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Cascaded-based Stabilization of Time-varying

Systems Using 2nd-order Sliding Modes

Antonio Estrada∗ Antonio Loria† Raúl Santiesteban‡ Leonid Fridman§¶

May 23, 2012

Abstract

We present a result on stabilization of strict feedback systems with unknown disturbances based
on the so-called twisting algorithm, a second-order sliding mode controller for the double integrator.
The novelty of the note relies in the stability analysis of the closed-loop system and the relaxation of
stability conditions (we do not assume boundedness of trajectories). The proof of the main result is
constructed along similar lines as for well-established theorems for nonlinear time-varying systems
in cascade, with continuous right-hand sides. Although we restrict our analysis to second-order
systems, the purpose of this note is to settle the basis for a methodological stability analysis approach
for higher-order systems in strict feedback form, under the influence of uncertain perturbations. An
illustrative example is provided.

1 Introduction

We study strict-feedback systems affected by additive and possibly unbounded disturbances. The control
goal is to stabilize the origin of the closed-loop system to zero in finite time. Roughly, the control method
consists in a two-loop design: an outer loop in which the control law is designed by defining a virtual
control input as in backstepping control, and an inner loop in which the twisting algorithm of [1] is
used to exactly compensate for the disturbances. First-order sliding-mode controllers have been applied
combined with different robust techniques in order to reduce the effect of such perturbations [2]–[3].

In [4] the authors explore the combination of backstepping and sliding mode control is for systems in
strict-feedback form with parameter uncertainties; this is extended to the multi input case in [5]. The
procedure proposed in [4],[5] reduces the computational load as compared to standard backstepping,
because it only retains n−2 steps of the original backstepping technique, coupling them with an auxiliary
second-order subsystem to which a second-order sliding mode control is applied. A differentiation-based
coordinate transformation is applied to the auxiliary second-order subsystem in order to obtain a system
with the perturbations appearing in the input channel.

The controllers proposed in [2],[3] do not ensure the exact tracking of output unmatched variables.
The contributions in [4],[5] rely on an explicit representation of the second-order auxiliary subsystem in
which perturbations are matched. The controller proposed in [6, 7] which utilizes the so-called quasi-
continuous high-order sliding mode algorithm of [8], ensures exact tracking of a smooth signal despite
the presence of unmatched perturbations. It uses the idea of virtual control instead of transforming
the system as one with matched perturbations. Nevertheless, the scheme in [6] only guarantees local
stability hence, nothing is ensured about the transient phase. In [7], the transient stage is handled by
using integral high-order sliding modes [9], which increases the control complexity.
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Our main contribution strives in the method of stability analysis which particularly, leads to relaxed
assumptions. Indeed, instead of constructing a (control) Lyapunov function for the whole system, as it
is done in backstepping, we propose regard the system as a cascade that is, in which one of the systems
is decoupled from the first. As is well-understood now, at the core of strict-feedback forms one finds
cascaded systems –[10]. These have been thoroughly studied in the literature of (continuous) nonlinear
systems for the last 20 years or so. Cascaded systems consist in two subsystems which independently,
are stable and are interconnected by a nonlinearity. Under such setting, a necessary and sufficient
condition for stability is that the trajectories of the cascaded system remain bounded –see [11]. As we
show in this paper for certain nonlinear systems, the boundedness condition may be relaxed to forward
completeness provided that the two cascaded systems separately, are finite-time stable.

A significant difficulty in the analysis of cascaded systems in the context of sliding-modes is the dis-
continuities of the control laws. In particular, for the twisting algorithm backstepping control leads to a
complex cascaded system described by integral-differential equations and equations with discontinuous
right-hand sides. One way to analyze the stability of the integral-differential equation is to differentiate
however, this leads to ever more complex equations and eventually, to restrictive conditions of bounded-
ness of trajectories –cf. [8]. Besides, backstepping naturally leads to the analysis of a cascaded system.
Following that train of thought, in the recent note [12] we relaxed the restrictive hypotheses from [8].

Nonetheless, the results available in the literature of cascaded systems are inapplicable as such,
in the present setting. A fundamental, yet commonly-made assumption in the analysis of cascaded
systems is that one disposes of a Lyapunov function for the perturbed system, taken independently. In
the present setting, this is a stumbling block as it comes to asking for a (converse) Lyapunov function
for an integral-differential equation, having specific growth-order properties.

This note continues and improves the main results in [12]. Firstly, we use the twisting controller for
which a Lyapunov function has been recently proposed in [13]. Then, a theorem for stability of cascades
of systems with discontinuous right-hand sides is established. Although the scope of the present paper is
limited to second order stems our main result constitutes a first step towards a recursive design method
for nonlinear systems in strict feedback form with unmatched uncertainties, reminiscent of backstepping
and based on high-order sliding mode control. The rest of the paper is organized as follows. In the
following section we present the problem statement and our main result; in Section 4 we present an
illustrative example and we conclude with some remarks in Section 5.

2 Problem statement and its solution

Consider second-order nonlinear systems of the form

ξ̇1 = f1(t, ξ1) + g1(t, ξ)ξ2 + ω1(t, ξ) (1a)

ξ̇2 = f2(t, ξ) + g2(t, ξ)u+ ω2(t, ξ) (1b)

where ξ = [ξ1, ξ2]
T , ξ1, ξ2 ∈ R is the state vector and is assumed to be known; u ∈ R is the control input.

For simplicity, we assume that fi and gi are smooth functions and the unknown perturbations ω1, ω2

are assumed to be bounded on their domain and ω1 is assumed to be once continuously differentiable
with bounded derivative. For the application of backstepping control, we also assume that gi(t, ξ) 6= 0
for all (t, ξ) ∈ R≥0 × R

2 and all functions f1, f2, g1 and g2 are available for feedback.

The problem of interest is to design a controller such that the state ξ1 tracks a desired smooth
reference t 7→ ξd in spite of the presence of the unknown bounded perturbations ω1, ω2. For further
development, we introduce the tracking error σ1 = ξ1 − ξd.

We propose a dynamic controller which consists in two nested control loops. For the inner-loop, let
ξ2 correspond to a virtual control input acting on the dynamics equation (1a) with the aim at steering
σ1 → 0 in finite time. We define the second-order sliding mode controller1

φ1(t, ξ1) = g−1

1
(t, ξ)[−f1(t, ξ1) + u11 + ξ̇d] (2a)

u̇11 = −α1sgn(σ1)− β1sgn(σ̇1) (2b)

1The right hand side of (2b) is referred to as the twisting controller –see [1].
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as the ideal control input to (1a) that is, we claim and we shall prove that if ξ2 = φ1, σ1 converges to
zero in finite time.

With this in mind, we design the outer control loop in order to steer the error σ2 = ξ2 − φ1 to zero
in finite time. Let

u = g−1

2
(t, ξ)[−f2 − α2sgn(σ2) + v] (3)

then, using ξ2 = σ2 + φ1 and the expressions (2a) and (3) into the system’s equations (1) we obtain

σ̇1 = u11 + ω1 + g′1(t, σ1, σ2)σ2 (4a)

σ̇2 = −α2sgn(σ2) + ω2 − φ̇1 + v (4b)

where

g′1(t, σ1, σ2) = g1

(

t,

[
σ1 + ξd(t)

σ2 + φ1(t, σ1 + ξd(t))

])

and the additional control input v is left to be defined. For instance if φ̇1 is bounded, one can set v ≡ 0
and redefine ω2 to incorporate φ̇1 as a perturbation in the second equation. Otherwise it is convenient
to set v = φ̇1 at the expense of further complexity in the controller. Thus, the control problem is solved
if we show that the origin (σ1, σ2) = (0, 0) is finite-time stable for (4).

What is remarkable about the system (4) in closed loop with the dynamic controller (2) is that
it is in cascaded form. To see this, we introduce the new variables z1 = σ1, z2 = ω1 + u11 and
Φ = −β1sgn(ż1) + β1sgn(z2). Then, (4) is equivalent to

[
ż1
ż2

]

︸︷︷︸

ż

=

[
z2

ω̇1 − α1sgn(z1)− β1sgn(z2)

]

︸ ︷︷ ︸

F1(z)

+

[
g′
1
(t, z1, σ2)σ2

Φ

]

︸ ︷︷ ︸

G(t, z, σ2)

(5a)

σ̇2 = −α2sgn(σ2) + ω2. (5b)

Note that Φ is a set-valued map of z1, z2 and σ2 but it is uniquely defined at σ2 = 0, in this case
Φ = −β1sgn(u11 + ω1) + β1sgn(z2) = 0 hence, σ2 = 0 ⇒ G = 0.

In summary, the closed-loop dynamics of (1) with (2) and (3) is given by the cascaded system (5) for
which we have G(t, z, 0) ≡ 0 if σ2 = 0. In this case the dynamics is simply ż = F1(z), which corresponds
to the double integrator, known to be finite-time stable under the twisting algorithm –cf. [13]. Based
on these observations the following theorem establishes global finite-time stability of the origin of the
closed-loop system following arguments as for cascaded systems with continuous right-hand sides.

Theorem 1 The origin of the system (1) in closed loop with (2) and (3) is globally finite-time stable
provided that α1 − |ω̇1| > β1 > |ω̇1|, α2 > |ω2| and that there exist continuous non-decreasing functions
θ1, θ2 such that

|g′1(t, z1, σ2)| ≤ θ1(|σ2|)|z1|+ θ2(|σ2|). (6)

Remark 1 The functions θi exist if g′1 is uniformly bounded in t for each fixed σ and z1. The main
restriction imposed on g′

1
is that for each σ and t the growth order of g′

1
(t, ·, σ2) must be linear. There

exists no restriction locally, in the neighbourhood of (z1, z2) = (0, 0).

3 Proof of Main Result

The proof of Theorem 1 is inspired from the main results in [14]. It is composed of three major steps:
1) to show that the origin of (5b) is finite-time stable; 2) to prove that so is the origin of ż = F1(z)
and 3) to establish that the trajectories of (5a) do not explode in a finite time smaller than the settling
time for (5b).

3.1 Finite-time stability of (5b)

Let V2 = σ2

2
, its time derivative along the trajectories of (5b) yields V̇2 ≤ −2(α2 − |ω2|)|σ2| i.e.,

V̇2 ≤ −2(α2 − |ω2|)V 1/2
2
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choosing α2 such that α2−|ω2| > 0 finite-time stability follows integrating on both sides of the previous
expression, along trajectories.

3.2 Finite-time stability of ż = F1(z)

The system (5a) with zero input σ2 has the form of a perturbed double integrator,

ż1 = z2 (7a)

ż2 = −α1sgn(z1)− β1sgn(z2) + ω̇1(t, z) (7b)

where z1 and z2 ∈ R and ω̇1 is a bounded perturbation. Such type of systems under the so-called
twisting controller have been studied for instance in [13], where a proof of global finite-time stability
via Lyapunov’s direct method is established. The following proposition establishes global finite stability
of (7) with a similar Lyapunov function as in [13] however, the proof provided here has the merit of
fitting the cascaded-based design method described previously. We also provide a simple rule to tune
the gains in order to obtain a faster convergence and most significantly, our estimate of the settling
time is tighter than that in [13].

Proposition 1 Let M > 0 be such that |ω̇1(t, z)| ≤ M for all (t, z) ∈ R≥0 × R
2, γ1 > 0, γ2 > 0 and

consider the function

V (z1, z2) = α2

1
γ1z

2

1
+ γ2|z1|3/2sgn(z1)z2 + α1γ1|z1|z22 +

1

4
γ1z

4

2
. (8)

Then, we have the following:

• Given any α1 > 0 and β1 such that α1 > 2β1 > 2M there always exist parameters γ1, γ2 such
that V is a strict Lyapunov function for the system (7) that is, it is positive definite, proper and
its derivative along the trajectories of (7) is negative definite;

• provided that β1 > M there always exist c1 > 0 and c2 ∈ (0, 1) such that

dV

dz1
ż1 +

dV

dz2
ż2 ≤ −c1V

c2 ; (9)

• (hence) for any pair (z1◦, z2◦) ∈ R
2 all generated solutions satisfying (z1(t0), z2(t0)) = (z1◦, z2◦)

converge to the origin (z1, z2) = (0, 0) in finite time tf where

tf ≤ 4

c1
V (z1◦, z2◦)

1/4 (10)

and c1 is proportional to β1 −M .

Proof of Proposition 1

Firstly, we show that V is positive definite and proper without any restriction on the control gains,
other than α1 > 0. Let µ > 0 and observe that

V (z1, z2) = µ
(

|z1|1/2 + |z2|
)4

+W (11)

W (z1, z2) = (α2

1
γ1 − µ)|z1|2 − 4µ|z1|3/2|z2|+ γ2|z1|3/2sgn(z1)z2

+ (α1γ1 − 6µ)|z1||z2|2 − 4µ|z1|1/2|z2|3

+ (
1

4
γ1 − µ)|z2|4 . (12)

Let us show that for any given control gain α1 > 0 and an appropriate choice of the parameters γ1, γ2
we have W ≥ 0, thereby implying that V is positive definite and radially unbounded. To that end, let

ηm = min

{

(α2

1
γ1 − µ),

1

6
(α1γ1 − 6µ), (

1

4
γ1 − µ)

}

.
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Note that for any given control gain α1 one can find parameters γ1 and µ such that ηm > 0. Hence

W (z1, z2) ≥ − (4µ+ γ2)
[

|z1|3/2|z2|+ |z1|1/2|z2|3
]

+ ηm
[
|z1|2 + 6|z1||z2|2 + |z2|4

]
. (13)

Furthermore, for any given parameters α1, γ1, µ > 0 such that ηm > 0, pick γ2 > 0 such that γ2 ≤
4(ηm − µ). Under such conditions Inequality (13) implies that

W (z1, z2) ≥ ηm

[

|z1|1/2 − |z2|
]4

≥ 0 .

We emphasize that there always exists γ2 > 0 satisfying γ2 ≤ 4(ηm − µ). Indeed, if for a particular
choice of γ1 and µ we have ηm < µ we can redefine γ1 and µ such that for any given n > 4

min
{

α2

1
γ1,

α1γ1
6

,
γ1
4

}

≥ (n+ 4)µ

4

which implies that 4ηm ≥ nµ > 4µ. We conclude that V is positive definite and radially unbounded for
large values of µ, α1 γ1 and small values of γ2.

Now we proceed to compute an upper-bound for V . To that end we observe from (12), that

W (z1, z2) ≤ (α2

1
γ1 − µ)|z1|2 + (γ2 − 4µ)|z1|3/2|z2|

+ (α1γ1 − 6µ)|z1||z2|2 + (γ2 − 4µ)|z1|1/2|z2|3

+ (
1

4
γ1 − 4µ)|z2|4 (14)

which together with (11), implies that

V (z1, z2) ≤ (µ+ ηM )
[

|z1|1/2 + |z2|
]4

(15)

with

ηM = max

{

(α2

1
γ1 − µ),

(α1γ1 − 6µ)

6
,
(γ2 − 4µ)

4
, (

1

4
γ1 − 4µ)

}

.

Next, we compute the total time derivative of V along the trajectories of (7). We have

V̇ (z1, z2) = 2α2

1
γ1z1z2

+ γ2|z1|3/2sgn(z1)
(

−α1sgn(z1)− β1sgn(z2) + ω̇1

)

+
3

2
γ2|z1|1/2z22 + α1γ1z

2

2sgn(z1)z2

+ 2α1γ1|z1|z2
(

−α1sgn(z1)− β1sgn(z2) + ω̇1

)

+ γ1z
3

2

(

−α1sgn(z1)− β1sgn(z2) + ω̇1

)

. (16)

which implies that

V̇ (z1, z2) ≤ − 2α1γ1(β1 −M) |z1||z2| − γ1(β1 −M)|z2|3

− γ2 (α1 − β1 −M) |z1|3/2 +
3

2
γ2z

2

2
|z1|1/2 (17)

Let κ > 0 and add κ times

−(|z1|1/2 + |z2|)3 +
[

|z1|3/2 + 3|z1||z2|+ 3|z1|1/2|z2|2 + |z2|3
]

= 0

to the right-hand side of (17). We obtain

V̇ (z1, z2) ≤ − [γ2 (α1 − β1 −M)− κ]|z1|3/2

+
3

2
[γ2 + 2κ]z22 |z1|1/2

+ [3κ− 2α1γ1(β1 −M)]|z1||z2|
− [γ1(β1 −M)− κ]|z2|3 − κ(|z1|1/2 + |z2|)3 .
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which implies that

V̇ (z1, z2) ≤ − [γ2 (α1 − β1 −M)− κ]|z1|3/2

− |z2|
[
|z1|1/2
|z2|

]⊤

N

[
|z1|1/2
|z2|

]

− κ(|z1|1/2 + |z2|)3 . (18)

where

N =




2α1γ1(β1 −M)− 3κ −3

4
[γ2 + 2κ]

−3

4
[γ2 + 2κ] γ1(β1 −M)− κ



 ,

which is positive semidefinite for sufficiently large values of γ1 and β1 > M . Additionally, the first
term on the right-hand side of (18) is negative if α1 −M > β1 > M and γ2(α1 − β1 −M)− κ > 0. In
particular, for any given gain β1 > M one can find parameters γ1 ≫ 1 and κ′ ∈ (0, 1) such that N ≥ 0
with κ = κ′γ1(β1 −M). To see this observe that

N = γ1(β1 −M)







2α1 − 3κ′ −3

4

(
γ2

(β1 −M)γ1
+ 2κ′

)

−3

4

(
γ2

(β1 −M)γ1
+ 2κ′

)

1− κ′






.

Let k > 1 be such that β1 − M = k and γ1 = kγ2 and let κ′ = 1/k. Then, the matrix N is positive
semidefinite if 2α1 ≥ 3/k and

(

2α1 − 3

k

)(

1− 1

k

)

≥ 9

16

(
1

k2
+

3

k

)2

which is easily fulfilled since the number on the right-hand side is smaller than 9. On the other hand,
the condition γ2(α1 − β1 − M) − κ > 0 is equivalent to γ2[α1 − (β1 − M) − κ′k(β1 −M)] > 0 which
holds if α1 > 2β1 which is satisfied by assumption.

Finally, we proceed to find c1 and c2 such that (9) holds. From the above we have

V̇ (z1, z2) ≤ −κ(|z1|1/2 + |z2|)3

and on the other hand, from (15) we have

−V (z1, z2)
3/4 ≥ −(µ+ ηM )3/4

[

|z1|1/2 + |z2|
]3

hence,

V̇ (z1, z2) ≤ − κ

(µ+ ηM )3/4
V (z1, z2)

3/4 . (19)

In particular, (9) holds for any given α1 > 0 and β1 > M , with κ′ ∈ (0, 1), γ1 ≫ 1 and

c1 =
κ′γ1(β1 −M)

(µ+ ηM )c2
, c2 =

3

4
.

Therefore, an upper bound for time convergence of the trajectories to zero, for the perturbed case,
may be computed by integrating V̇ ≤ −c1V

c2 along the trajectories generated by (7) from any pair of
initial conditions (z1◦, z2◦) ∈ R

2 that is,

tf ≤ 4

c1
V (z1◦, z2◦)

1/4 . (20)

We show that c1 may be taken proportional to β1 − M . For α1 > 1 and γ2 ≤ α2

1
γ1 − 5µ we have

ηM = α2
1γ1 − µ hence

c1 = κ′ γ
1/4
1

α
3/2
1

(β1 −M)

so c1 ∝ (β1 −M) provided that γ1 ∝ α6
1. Note that γ2 ≤ α2

1γ1 − 5µ holds if γ2 = 5µ and α1 ≥
√

2/k

which in turn holds if α1 >
√
2. �
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3.3 Proof of finite-time stability for (5a)

This is the last part of the proof of Theorem 1. It relies on the observation that the last two terms on
the right-hand side of the total time-derivative of V along the trajectories of (5a),

dV

dz
[F1(z) +G(t, z, σ2) ] ≤ −c1V

c2 +
∂V

∂z1
g′
1
(t, z1, σ2)σ2 +

∂V

∂z2
Φ , (21)

become zero in finite time. However, to use this argument we first need to show first that the solutions
z(t) of (5a) exist for all t and in particular, that they do not explode before the settling time of σ2(t).
To that end, we observe that since σ2(t) converges to zero in finite time it is globally uniformly bounded
hence, for σ2 = σ2(t) we have from (6),

|g′1(t, z1, σ2(t))| |σ2(t)| ≤
[

θ1(|σ2(t)|)|z1|+ θ2(|σ2(t)|)
]

|σ2(t)|

≤ c3|z1|+ c′3 ∀ t ≥ 0, z1 ∈ R (22)

where c3 and c′3 depend only on the size of σ2(t0). Next, observe that |z1|3/2sgn(z1) = z1|z1|1/2, hence
∂V

∂z1
= 2α2

1
γ1z1 +

3

2
γ2|z1|1/2z2 + α1γ1sgn(z1)z

2

2

∂V

∂z2
= γ2|z1|3/2sgn(z1) + 2α1γ1|z1|z2 + γ1z

3

2

and defining c4 := max
{
2α2

1
γ1,

3

4
γ2, α1γ1

}
we see that

∣
∣
∣
∣

∂V

∂z1

∣
∣
∣
∣
≤ c4

(

|z1|1/2 + |z2|
)2

which implies that ∣
∣
∣
∣

∂V

∂z1

∣
∣
∣
∣
|z1| ≤ c4

(

|z1|1/2 + |z2|
)4

∀ z1 ∈ R, z2 ∈ R.

From this, (11) and the fact that W ≥ 0 we see that
∣
∣
∣
∣

∂V

∂z1

∣
∣
∣
∣
|z1| ≤

c4
µ
V (z1, z2) . (23)

Similarly, define c9 := max
{
γ2,

2α1

3
γ1, γ1

}
then,

∣
∣
∣
∣

∂V

∂z2

∣
∣
∣
∣
≤ c9

(

|z1|1/2 + |z2|
)3

(24)

which implies that ∣
∣
∣
∣

∂V

∂z2

∣
∣
∣
∣
|z2| ≤

c9
µ
V (z1, z2) ∀ z1 ∈ R, z2 ∈ R. (25)

To conclude, consider (21) and (22) together with (23) and (25). Then, since |Φ| ≤ 2β1,

{t ∈ R≥0 : |z1(t)|, |z2(t)| ≥ 1} =⇒ dV

dz
[F1(z(t))+G(t, z(t), σ2(t)) ] ≤

(c3 + c′
3
)c4 + 2β1c9
µ

V (z1(t), z2(t)) .

Similarly, using (24) we deduce that

{t ∈ R≥0 : |z1(t)|, |z2(t)| ≤ 1} =⇒ dV

dz
[F1(z(t))+G(t, z(t), σ2(t)) ] ≤

c3c4
µ

V (z1(t), z2(t))+16c9β1+4c′3c4 .

The last two implications lead to the inequality

V̇ (z1(t), z2(t)) ≤ c10V (z1(t), z2(t)) + c11 ∀t ∈ R≥0

with µc10 = [(2c3 + c′
3
)c4 + β1c9] and c11 = 16c9β1 + 4c′

3
c4. Integrating on both sides of the latter

inequality from any t0 ∈ R≥0 to ∞ we conclude that the trajectories exist for all t.

Next, let tf < ∞ be the settling time for σ2(t). From forward completeness, for all t such that t > tf
and observing that G(t, z, 0) = 0 we obtain, invoking (21),

dV

dz
[F1(z(t)) +G(t, z(t), σ2(t))] ≤ −c1V (z1(t), z2(t))

c2

for all t ≥ tf . Finite-time stability follows integrating on both sides of the latter inequality.
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4 Example
q2

τ

q1

Fig. 1. Inertial
wheel pendulum

Consider the inertia-wheel pendulum illustrated in Figure 4. The control goal is to
stabilize the system to q1 = qd constant. The dynamics in Lagrangian coordinates
is given by

[
q̈1
q̈2

]

=

[
J1 J2
J2 J2

]−1 [
h sin(q1)

0

]

+

[
J1 J2
J2 J2

]−1 [
0
1

]

τ +

[
δ1
δ2

]

(26)

where J1 > J2 are constant inertia parameters, τ is the control torque and
δ = [δ1, δ2]

⊤ is a bounded perturbation with continuous and uniformly bounded
derivatives2.

To apply our main result, we must express the system’s dynamics in the form
(1). To that end, we start by applying a global coordinate transformation reported in [15] to transform
the Lagrangian equations into a strict-feedback form. We introduce the new state variables

z1 =
∂L
∂q̇1

= J1q̇1 + J2q̇2 (27a)

z2 = q̇2 (27b)

where L = T − V corresponds to the Lagrangian that is, the difference between kinetic and potential
energy. Then, we differentiate on both sides of (27) and use (26) to obtain

ż1 = h sin(q1) (28a)

ż2 =
h sin(q1)

J2 − J1
− J1

J2(J2 − J1)
[τ + δ2] (28b)

and, from (27),

q̇1 =
1

J1
[z1 − J2z2] + J1δ1 + J2δ2 (29)

q̇2 = z2.

Equations (28) may be written in the form (1) with ξ1 = q1 and ξ2 = z2, and replacing z1 with z1(t)
on the interval of definition that is,

f1 =
1

J1
z1(t),

g1 = −J2
J1

,

ω1 = J1δ1 + J2δ2,

f2 =
1

J2 − J1
h sin(ξ1),

g2 = − J1
J2(J2 − J1)

,

ω1 = δ2

so condition (6) holds with θ1 ≡ 0 and a constant θ2 ≥ |J2/J1|.
The controller is constructed following the method explained in Section 2. The first sliding surface

σ1 = ξ1 − ξd in this case corresponds to σ1 = q1 − qd and the virtual control input φ1 is

φ1(t, ξ1) = −J1
J2

[

− 1

J1
z1(t) + u1,1

]

u̇1,1 = −α1sgn(σ1)− β1sgn(σ̇1).

2The function δ which may depend on time and state, is assumed once continuously differentiable; and such that δ

and δ̇ map their domain (not specified on purpose) into compact sets.
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in which expression the derivative σ̇1 is computed by means of the robust differentiator —see [16],

ṡ0 = −λ2L
1/2|s0 − σ1|1/2sgn(s0 − σ1) + s1

ṡ1 = −λ1Lsgn(s0 − ṡ0).

Next, we define σ2 = z2 − φ1(t, ξ1) and the control input as

u = −J2(J2 − J1)

J1

[
h sin(ξ1)

(J2 − J1)
− α2sgn(σ2)

]

.

Note that φ̇1(t, ξ1) is not cancelled in the control input since, as a simple inspection shows, φ̇1(t, ξ1) is
bounded. To compensate for this disturbance we use the dynamically defined gain

α2(σ2) = α2ae
α2b|σ2|.

The choice for this gain as opposed to a constant is motivated by performance improvement; note that
the gain is large when the sliding error is large and small in the vicinity of the sliding surface, in order
to reduce overshoot while reducing convergence time.
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Figure 2: Positions q1 and q2.
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Figure 3: Errors σ1 and σ2.

time [s]

σ
1
[r
a
d
/
s]

σ
2
[r
a
d
/
s]

α1 β1

4 2

8 4

10 5

We have performed some simulations to test the efficiency of the controller above. The parameters
Ji and h are computed from an experimental benchmark manufactured by Quanser Inc; we have J1 =
4.572× 10−3, J2 = 2.495× 10−5, and h = 0.3544. The desired position is set to 0.1 sin(4t); the initial
conditions for the inertia wheel pendulum are all set to zero except for q1(0) = −π, i.e., the pendulum
is assumed to start off from the downward position. The disturbances are ω1 = 0.1 cos(40t) and
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ω2 = 0.1 sin(40t). The controller parameters α1 = 5, β1 = 3, α2a = 5000 and α2b = 0.1 and, for the
differentiator, λ1 = 1.1, λ2 = 1.5, L = 10 were used. The graphs of the system’s responses for three
different set of values of the parameters α1, β1 are depicted in Figures 2-3. The Figure 4, is the control
signal corresponding to the simulation for α1 = 4, β1 = 2. The simulations confirm that the finite-time
convergence Tf is inversely proportional to β1. Note also that increasing β1 −M , eventually implies to
increase α1 in order to fulfill the conditions of Proposition 1.

0 1 2 3 4 5 6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 4: Control signal u (α1 = 4, β1 = 2).

time [s]

u
[N

·m
]
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5 Conclusion

We believe that the analysis based on arguments for cascaded systems shall be useful in extending the
control method to systems in strict feedback form, of order higher than two. So far, there remains a
fundamental obstacle: beyond second-order systems, the design procedure is systematic (reminiscent of
backstepping) however, it is considerably intricate since it involves high-order sliding modes. The lack
of Lyapunov functions for the case of order larger than two, fundamental in the stability analysis of the
cascade, hampers further extensions at this point.
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