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Formation control of force-controlled mobile robots

in a spanning-tree topology

Janset Dasdemir Antonio Loria

Abstract— We solve the formation-tracking control problem
for mobile robots via linear control, under the assumption
that each agent communicates only with one “leader” robot
and with one follower. We assume that the system is force-
controlled (hence we use the dynamic model) as opposed to
velocity-controlled (in the kinematic-model case). As in the
classical tracking control problem for nonholonomic systems,
the swarm is driven by a fictitious robot which moves about
freely and which is leader to one robot only. For the case
of a fixed spanning-tree topology we show that persistency of
excitation on the velocity of the virtual leader is sufficient and
necessary to achieve consensus tracking.

I. INTRODUCTION

In the last decade, coordinated control of autonomous

mobile robots has received great attention motivated by the

fact that a group of robots may accomplish certain tasks

with greater efficiency, flexibility, robustness and safety than

a single robot. However, coordinated motion requires more

complex control schemes as well as path planning; for

instance, it may be achieved through local individual tracking

control on each robot provided that all agents communicate

with each other. Furthermore, in many applications such as

search & rescue, surveillance or transportation, a group of

mobile robots is supposed to follow a predefined trajectory

while maintaining a desired formation shape.

There are various formation-control methods proposed in

the literature such as the behavior approach [1], [2], the

virtual structure method [3], [4], the graph-theory approach

as in [5], [6], [7], etc.

The leader-follower approach as in [8], [9] is reminiscent

of the so-called master-slave synchronization paradigm. Ex-

tended to the case of more than two agents, one or more

vehicles may be considered as leader and the rest of the

robots are considered followers as they are required to track

their leaders’ trajectories with a predefined formation shape.

In the context of mobile robots, a virtual reference vehicle

is assumed as a leader over all the rest. From a graph

viewpoint, it is the reference vehicle which plays the role

of a root node. Leaders are children of the root node that is,

robots which “know” the reference trajectory. All other nodes

are either followers and leaders simultaneously (intermediate

nodes in the graph topology) or followers (leaves, nodes

without children in the graph topology). The method is easy
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Fig. 1. Generic representation of a leader-follower configuration. For a
swarm of n vehicles, any geometric topology may be easily defined by
determining the position of each vehicle relative to its leader. This does not
affect the kinematic model.

to understand and to implement. It is scalable for any number

of agents. There is no explicit feedback from followers to

leaders (the graph is directed) but followers require full state

information of their leaders.

In [10], an adaptive leader-follower based formation con-

trol without the need of leaders’ velocity information is pro-

posed. It is assumed that two robots act as leaders hence, they

know the prescribed reference velocity, while the others are

considered to be followers, with single integrator dynamics.

A stability analysis shows that the triangular formation is

asymptotically stable while the co-linear one is not. In [11],

the authors present a three-level hybrid control architecture

based on feedback linearization; the analysis relies on graph

theory. It shows that position error system is asymptotically

stable with a bounded orientation error. The method is

supported by both simulations and experimental results. In

[12], a virtual vehicle is designed to eliminate velocity

measurement of the leader then using backstepping and

Lyapunov’s direct method position tracking control problem

of the follower is solved. The proposed method guarantees

asymptotic stability of the closed loop error system dynamic.

Another asymptotic stability result is presented in [13].

Proposed control strategy ensures follower position to vary

in proper circle arcs centered in the leader’s reference frame

satisfying suitable input constraints. In [14], the leader’s

influence on the trajectory tracking error dynamics is taken

as an unknown but bounded, observable disturbance and



eliminated by the local controllers of followers; ultimate

boundedness of the trajectory errors is established. In [15],

consensus protocols under directed communication topology

are designed using time-varying consensus gains to reduce

the noise effects. Strong mean square consensus is provided

through algebraic graph theory and stochastic analysis.

In this paper, we follow a leader-follower approach; we as-

sume that the swarm of n vehicles has only one leader which

communicates with the virtual reference vehicle that is, only

one robot “knows” the reference trajectory. The formation is

ensured via a one-to-one unilateral communication that is,

each robot except for the leader (root agent) and the last fol-

lower (tail agent), communicates only with one follower and

with one leader. To the former the robot gives information of

its full state, from the latter it receives full state information

which is taken by the decentralized controller as a reference.

The communication graph is directed that is, there exist no

feedback from followers to leaders. Tail agents are robots

with no followers (the leaves in the graph tree).

Our controllers are inspired by similar controllers pre-

viously reported for tracking control of a single robot –

see [16]. The control design and therefore, the stability

analysis problems are divided into the tracking control for

the translation variables and tracking of the heading angle.

This separation-principle approach leads to fairly simple

controllers, linear time-varying. The analysis relies on the

ability to study the behavior of the translational errors and

heading errors separately. For the former, it is established

that a sufficient and necessary condition is that the refer-

ence angular trajectory of the virtual leader robot have the

property of persistency of excitation, for the heading angles,

a simple proportional feedback is enough. The analysis of

the over-all closed loop system relies on tracking theorems

tailored for so-called cascaded (time-varying) systems. The

significance of the proof method relies in the circumvention

of graph theory, eigen-value analysis and other tools difficult

to extend to the realm of nonlinear systems.

In Section II we formulate the control problem; our

main result is presented in Section III; numerical simulation

results are provided in Section IV and we close with some

concluding remarks in Section V.

II. PROBLEM FORMULATION AND ITS SOLUTION

Consider a group of n unicycle robots modelled by

ẋi = vi cos (θi)

ẏi = vi sin (θi)

θ̇i = wi

v̇i =
u1i

mi

ẇi =
u2i

ji
(1)

with i ∈ [1, n]. In contrast to the kinematic model –see [17]

which is velocity-controlled the control inputs u1i and u2i

correspond to force and torque respectively; mi denotes the

mass of the ith robot, while and ji stands for the moment of

inertia. The coordinates xi and yi represent the center of the

i th mobile robot with respect to a globally-fixed frame and

θi is the heading angle –see Figure 1. The linear and angular

velocities of the i th robot are denoted vi and wi respectively.

The control objective is to make the n robots take specific

postures determined by the topology designer, and to make

the swarm follow a path determined by the virtual reference

vehicle R0. Mostly any geometrical configuration may be

achieved and one can choose any point in the Cartesian plane

to follow the virtual reference vehicle. The swarm has only

one ‘leader’ robot tagged R1 whose local controller uses

knowledge of the reference trajectory generated by the virtual

leader; in the communications graph, R1 is the child of the

root-node robot R0. The other robots are intermediate robots

labeled R2 to Rn−1 that is, Ri acts as leader for Ri+1 and

follows Ri−1. The last robot in the communication topology

is denoted Rn and has no followers that is, it constitutes the

tail node of the spanning tree –see Figure 2. We remark that

the notation Ri−1 refers to the graph topology as illustrated

in Figure 2 but it does not determine a physical formation.

Fig. 2. Communication topology: a spanning directed tree with permanent
communication between Ri and Ri+1 for all i ∈ [0, n− 1] .

To reformulate the control goal as a stabilization problem,

we follow [17] and define the tracking errors

pix = xi−1 − xi − dx(i−1),i

piy = yi−1 − yi − dy(i−1),i

piθ = θi−1 − θi

where dx(i−1),i and dy(i−1),i denote the desired distances

between any pair leader-follower robots. Note that for the

leader robot (R1) and the reference virtual robot (R0) these

values are set to zero (dx0,1 = dy0,1 = 0). In addition, for

simplicity we assume here that all robots are to be aligned

with the same heading (diθ = 0) for all i ∈ {2, ...n}. Then

we translate the tracking errors from the global coordinate

frame to local coordinates fixed on the robot that is, let





eix
eiy
eiθ



 =





cos θi sin θi 0
− sin θi cos θi 0

0 0 1









pix
piy
piθ



 . (2)

Furthermore, we define the velocity error variables

eiv = vi − vi−1

eiw = wi − wi−1 . (3)

Then, the dynamics of the error trajectories between any pair



of robots Ri−1 followed by Ri is given by

ėix = w(i−1)eiy − vi−1 + vi−1 cos eiθ − eiv + eiweiy (4a)

ėiy = −w(i−1)eix + v(i−1) sin eiθ − eiweix (4b)

ėiθ = wi−1 − (eiw + wi−1) (4c)

ėiv =
u1i

mi

− v̇i−1 (4d)

ėiw =
u2i

ji
− ẇi−1. (4e)

The consensus formation-tracking control problem comes

to stabilize all the error systems (4) at the origin that is, for

all i ∈ [1, n]. More precisely, the objective is to find a control

law ui = [u1i, u2i]
T

of the form

u1i = u1i (t, eix, eiy, eiθ, v, w)

u2i = u2i (t, eix, eiy, eiθ, v, w) (5)

such that the closed loop error dynamics is uniformly glob-

ally exponentially stable. The approach that we present is

based on cascades-based control, it consists in decoupling via

feedback, the translational error dynamics from the heading

error dynamics.

Generally speaking, cascaded-based control relies on the

ability to design controllers so that the closed-loop system

has a cascaded structure,

ẋ1 = f1 (t, x1) + g (t, x) (6a)

ẋ2 = f2 (t, x2) (6b)

–note that the lower dynamics (6b) is independent of the

variable x1 and the dynamic equation corresponding to the

latter is “perturbed” by x2 through the interconnection term

g (t, x), hence the term cascade. Stability of the origin of

the cascaded system may be asserted by relying on [18],

[Lemma 3] which establishes that the origin of a cascaded

system is uniformly globally asymptotically stable if so are

the respective origins of the disconnected subsystems that is,

when the interconnection g ≡ 0 and if the solutions of the

perturbed dynamics (6a) remain bounded. In the appendix we

present a concrete stability theorem whose conditions serve

as guidelines for control design and fits the purposes of this

paper.

In that regard, it is important to stress that the error

dynamics (4) already possesses a cascaded structure, with

x1 = [ex, ev, ey]
⊤ and x2 = [eθ, ew]

⊤; indeed, the latter

may be regarded as an input generating a perturbation to the

translational dynamics equations (4a), (4b) and (4d). With

this in mind, we follow the approach originally proposed

in [16], where uniform global exponential stability was first

established for the tracking control problem1. Our main result

establishes that the rationale used in tracking control, may

be applied to solve the problem of formation control. We

show that a linear time-varying controller applied locally on

each robot suffices to solve the formation-tracking control

paradigm.

1See [19] for several extensions inspired by the main results in [16].

III. MAIN RESULTS

Let each local controller be defined by

u1i = mi (v̇i−1 + c3ieix − c4ieiv) (7a)

u2i = ji (ẇi−1 + c5ieiθ − c6ieiw) (7b)

–note that this controller requires the knowledge of u1(i−1)

and u2(i−1); these do not need to be computed by the ith
robot but their value may be received as a measurement,

from the leading robot Ri−1. Define ew := [e1w · · · enw]⊤,

and similarly for ex, ey , eθ, ev . Then, replacing (7) in (4)

and using wi−1 = wi−eiw we obtain by direct computation,

ėix = wi(t, ew)eiy − eiv + vi−1[cos eiθ − 1] (8a)

ėiy = −wi(t, ew)eix + v(i−1) sin eiθ (8b)

ėiθ = −eiw (8c)

ėiv = c3ieix − c4ieiv (8d)

ėiw = c5ieiθ − c6ieiw. (8e)

We stress that wi is a function of ew and time, indeed in view

of (3) we have w1 = e1w +w0(t), w2 = e2w + e1w +w0(t)
and

wi = eiw + e(i−1)w + · · ·+ e1w + w0(t), ∀ i ≥ 3.

The system (8) has a cascades structure in which the trans-

lation error dynamics is decoupled from the heading error

dynamics. To see this, we first remark that the translation

error dynamics may be rewritten in the compact form




ėx
ėv
ėy



 =





0 −I W (t, ew)
C3 −C4 0

−W (t, ew) 0 0









ex
ev
ey





+Ψ2 (t, ev, eθ) (9)

where W (t, ew) = diag{wi(t, ew)}, C3 := diag{c3i}, C4 :=
diag{c4i} and the interconnection term is given by

Ψ2=





(Coseθ − I)v
Sineθv
0n×1



 (10)

where v := [v0 · · · vn−1]
⊤, Coseθ := diag{cos eiθ} and

Sineθ := diag{sin eiθ}. Note that each

vi = eiv + e(i−1)v + · · ·+ e1v + v0(t),

hence v is a function of t and ev . Note also that

Ψ2(t, ev, 0) ≡ 0. Furthermore, the heading error dynamics,

given by equations (8c) and (8e) become
[

ėθ
ėw

]

=

[

0 −I
C5 −C6

] [

eθ
ew

]

(11)

where C5 := diag{c5i} and C6 := diag{c6i}.

Proposition 1 Consider the system (1) in closed loop with

the controllers (7) with i ∈ {1, ...n} where c3i, c4i, c5i, c6i >
0 and the references v0 and w0 satisfy

max{sup
t≥0

|v0(t)| , sup
t≥0

|w0(t)| , sup
t≥0

|ẇ0(t)|} ≤ bµ (12)



for some bµ > 0. Then, the origin of the closed-loop system

is uniformly globally exponentially stable if and only if there

exist positive constants µ and T such that

µ ≤
∫ t+T

t

|w0(τ)|2 dτ ∀t ≥ 0. (13)

The condition (13) is known in the adaptive control literature

as persistency of excitation. It is known that it is necessary

and sufficient for exponential stability of a class of linear

time-varying systems –see the Appendix.

Proof: The closed-loop dynamics is given by (9), (11)

therefore, we must show that the origin of this system is

uniformly globally exponentially stable and that persistency

of excitation of w0 is a necessary condition; we rely on

Theorems 1 and 2 from the Appendix. Let us start by writing

the closed-loop equations in a convenient form; define x2 :=
[eθ, ew]

T , and

f2(t, x2) :=

[

0 −I
C5 −C6

] [

eθ
ew

]

. (14)

then, we see that (11) has the form (6b). Now, let

A :=

[

0 −I
C3 −C4

]

, B(t, ew) :=

[

W (t, ew)
0

]

and let

f1(t, x1) :=

[

A B(t, 0)
−B(t, 0)⊤ 0

]





[

ex
ev

]

ey



 (15)

where x1 := [ex, ev, ey]
⊤. Notice that

B(t, 0) :=

[

W (t, 0)
0

]

=

[

I
0

]

w0(t)

and B(t, 0)⊤B(t, 0) = w0(t)
2I .

Furthermore, let us introduce

g(t, x) =

[

0 B(t, ew)−B(t, 0)
−B(t, ew) +B(t, 0) 0

]





[

ex
ev

]

ey





+Ψ2(t, ev, eθ)

Notice that x2 = 0 implies that ew = 0, eθ = 0 hence,

g(t, x)
∣

∣

∣

x2=0
= Ψ2(t, ev, 0) = 0.

We are ready to invoke Theorem 1. Assumption A1 holds

with the quadratic function

V (t, x1) =
1

2

[

e⊤x C3ex + e⊤y C3ey + |ev|2
]

(16)

so the conditions (19) and (20) hold with c2 =
max{c3i, c4i}/2, η = 1 and c1 = 2c2/min{c3i, c4i}. Fur-

thermore, the total time-derivative of V along the trajectories

of ẋ1 = f1(t, x1) with the latter defined in (15) yields

V̇(30) (t, x1) = −eTv C4ev ≤ 0

To see that Assumption A2 holds observe that x2 = 0 implies

that g = 0 for any t ≥ 0 and x1 ∈ R
3n and Ψ2 is linear in

[ex ev ey] and uniformly bounded in t –see (10).

IV. SIMULATION RESULTS

To illustrate our theoretical findings we present some sim-

ulation results, obtained using SIMULINK
TMof MATLAB

TM.

We consider a team of 3 mobile robots where one of them is

the global leader which knows the reference trajectory and

the other two as followers.

In the first stage of the simulation, the desired for-

mation shape of the mobile robots is in triangular form

with following initial condition; [x1 (0) , y1 (0) , θ1 (0)]
T

=
[0,−4, 3π/8], [x2 (0) , y2 (0) , θ2 (0)]

T
= [−3.5,−7, π/2]

and [x3 (0) , y3 (0) , θ3 (0)]
T
= [−5,−1, π/3] and the trian-

gular formation shape is obtained via [dx1,2, dy1,2] =
[√

3, 1
]

and [dx2,3, dy2,3] = [0,−2]. In order to show the flexibility

of the formation, after an arbitrary period of time, we allow

the formation shape to change from triangular to line with a

following desired distance between robots, [dx1,2, dy1,2] =
[0, 2] and [dx2,3, dy2,3] = [0, 2]. In order to obtain the

reference trajectory of the leader robot, we set the linear and

angular velocities as [v0 (t) , w0 (t)] = [15 m/s, 3 rad/s].
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Fig. 3. Motion and relative positioning of the robots in triangular formation
on the plane.
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The control parameters are set to C3 =
diag {12, 17, 17} , C4 = diag {5} , C5 = C6 = diag {10}.

Briefly, we present that the robots reach to the desired

triangular formation and change the shape to the line-form

after 60[s] with a satisfactory performance. The simulation

results are showed in Figures 5–7.
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Fig. 5. Position errors in x coordinates with dynamic control algorithm.
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Fig. 6. Position errors in y coordinates with dynamic control algorithm.
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Fig. 7. Heading errors with dynamic control algorithm.

V. CONCLUSION

We presented a simple consensus controller based on a

spanning-tree topology. That is, each robot except the root

and the leaf, is master to a follower and slave to a leader.

Consensus is ensured based on a condition of persistency

of excitation, imposed on the reference angular velocity

profile that is, the angular velocity of the virtual leader robot.

This rules out straight-line paths. The extension to this case

involves the use of a condition of persistency of excitation

which depends also on the states and is under investigation.

REFERENCES

[1] T. Balch and R. Arkin, “Behavior-based formation control for multi-
robot teams,” Robotics and Automation, IEEE Transactions on, vol. 14,
pp. 926 –939, dec 1998.

[2] J. Lawton, R. Beard, and B. Young, “A decentralized approach to
formation maneuvers,” Robotics and Automation, IEEE Transactions

on, vol. 19, pp. 933 – 941, dec. 2003.

[3] M. A. Lewis and K.-H. Tan, “High precision formation control of
mobile robots using virtual structures,” Autonomous Robots, vol. 4,
pp. 387–403, 1997. 10.1023/A:1008814708459.

[4] C. Yoshioko and T. Namerikawa, “Formation control of nonholo-
nomic multi-vehicle systems based on virtual structure,” in 17th

IFAC World Congress, (Seul, Korea), pp. 5149–5154, 2008. DOI:
10.3182/20080706-5-KR-1001.00865.

[5] J. Fax and R. Murray, “Information flow and cooperative control of
vehicle formations,” Automatic Control, IEEE Transactions on, vol. 49,
pp. 1465 – 1476, sept. 2004.

[6] R. Olfati-Saber and R. Murray, “Distributed structural stabilization
and tracking for formations of dynamic multi-agents,” in Decision and

Control, 2002, Proceedings of the 41st IEEE Conference on, vol. 1,
pp. 209 – 215 vol.1, dec. 2002.

[7] W. Ren and N. Sorensen, “Distributed coordination architecture for
multi-robot formation control,” Robotics and Autonomous Systems,
vol. 56, no. 4, pp. 324 – 333, 2008.

[8] J. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,” Robotics and Automation,

IEEE Transactions on, vol. 17, pp. 905 –908, dec 2001.

[9] R. Fierro, A. Das, V. Kumar, and J. Ostrowski, “Hybrid control of
formations of robots,” in Robotics and Automation, 2001. Proceedings

2001 ICRA. IEEE International Conference on, vol. 1, pp. 157 – 162
vol.1, 2001.

[10] J. Guo, Z. Lin, M. Cao, and G. Yan, “Adaptive leader-follower
formation control for autonomous mobile robots,” in American Control

Conference (ACC), 2010, pp. 6822 –6827, 30 2010-july 2 2010.

[11] J. Shao, G. Xie, and L. Wang, “Leader-following formation control of
multiple mobile vehicles,” Control Theory Applications, IET, vol. 1,
pp. 545 –552, march 2007.

[12] J. Ghommam, H. Mehrjerdi, and M. Saad, “Leader-follower based
formation control of nonholonomic robots using the virtual vehicle
approach,” in Mechatronics (ICM), 2011 IEEE International Confer-

ence on, pp. 516 –521, april 2011.

[13] L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques,
“Leader–follower formation control of nonholonomic mobile robots
with input constraints,” Automatica, vol. 44, no. 5, pp. 1343 – 1349,
2008.

[14] H. Sira-Ramírez and R. Castro-Linares, “Trajectory tracking for non-
holonomic cars: A linear approach to controlled leader-follower for-
mation,” in Decision and Control (CDC), 2010 49th IEEE Conference

on, pp. 546 –551, dec. 2010.

[15] C. Ma, T. Li, and J. Zhang, “Consensus control for leader-following
multi-agent systems with measurement noises,” Journal of Systems

Science and Complexity, vol. 23, no. 1, p. 35, 2010.

[16] E. Panteley, E. Lefeber, A. Loría and H. Nijmeijer, “Exponential
tracking of a mobile car using a cascaded approach,” in IFAC Workshop

on Motion Control, (Grenoble, France), pp. 221–226, 1998.

[17] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable
tracking control method for an autonomous mobile robot,” in Robotics

and Automation, 1990. Proceedings., 1990 IEEE International Con-

ference on, pp. 384 –389 vol.1, may 1990.

[18] E. Panteley and A. Loría, “Growth rate conditions for stability of
cascaded time-varying systems,” Automatica, vol. 37, no. 3, pp. 453–
460, 2001.

[19] A. A. J. Lefeber, Tracking control of nonlinear mechanical systems.
PhD thesis, University of Twente, Enschede, The Netherlands, 2000.

[20] A. Loría and E. Panteley, Cascaded nonlinear time-varying systems:

analysis and design, ch. in Advanced topics in control systems theory.
Lecture Notes in Control and Information Sciences, F. Lamnabhi-
Lagarrigue, A. Loría, E. Panteley, eds., London: Springer Verlag, 2005.



[21] K. S. Narendra and A. M. Annaswamy, Stable adaptive systems. New
Jersey: Prentice-Hall, Inc., 1989.

VI. APPENDIX

We present below two theorems on stability, paraphrased

from the literature for the purposes of this note; the first is

on cascaded systems, the second establishes stability for a

class of adaptive control systems.

Consider the system (6) where x1 ∈ R
n, x2 ∈ R

m, x ,
[

x1 x2

]T
. The function f1 is locally Lipschitz in x1

uniformly in t and f (·, x1) is continuous, f2 is continuous

and locally Lipschitz in x2 uniformly in t, g is continuous

in t and once differentiable in x. The theorem given below

which is reminiscent of the results originally presented in

[20] establishes unifom global exponential stability of the

cascaded non-autonomous systems.

Theorem 1 Let the respective origins of

Σ1 : ẋ1 = f1 (t, x1) (17)

Σ2 : ẋ2 = f2 (t, x2) (18)

be uniformly globally exponentially stable and let the fol-

lowing assumptions hold.

(A1) There exist a Lyapunov function V : R≥0 × R
n →

R≥0 for (24) which is positive definite, radially

unbounded,

V̇(24)(t, x1) :=
∂V

∂t
+

∂V

∂x1
f1(t, x1) ≤ 0

and constants c1, c2, η > 0 such that
∣

∣

∣

∣

∂V

∂x1

∣

∣

∣

∣

|x1| ≤ c1V (t, x1) ∀ |x1| ≥ η (19)

∣

∣

∣

∣

∂V

∂x1

∣

∣

∣

∣

≤ c2 ∀ |x1| ≤ η (20)

(A2) There exist two continuous functions θ1, θ2 :
R≥0 → R≥0 such that g(t, x1, x2) satisfies

|g(t, x1, x2)| ≤ θ1 (|x2|) + θ2 (|x2|) |x1| (21)

Then, the origin of the cascaded system (22), (23) is

uniformly globally exponentially stable.

Note that Assumption A1 holds for quadratic functions; let

V (t, x1) := x⊤
1 Px1 with P positive definite then

∣

∣

∣

∣

∂V

∂x1

∣

∣

∣

∣

= |Px1| ≤ λM (P ) |x1| ≤ λM (P ) ∀ |x1| ≤ 1

while
∣

∣

∣

∣

∂V

∂x1

∣

∣

∣

∣

|x1| ≤ λM (P ) |x1|2 ≤ λM (P )

λm(P )
V (t, x1) ∀ x1 ∈ R

n1 .

Roughly speaking, Assumption A2 holds if g(t, x1, x2)
has linear growth order with respect to x1, uniformly in t
for each fixed x2.

The following theorem is restated from the literature on

adaptive control, see for instance [21].

Theorem 2 For the system
[

ė

θ̇

]

=

[

A B(t)
C(t)⊤ 0

]

(22)

Let A be Hurwitz, let P = P⊤ > 0 be such that A⊤P +
PA = −Q is negative definite and PB = C⊤. Assume

that B is uniformly bounded and has a continuous uniformly

bounded derivative. Then, the origin is uniformly globally

exponentially stable if and only if B is persistently exciting

that is, if there exist positive constants µ and T such that

µ1I ≤
∫ t+T

t

B(τ)⊤B(τ)dτ ∀t ≥ 0. (23)


