We believe that the

method of proof used here may unlock the path to solutions



to other problems such as global proportional-integral-

derivative control3. Further research is also undergoing to

construct a control Lyapunov function with aim at realizing

an to as adaptive version of the controller presented here.
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