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Introduction

Multifractal analysis for signal analysis was elaborated in the context of fully developped turbulence in order to study the signal of velocity of turbulent fluid, whose regularity is changing from point to point. Indeed one criterium for estimating the pointwise regularity of a signal at a point x 0 is to compute the pointwise Hölder exponent. Recall its definition. Definition 1. Let x 0 ∈ R d and α ≥ 0.

A locally bounded function f : R d → R belongs to C α (x 0 ) if there exists C > 0 and a polynomial P x0 with deg(P ) ≤ [α] and such that on a neighborhood of x 0 ,

|f (x) -P x0 (x)| ≤ C|x -x 0 | α . (1) 
The pointwise Hölder exponent of f at x 0 is h f (x 0 ) = sup{α : f ∈ C α (x 0 )}.

Under these assumptions, let α ∈ R be fixed and set E f (α) = {x 0 : h f (x 0 ) = α}.

Performing the multifractal analysis of the signal f is computing for every α the Hausdorff dimension d f (α) of the set E f (α).

If E f (α) is non empty for more than two values of α the function is called a multifractal function (if it is not empty for one single value of α it will be called a monofractal function). The map α → d f (α) is called the spectrum of Hölder singularities of the function f .

For example one can see that the classical Weierstrass function

f : x → n∈N A n cos(B n x)
with AB > 1 and A < 1 is a monofractal function, indeed d f (α) = -∞ for α = -ln(A) ln(B) and 1 for α = -ln (A) ln (B) . Other examples can be found in numerous works and studies of multifractal functions (see [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF] for references).

Other types of pointwise singularities can be studied. Calderon and Zygmund in [START_REF] Calderón | Local properties of solutions of elliptic partial differential equations[END_REF] introduced a local exponent based on L p norms, the "p exponent". Definition 2. Let p ∈ [1, ∞] and u such that u ≥ -d p . Let f be a function in L p loc . The function f belongs to T p u (x 0 ) if there exists R > 0, P a polynomial such that deg(P ) ≤ u, and C > 0 such that

∀ρ ≤ R : 1 ρ d |x-x0|≤ρ |f (x) -P (x)| p dx 1 p ≤ Cρ u . (2) 
The p-exponent of f at x 0 is u p f (x 0 ) = sup{u : f ∈ T p u (x 0 )} Under these assumptions, let α ∈ R be fixed. We denote E f,p (α) = {x 0 : u p f (x 0 ) = α} and d f,p (α) the Hausdorff dimension of E f,p (α). The map α → d f,p (α) is called the spectrum of p-singularities of the function f . The p exponent was studied in the context of multifractal analysis in [START_REF] Jaffard | Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents[END_REF], [START_REF] Heurteaux | Multifractal analysis of images: new connexions between analysis and geometry[END_REF] for instance, but as far as we know there were not many contributions where examples of multifractal functions were studied from this point of view. The work of [START_REF] Fraysse | Regularity criteria for almost every function in Sobolev spaces[END_REF] proves that generically (in the sense of prevalence) in a given functional space like a Sobolev or Besov space, the spectrum of Hölder singularities and the one of p singularities coincide. Indeed the author proves the existence of a prevalent set of functions in a given Sobolev or Besov space (i.e a set whose complement is a Haar-null set) which have the same spectra. It is actually possible to exhibit families of functions which do not belong to this prevalent set. This is the case of the functions we will study.

Let us see that one can easily build functions were the two pointwise exponents are different at least at one given point. For example let α > 0 and the function

x → g(x) = | x | α ∞ j=1 I Dj (x) with D j = [ 1/2 j -1/2 3j , 1/2 j ] for j ≥ 0. The function g satisfies h g (0) = α < u p g (0) = α + 1/p for any p ≥ 1.
In this work we study a slight modification of the family of functions introduced by S. Jaffard [START_REF] Jaffard | Construction de fonctions multifractales ayant un spectre de singularités prescrit[END_REF], and prove that for each member of this family the spectrum of Hölder singularities and the one of p singularities are different. More precisely we will compute at each point of R the pointwise Hölder exponent, as well as the p-exponent. Whenever the two exponents are different, this is the signature of an oscillating behavior of "chirp" type (see details in Section 4.2 and also [START_REF] Jaffard | Wavelet Leaders in Multifractal Analysis[END_REF], [START_REF] Jaffard | Function spaces vs. scaling functions : Tools for image classification Mathematical Image processing[END_REF] on oscillating behaviors and wavelets) and we will prove that oscillating exponents that detect this kind of behavior are non trivial.

Furthermore we will also check that the spectra of singularities satisfy multifractal formalism type formulas. These formulas are generally heuristic formulas whose goal is to compute the spectrum of singularities with the help of global quantities. The first one was introduced by Frish and Parisi in the context of fully developped turbulence [START_REF] Parisi | On the singularity structure of fully developed turbulence; appendix to Fully developed turbulence and intermittency[END_REF]. It was then rewritten using wavelet analysis by A. Arnéodo and al. [START_REF] Arneodo | The thermodynamics of fractals revisited with wavelets[END_REF]. The domain of validity, counter examples and generic properties of this kind of formulas were the subjects of studies and they are still active fields [START_REF] Wendt | The contribution of wavelets in multifractal analysis[END_REF]. We will focus on the multifractal type formulas described in [START_REF] Jaffard | Wavelet Analysis of Fractal Boundaries. Part 2: Multifractal analysis[END_REF] since they fit with the kind of singularities we study. We will prove that these formulas are satisfied by our signals.

The content of the paper is as follows. We present some preliminary notions on wavelets and Hausdorff dimension in Section 2, then the family of functions under study in Section 3, and the main results of the paper in Section 4. Afterwards we provide developments and proofs of the main results separately: local regularity, spectra of singularities, and multifractal formalism are adressed in Section 5, 6 and 7 respectively.

2 Definitions and notations

Wavelet basis

In all the following Λ denotes the set of all dyadic intervals λ = [k2 -j , (k+1)2 -j [, j ∈ Z, k ∈ Z and Λ j with j ∈ Z the subset of dyadic intervals λ of the type

λ = [k2 -j , (k + 1)2 -j [ with k ∈ Z. We will sometimes write λ = (j, k) if no confusion is possible. The notation [x] significates that [x]
is the integer part of

x, and x denotes the smallest integer not less than x.

Recall that a wavelet basis is a set of functions such that φ and ψ are functions

in L 2 (R) and satisfy Ψ = {φ(. -k), k ∈ Z} {2 j/2 ψ(2 j . -k), j ≥ 0; k ∈ Z} is
an orthonormal basis of L 2 (R). We consider a wavelet basis regular enough, i.e φ and ψ are functions in C r+1 (R) with compact support. We will call r the regularity of the basis Ψ. This is always possible (see for example [START_REF] Daubechies | Ten lectures on wavelets[END_REF] for such constructions).

In order to simplify the notations we will write ψ λ (x) = 2 j/2 ψ(2 j x -k).

To sum up we have the following equality in L 2 (R)

∀f ∈ L 2 (R), f (x) = k∈Z c k φ(x -k) + j≥0 λ∈Λj c λ ψ λ (x) (3) 
with

c k = f (x)φ(x -k)dx, ∀k ∈ Z c j,k = c λ = f (x)ψ λ (x)dx. ( 4 
)

Hausdorff dimension

Definition 3. Let A ⊂ R d ; if ε > 0, an ε-covering of A is a countable collection R = {A i } i∈N such that each diameter |A i | is less than ε, and A ⊂ ∞ i=1 A i . If δ ∈ [0, d], set M δ ε = inf R i |A i | δ ,
where the infimum is taken on all -coverings R.

For any δ ∈ [0, d], the δ-dimensional Hausdorff measure of A is mes δ (A) = lim ε→0 M δ ε . There exists δ 0 ∈ [0, d] such that ∀δ < δ 0 , mes δ (A) = +∞ and ∀δ > δ 0 , mes δ (A) = 0;

this critical δ 0 is the Hausdorff dimension of A, and will be denoted by dim(A). Definition 4. For some function f , we define the Hölder spectrum by:

Suppose that A is a subset of R d ,
d f : h → dim(E h ), with E h = {x : h f (x) = h},
and the p spectrum by:

d p f : u → dim(E p u ), with E p u = {x : u f p (x) = u}.

Functions under study

We define a family of functions f on [0, 1] as a modification of a model by Jaffard [START_REF] Jaffard | Construction de fonctions multifractales ayant un spectre de singularités prescrit[END_REF]. The functions in this family depend on three parameters α, β and γ, with α ≥ 1 and β ≥ 1 integers and γ > 0 a non integer. We set

f (x) = λ∈Λ(α,β)
2 -(γ+1/2)j ψ λ (x). ( 5)

In (5), Λ(α, β) = m≥1 Λ (α,β) m
, where Λ

(α,β) m
is the set of λ = (j, k) such that

• j = αβm, m > 1, • 2 -j k = ε 1 1 + . . . + ε m-1 m-1 + ε m m
, where ε 1 = 1, and for each i > 1

ε i = ±1, ε i = ±1, i = 2 -i and i = 2 -αi .
In the sequel, we will denote by c λ the wavelet coefficients of the function f :

c λ =< f, ψ λ > .
Let us notice that for α = 1, the function is the same as the one of Jaffard [START_REF] Jaffard | Construction de fonctions multifractales ayant un spectre de singularités prescrit[END_REF].

Remark that the definition of f implies that each m > 1 creates 2 m-1 non vanishing coefficients identified by the dyadics k 2 m-1 ± 1 2 αm , k odd, and their scale αβm. Its values are all equal to 2 -(γ+1/2)αβm .

• In the special case where α = β = 1, this means that at each scale j all the irreducible fractions k 2 j , k odd, yield non vanishing wavelet coefficients.

• In the case where β = 1 and α = 2 each fraction k 2 m-1 ± 1 2 αm , k odd, is an irreducible fraction at scale j = αm.

This amounts to say that the non vanishing coefficients appear at scale j = αm on irreducible fractions which can be written k 1 provides the repartition of the wavelet coefficients at scale j = 1, .., 6 with α = 2 and β = 1.

2 j = K 2 m-1 ± 1 2 αm . Figure
• In case β > 1 the fraction of type K 2 m-1 ± 1 2 αm is no more irreducible at scale j = αβm. The coefficient will appear at a finer scale than scale αm.

Figure 2 gives an insight of this situation for

α = β = 2.
Following the characterization of C γ (R) (see for example [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF]) with the help of wavelet coefficients we have f ∈ C γ (R) since its wavelet coefficients satisfy: for all j ≥ 0 and all dyadic interval

λ ∈ Λ j , |c λ | ≤ 2 -j(γ+1/2) .
Remark also that f is compactly supported, thus it is in all L p spaces for p ≥ 1.

Following [START_REF] Hernández | A First Course on Wavelets[END_REF] (see Chapter 5 Section 5.3), and the fact that f is bounded and in C γ (R), we get that the serie in [START_REF] Daubechies | Ten lectures on wavelets[END_REF] converges in all L p for 1 ≤ p ≤ ∞.

j = 6 j = 5 j = 4 j = 3 j = 2 j = 1 0 1 m = m = m = • • • • • • Figure 1: Case β = 1 and α = 2. The non vanishing wavelet coefficients • appear on dyadic points k 2 j = K 2 m-1 ± 1 2 αm with K odd and j = αm.
-if we choose m = 2 and j = 4, then k

2 j = ε1 1 + ε 2 2 = 1 2 ± 1 2 4 yields non vanishing coefficients at scale j = 4.
-if we choose m = 3 and j = 6, then k

2 j = ε1 1 + ε2 2 + ε 3 3 = 1 2 ± 1 4 ± 1 2 6 yields non vanishing coefficients at scale j = 6. j = 12 j = 11 j = 10 j = 9 j = 8 j = 7 j = 6 j = 5 j = 4 j = 3 j = 2 j = 1 0 1 m = m = • • • • • • Figure 2: Case β = 2 and α = 2.
The non vanishing wavelet coefficients • appear on dyadic points k 2 j = K 2 m-1 ± 1 2 αm with K odd and j = αβm.

Results

Hölder and p-singularities

One of the key point in multifractal analysis of a function is to understand the underlying structure of the sets E h and E p u . It turns out as we will see in the following that there is a deep connection between these sets and sets of points approximated by special sequences of dyadics. Let us introduce what we mean by these "special sequences".

Let α be an integer larger or equal than 1, and S α the set of dyadic points such

that k 2 j ∈ S α if one can find (j, k) such that k 2 j = k 2 j-1 ± 1 2 αj with k 2 j-1
an irreducible fraction of order j -1. The set S α describes exactly the locations of non vanishing wavelet coefficients in f . We will need the rate of approximation of x 0 by dyadics in this set S α given by

r α (x 0 ) = lim sup j →∞ log(|K j (x 0 )2 -j -x 0 |) log(2 -j ) , (6) 
where

K j (x 0 ) = argmin k / k2 -j ∈Sα (|x 0 -k2 -j |) and (j, k j-1 (x 0 )) the integers such that K j (x0) 2 j = kj-1(x0) 2 j-1 ± 1 2 αj with kj-1(x0) 2 j-1
an irreducible fraction.

Since we always have

K j (x 0 )2 -j -x 0 ≤ 2 -(j-1) , (7) 
then r α (x 0 ) ≥ 1.

Remark that dyadic points satisfy exactly r α (x 0 ) = 1. Indeed if

x 0 = K0 2 j 0 is a dyadic point then for j large enough |x 0 -K j (x 0 )2 -j | = 1 2 j-1 -1 2 αj , which yields r α (x 0 ) = 1.
Given the definition of r α (x 0 ), for every δ > 0 there exists a subsequence m n (m n → ∞ when n → ∞) and m n , with

K m n (x0) 2 m n = km n-1 2 mn-1 ± 1 2 αmn such that, |K m n (x 0 )2 -m n -x 0 | < 2 -mn(rα(x0)-δ) . (8) 
Furthermore, still using the definition of r α (x 0 ), for every ε > 0, there exists a constant M > 0 such that for all m ≥ M , there is m ≥ M/α

|K m (x 0 )2 -m -x 0 | > 2 -m(rα(x0)+ε) . (9) 
We can now give the results we want to prove in the following.

Theorem 1. Let α, β and γ, with α ≥ 1 and β ≥ 1 two integers and γ > 0 a non integer. Let p ≥ 1.

• Suppose x 0 ∈ [0, 1] and r α (x 0 ) ≤ αβ then h f (x 0 ) = αβγ rα(x0) and u p f (x 0 ) = αβγ rα(x0) + αβ rα(x0) -1 1 p . • Suppose x 0 ∈ [0, 1] and r α (x 0 ) > αβ then h f (x 0 ) = αβγ and u p f (x 0 ) = αβγ + αβ-1 p . • x 0 / ∈ [0, 1] then h f (x 0 ) = u p f (x 0 ) = +∞.
As a corollary we get .

The proof of Theorem 1 is given in Section 5 and the one of Corollary 2 in Section 6.

The results on the multifractal formalisms can be found in Section 7.

Oscillation singularities

Our main theorem proves that whenever x 0 is such that r α (x 0 ) = αβ we have

h f (x 0 ) < u p f (x 0
). We will prove that the singularity at x 0 is an oscillating one by computing the oscillating singularity exponent. This will precise quantitatively the behavior of the function at x 0 .

Let us first explain what we mean by "oscillating exponent". We first give some notations.

Let t > 0 and let h t f (x 0 ) denote the Hölder exponent of the fractional primitive of order t at x 0 of a function f ∈ L ∞ loc . More precisely let φ be a C ∞ compactly supported function satisfying φ(x 0 ) = 1. Let (Id -∆) -t/2 be the convolution operator which amounts to multiply the Fourier transform of the function with

(1 + |ξ| 2 ) -t/2 ; we denote by h t f (x 0 ) the Hölder exponent at x 0 of the function

f t = (Id -∆) -t/2 (φf ).
The following definition was introduced in [START_REF] Arneodo | Oscillating singularities on Cantor sets: A grandcanonical multifractal formalism[END_REF] (see also [START_REF] Jaffard | Wavelet methods for pointwise regularity and local oscillation of functions[END_REF], where alternative definitions are discussed).

Definition 5. Let f : R d → R be a bounded function. If h f (x 0 ) = +∞, then
the oscillation exponent of f at x 0 is defined by

β f (x 0 ) = ∂ ∂t h t f (x 0 ) t=0 -1 (10) 
(where the derivative at t = 0 should be understood as a right-derivative).

Note that the mapping t -→ h t f (x 0 ) is a concave increasing function [START_REF] Arneodo | Oscillating singularities on Cantor sets: A grandcanonical multifractal formalism[END_REF]. So that the derivative in [START_REF] Jaffard | Wavelet Leaders in Multifractal Analysis[END_REF] always exists (but may be infinite).

One can check that for the function f : x → |x| α sin

1 |x| β+1
with α > 0 and β > 0 we have h f (x 0 ) = α and β f (x 0 ) = β > 0 (see [START_REF] Jaffard | Wavelet methods for pointwise regularity and local oscillation of functions[END_REF] for more details on chirp-type behavior in a wavelet basis-setting). This example is typical for the kind of behavior we wish to describe with the oscillating singularity exponent.

We will see that we can derive directly the computation of the oscillating singularity exponent from the previous theorem.

Proposition 1. Let α, β and γ, with α ≥ 1 and β ≥ 1 two integers and γ > 0 a non integer.

• Suppose x 0 ∈ [0, 1] and r α (x 0 ) ≤ αβ then β f (x 0 ) = αβ rα(x0) -1.
• Suppose x 0 ∈ [0, 1] and r α (x 0 ) > αβ then β f (x 0 ) = αβ -1.

• x 0 / ∈ [0, 1] then β f (x 0 ) = 0. If x 0 ∈ [0, 1] the critical case r α (x 0 ) = αβ is the only one for which β f (x 0 ) = 0.
As a corollary we can compute the dimension of the set of points E (h,βo) = {x 0 : 5 Local regularity and wavelet coefficients

(h f (x 0 ), β f (x 0 )) = (h, β o )} that we will denote d(h, β o ).

Hölder regularity

We first want to study the pointwise Hölder regularity of the function f at each point x 0 ∈ R. This amounts to compute the pointwise Hölder exponent at x 0 ∈ R. Recall that we can apply Theorem 1 of [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF] which relates the so called wavelet leaders, which depend on the wavelet coefficients of f , with the pointwise Hölder exponent at x 0 . We need to start with a definition. Definition 6. [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF] Two dyadic intervals λ 1 and λ 2 are called adjacent if they are at the same scale and if dist(λ 1 , λ 2 ) = 0 (note that a dyadic interval is adjacent to himself ). We denote by λ j (x 0 ) the dyadic interval of size 2 -j containing

x 0 and 3λ j (x 0 ) the set of 3 dyadic intervals adjacent to λ j (x 0 ).

More precisely if λ = (j, k) then we denote λ l = (j, k -1) and λ r = (j, k + 1).

Then let

d j (x 0 ) = sup λ∈3λj (x0) d λ (11) 
with

d λ = sup λ ⊂λ |2 j /2 c λ |, (12) 
d λ is called a "wavelet leader".

Theorem 4. [17] Let δ > 0, x 0 ∈ R and f be a function in L ∞ (R). Suppose Ψ is a wavelet basis of regularity r > [δ] + 1.
• Suppose f is in C δ (x 0 ). Then there exists C > 0 such that

∀j ≥ 0, d j (x 0 ) ≤ C2 -δj . (13) 
• Conversely suppose that (13) holds and furthermore there exists ε > 0 such that f ∈ C ε (R). Then f belongs to C δ (x 0 ) for all δ < δ. In particular this means that h f (x 0 ) ≥ δ.

• Suppose f ∈ C ε (R). Then h f (x 0 ) = lim inf j→∞ ln(dj (x0)) ln(2 -j ) .
Since f belongs to C γ (R) we only need to compute, at each point x 0 , d j (x 0 ) at each scale j ≥ 0. This is what is done in Section 5.4.

L p pointwise regularity

To study and compute the p exponent at each point x 0 in R, we also compute some quantities related to wavelet coefficients.

Define the so-called p leader

D λ,p = λ ⊂λ |c λ | p 2 j ( p 2 -1) 1/p , (14) 
We set

D j,p (x 0 ) =   λ ⊂3λj (x0) |c λ | p 2 j ( p 2 -1)   1/p , (15) 
with the notation λ = (j , k ).

It is easy to see that actually

D j,p (x 0 ) = λ∈3λj (x0) D p λ,p 1/p 
. Before stating the characterization theorem of [START_REF] Jaffard | Wavelet Analysis of Fractal Boundaries. Part 2: Multifractal analysis[END_REF], we need to recall the characterization of Besov spaces B s,p p [START_REF] Meyer | Ondelettes et opérateurs[END_REF].

Theorem 5. Let s ∈ R and ∞ > p > 0, q > 0 and r an integer such that r > [s] + 1. Let Ψ be a r regular wavelet basis.

Suppose f is a tempered distribution with c k , k ∈ Z, (c jk ) j≥0;k∈Z its wavelet coefficients defined by (4).

A tempered distribution f belongs to B s,p p if (c k ) belongs to l p and if

j≥0 k c j,k 2 (s+1/2-1/p)j p < +∞. ( 16 
)
Remark that a compactly supported function in C ε (R) belongs to any Besov space B s,p p for s < ε.

We have the following theorem of [START_REF] Jaffard | Wavelet Analysis of Fractal Boundaries. Part 2: Multifractal analysis[END_REF] in a slightly modified version in comparison to the original one Theorem 6. Let p ≥ 1 and u > -1 p . Let Ψ a r regular wavelet basis with r ≥ [u] + 1.

• Suppose f belongs to T p u (x 0 ) then there exists a constant C > 0 such that for all j ≥ 0 D j,p (x 0 ) ≤ C2 -j(u+1/p) .

• Suppose f belongs to B δ,p p for some δ > 0. If there exists a constant C > 0 such that [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF] holds for all j ≥ 0 then f ∈ T p u (x 0 ) for all u < u.

• Suppose f ∈ B δ,p p for some δ > 0. Then

u f p (x 0 ) = lim inf j→∞ ln(Dj,p(x0)) ln(2 -j ) -1 p .
Remark that whenever the Hölder exponent at a point x 0 of a function f is defined, and if this function satisfies the hypothesis of Definitions 1 and 2 we immediately have

h f (x 0 ) ≤ u p f (x 0 ). ( 18 
)

Oscillating singularities

Exactly as previously we can define the s-wavelet leader for s > 0

d s j (x 0 ) = sup λ ⊂3λj (x0) |2 j (-s+ 1 2 ) c λ |, (s -leader). ( 19 
)
The following characterization holds, derived from Theorem 4.

Proposition 2. Let f be in C ε (R) for > 0. Then h s f (x 0 ) = lim inf j→∞ ln(d s j (x0))
ln(2 -j ) .

Study of the pointwise regularity of the function f

We give in the next section 5.4.1 the proof of Theorem 1 in the case β = 1.

For seek of completeness, the modifications needed to be done when β > 1 are given in section 5.4.2. We end up by proving in Section 5. In all what follows we have p ≥ 1 and denote ap = γp + 1.

Case β = 1

Wavelet and p leaders Let λ be a dyadic interval indexed by (j, k). Let m 1 be an integer such that α(m 1 -1) < j ≤ αm 1 .

1 Suppose k 2 j = K 2 m is an irreducible fraction with m ≥ m 1 . It means that the coefficient associated with the irreducible fraction will appear at scale α(m + 1) ≥ j. So this coefficient will be the first non vanishing coefficient. Then

d λ = sup λ ⊂λ |2 j /2 c λ | = 2 -αγ(m +1) . j = 6 j = 5 j = 4 j = 3 j = 2 j = 1 • • × k 2 j K 2 m
For what concerns the p-leaders, we already talked about the first nonvanishing coefficient. The following coefficient is located in k 2 j + 1 2 j and appears at scale α(j + 1) if m < j, and if m = j at scale α(j + 2) at

location k 2 j + 1 2 j+1 -1 2 α(j+2) . We get in all cases 2 -apα(m +1) ≤ D p λ,p ≤ 2 -apα(m +1) + ∞ =j+1 2 -(j+1) 2 -apα = 2 -apα(m +1) +C2 -apαj .
2 Now suppose that k 2 j = K 2 m is an irreducible fraction with m < m 1 . That means that the coefficient associated with this irreducible fraction appears at scale αm < j, so before the scale we consider. But in that case, we can notice that k 2 j + 1 2 j is irreducible and one of the corresponding coefficient appears at

location k 2 j + 1 2 j - 1 2 α(j+1) . This yields d λ = 2 -αγ(j+1) . j = 6 j = 5 j = 4 j = 3 j = 2 j = 1 • • × k 2 j K 2 m
Again, the p-leader is simply given by

D p λ,p = 2 -apα(j+1) + ∞ =j+2 2 -(j+2) 2 -apα = C2 -apαj .
Computation of the local regularity of f Let us now prove Theorem 1 in case β = 1. Let x 0 ∈ R and p ≥ 1.

1. Let us first remark that for x 0 / ∈ [0, 1], we have for j large enough d j (x 0 ) = 0 = D j,p (x 0 ) since for j large enough all the wavelet coefficients adjacent to λ j (x 0 ) are vanishing. Thus h f (x 0 ) = u f p (x 0 ) = +∞.

2. Let x 0 ∈ [0, 1] and r α (x 0 ) defined as in [START_REF] Durand | Sets with large intersection and ubiquity[END_REF]. Let δ > 0. As it is explained in Section 2, one can find sequences m n → +∞ and m n → +∞ which satisfy [START_REF] Fraysse | Regularity criteria for almost every function in Sobolev spaces[END_REF].

Let

j n = [m n (r α (x 0 ) -δ)]. Let m (n) 1
defined by α(m

(n) 1 -1) ≤ j n < αm (n) 1
i.e. α(m

(n) 1 -1) ≤ m n (r α (x 0 ) -δ) < αm (n) 1 . ( 20 
)
Let

k n such that λ jn (x 0 ) = (j n , k n ) = λ n .
Recall that λ l n = (j n , k n -1), and λ r n = (j n , k n + 1) .

As we already mentioned it, we have

d jn (x 0 ) = sup{d λ l n , d λ r n , d λn }.
On the other hand for ε > 0 one can find M such that for m ≥ M (9) is satisfied.

Let us consider 3λ j (

x 0 ) = [(k j -1)2 -j , (k j + 2)2 -j [. Choose m the small- est integer such that K m 2 m = km-1 2 m-1 -1 2 αm or K m 2 m = km-1 2 m-1 + 1 2 αm belongs to 3λ j (x 0 ).
Remark also that it is always possible to choose j large enough such that

m ≥ M . Thus K m 2 m -x 0 > 2 -m(r(x0)+ε) .
Since K m 2 -m ∈ 3λ j (x 0 ) we have

3 2 j+1 > 2 -m(r(x0)+ε) ln(3) ln(2) -1 + m(r(x 0 ) + ε) > j. ( 21 
)
Thus j ≤ m(r α (x 0 ) + ε).

Again define m 1 such that

α(m 1 -1) ≤ j < αm 1 . ( 22 
)
We consider the following cases (a) r α (x 0 ) ≤ α.

Thus we have immediately

m n ≥ m (n) 1 . Since (8) is satisfied, K m n 2 m n ∈ 3λ jn (x 0 ).
It is related to Case 1 and yields

d jn (x 0 ) ≥ C2 -αγmn . ( 23 
)
Thus for any δ > 0

h f (x 0 ) = lim inf j→∞ log d λj (x0) log 2 -j ≤ lim inf n→∞ log d λj n (x0) log 2 -jn ≤ αγm n (r α (x 0 ) -δ)m n = αγ r α (x 0 ) -δ . ( 24 
)
On the other hand we choose ε > 0 small enough so that r α (x 0 )+ε < α if r α (x 0 ) < α, and we will have

r α (x 0 ) + ε > α if r α (x 0 ) = α. i. If r α (x 0 ) < α then α(m 1 -1) ≤ m(r(x 0 )+ε) < αm and m 1 ≤ m.
This is again related to Case 1 and yields

d j (x 0 ) ≤ 2 -αγm . (25) 
Thus we get

h f (x 0 ) ≥ αγ r α (x 0 ) . (26) 
Thus together with (24) we have h f (x 0 ) = αγ rα(x0) .

Furthermore following the same proof and using the p leader computed in Case ?? we have

u p f (x 0 ) = α(γ+ 1 p ) rα(x0) -1 p . ii. If r(x 0 ) = α, then we may have m ≤ m 1 , with K m 2 m = k 2 m-1 + 1 2 αm inside 3λ j (x 0 ).
This yields in all cases again

d j (x 0 ) ≤ 2 -αγm . (27) 
Thus we get

ln(d j (x 0 )) ln(2 -j ) ≥ αγ(m + 1) j ≥ αγm m(α + ε) ≥ αγ α + ε . (28) 
Thus together with (24) we have

h f (x 0 ) = αγ α = αγ rα(x0) .
The same computation yields

u p f (x 0 ) = α(γ+ 1 p ) rα(x0) -1 p . (b) Suppose r(x 0 ) > α. Thus m (n) 1 > m n .
It is related to Case 2 and yields

d jn (x 0 ) ≥ C2 -αγjn . ( 29 
)
Thus we have the upper-bound

h f (x 0 ) ≤ lim inf n→∞ log d λj n (x0) log 2 -jn ≤ αγj n j n = αγ. (30) 
For the lower bound we pick up ε small enough and have r α (x 0 )+ε > α. This yields that we may have m ≤ m 1 and get

d j (x 0 ) ≤ C2 -αγj . (31) 
This yields

.h f (x 0 ) ≤ αγ. (32) 
Together with (30) we have

h f (x 0 ) = αγ. (33) 
The same computation yields

u p f (x 0 ) = α(γ + 1 p ) -1 p .

Case β > 1

Wavelet and p-leaders. The coefficients appear every αβ scales. There is a difference between the scale at which the location of the coefficient appears (αm) and the scale at which the coefficient really appears (αβ(m -1)). This is the reason why we need to define these two coefficients m 0 and m 1 , which satisfy:

αβ(m 0 -1) < j ≤ αβm 0 , α(m 1 -1) ≤ j < αm 1 .
When β > 1, we have the following situation: For what concerns the p-leader, since m ≤ m 1 -1, we can have a non vanishing coefficient located at λ ⊂ λ with λ = (j , k ) such that k

0. Suppose that k 2 j = K 2 m-1 ± 1 2 αm , with m ≥ m 0 . Since we need to have mα ≤ j, this yields m 0 ≤ m ≤ m 1 -1. j = 4 j = 5 j = 6 j = 7 j = 8 1 2 + 1
2 j = k 2 j + 1 2 α(αm+1) if α(αm + 1) ≥ j.
Remark that if we set a l = α l m + l-1 n=0

α n for l ≥ 1, whenever αa l ≥ j, we will have a non vanishing coefficient located at λ ⊂ λ with λ = (j , k )

such that k 2 j = k 2 j + l n=1 1 
2 αan . The contribution of these coefficients is anyway at most

+∞ n=1 2 -apαβan ≤ +∞ n=1 2 -apαβα n m ≤ +∞ n=1 2 -apαβnαm ≤ 2 -apα 2 βm 1 -2 -apα 2 βm ≤ 1 2 apα 2 βm -1 . (34) 
Remark that

1 2 apα 2 βm -1 ≤ 2 -apαβm with C = 1 2 ap(α 2 -α)β -1 independant of m.
Otherwise the first scale j > j at which a non vanishing coefficient can appear is αβ(j + 1). This yields in all the cases

2 -apαβm + ∞ =j+1 2 -j 2 -apαβ ≤ D p λ,p ≤ (C + 1) × 2 -apαβm + ∞ =j+1 2 -j 2 -apαβ 2 -apαβm ≤ D p λ,p ≤ C + 1 + 2 1 -2 -apαβ 2 -apαβm . (35)
The other cases are very similar to those already studied with β = 1 (cases 1. and 2. in Section 5.4.1), and we find:

1. suppose that k 2 j = K 2 m is an irreducible fraction with m ≥ m 1 . Then d λ = 2 -αβγm and the p-leader is bounded by

2 -apαβm ≤ D p λ,p ≤ 2 -apαβm + C2 -apαβj . 2. Suppose k 2 j = K 2 m (or K 2 m -1 2 j
) is an irreducible fraction which is not of the type studied in 0., with m < m 1 . Thus we will have d λ = 2 -αβγ(j+1) , and

D p λ,p = C2 -apαβ(j+1) .
Computation of the local regularity of f The only case that really differs from what we have done when β = 1 is the case α < r(x 0 ) ≤ αβ. This yields

m (n) 0 ≤ m n < m (n) 1 .
It is related to Case 0. and yields

d jn (x 0 ) ≥ C2 -αβγmn . ( 36 
)
Thus we get

h f (x 0 ) ≤ αβγ r α (x 0 ) . ( 37 
)
The same computation yields in the case of the p exponent

u p f (x 0 ) ≤ αβ γ + 1 p r α (x 0 ) - 1 p . (38) 
On the other hand we have to consider the following cases.

1. If α < r α (x 0 ) < αβ, choosing ε small enough we have α < r α (x 0 ) + ε and r α (x 0 ) + ε < αβ. Using the same notations as in the general setting of this section we get m 0 ≤ m but may have m < m 1 . This is again related to Case 0. and yields

d j (x 0 ) ≤ C2 -αβγm . (39) 
Thus the following upper-bound holds

h f (x 0 ) ≥ αβγ r α (x 0 ) . ( 40 
)
Together with (37 ) this yields

h f (x 0 ) = αβγ r α (x 0 ) . ( 41 
)
The same computation yields u p f (x 0 ) = αβ(γ+ 1 p ) rα(x0) -1 p .

2. If r α (x 0 ) = αβ remark that the upperbound (37) yields

h f (x 0 ) ≤ γ.
Since we already know that h f (x 0 ) ≥ γ because f ∈ C γ (R) this yields

h f (x 0 ) = αβγ r α (x 0 ) = γ. ( 42 
)
For what concerns the p exponent the bound (38) yields

u p f (x 0 ) ≤ γ.
Since we know already that u p f (x 0 ) ≥ h f (x 0 ) = γ (see ( 18)) we get

u p f (x 0 ) = αβ(γ + 1 p ) r α (x 0 ) - 1 p = γ. ( 43 
)
This proves Theorem 1.

Oscillating singularities

Let s > 0.

Remark that computing h s f (x 0 ) or h f (x 0 ) necessitates the same amount of efforts.

Indeed we have f s = λ∈Λ(α,β) c s λ ψ s λ (x) where ψ s is the fractional integrate of ψ, and c s λ = 2 -j(γ+s+ 1 2 ) if λ ∈ Λ(α, β) and 0 otherwise.

One could argue that {ψ s λ = 2 j/2 ψ s (2 j . -k), j ≥ 0, k ∈ Z} is not exactly a wavelet basis. Following [START_REF] Arneodo | Oscillating singularities on Cantor sets: A grandcanonical multifractal formalism[END_REF] we can anyway compute the regularity of f s taking c s λ as the amplitude of the coefficients of f s in the formula of the wavelet leaders. This means, following Proposition 2, that we have h s f (x 0 ) = lim inf j→∞ ln( ds j (x0)) ln(2 -j ) with ds j (x 0 ) = sup λ ⊂3λj (x0)

2 j /2 |c s λ |.
The location of the non vanishing coefficients is the same in f s and f . Their amplitude at scale j is respectively 2 -j(γ+s+ 1 2 ) and 2 -j(γ+ 1 2 ) . Thus we can estimate ds j (x 0 ) with the same formula which yields d j (x 0 ) taking γ + s instead of γ. This amounts to use the results of Theorem 1 taking γ + s instead of γ.

Thus • if r α (x 0 ) ≤ αβ we have h s f (x 0 ) = αβ(γ+s) rα(x0) , • if r α (x 0 ) > αβ we have h s f (x 0 ) = αβ(γ + s).
The oscillating exponent follows by Formula (10).

Spectra of singularities

Let F α r = {x 0 : r α (x 0 ) ≥ r, r < ∞} and G α r = {x 0 : r α (x 0 ) = r, r < ∞}.

We want to compute the Hausdorff dimension of G α r . To do this we will first compute the Hausdorff dimension of F α r . We will prove that its Hausdorff dimension is exactly 1 r . Remark that the upper bound of the Hausdorff dimension of a set is in general rather straightforward if one can find an appropriate covering of the set.

Generally it is more difficult to obtain a lower bound. Theorem 7. Let τ be a real number with τ ≥ 1. Let the family (x i , r i ) i≥1 be a homogeneous ubiquitous system in some open interval U.

The Hausdorff dimension of the set lim sup B(x i , r τ i ) is at least equal to 1 τ . Furthermore mes w 1 τ (lim sup B(x i , r τ i )) = +∞.

Our goal is to prove the following Lemma.

Lemma 1. Let r ≥ 1 and F α r = {x 0 : r α (x 0 ) ≥ r, r < ∞} and G α r = {x 0 :

r α (x 0 ) = r, r < ∞}. Then 1. The Hausdorff dimension of F α r is exactly 1 r .
2. The Hausdorff dimension of G α r is exactly 1 r .

Proof.

1. We first build a homogeneous ubiquitous system (x m , r m ) m≥1 such that lim sup m→+∞ B(x m , r r m ) ⊂ F α r .

We want to have S α = {x m , m ∈ N}. Since the points of S α are indexed by k and j we need to reindex it.

Let Indeed, suppose x 0 ∈ lim sup B(x m , r r m ). For all m ∈ N, there exists n ≥ m such that x 0 ∈ B(x n , r r n ), so

x 2n = k 2 j-1 -1 2 αj and x 2n+1 = k 2 j-1 + 1 2 αj with 0 ≤ k ≤ 2 j -1 and n = k + 2 j-1 . We set r 2n = r 2n+1 = 2 -(j-1) for 2 j-1 ≤ n ≤ 2 j -1.
x n -x 0 ≤ 2 -r×rn log | kj n -1 2 jn -1 + εj 2 αjn -x 0 | log(2 jn-1 ) ≥ r,
Remark that we have

r α (x 0 ) = lim sup n→+∞ log | kj n -1 2 jn -1 + εj 2 αjn -x 0 | log(2 jn ) = lim sup n→+∞ log | kj n -1 2 jn -1 + εj 2 αjn -x 0 | log(2 jn-1 ) (44) 
Thus we have r α (x 0 ) ≥ r. Hence the first inclusion.

Furthermore let δ > 0 such that r -δ > 0. We have in fact

lim sup m→+∞ B(x m , r r m ) ⊂ F α r ⊂ lim sup m→+∞ B(x m , r r-δ m ). (45) 
Indeed we can use ( 8) and (44) on the right-hand side inequality and the conclusion is straightforward.

Denote A r = lim sup m→+∞ B(x m , r r m ) for r ≥ 1.

We have two cases. Thus for all δ > 0 we have dim(F α r ) ≤ 1 r-δ . This proves dim(F α r ) ≤ 1 r .

• Let now give a lower bound for the Hausdorff dimension of F α r .

Since (x m , r m ) m≥1 is a homogeneous ubiquitous system, we can

Multifractal formalism with Oscillation spaces

Jaffard in [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF] (Definition 15) gives a multifractal type formula to compute the Hölder spectrum of singularities, the so called multifractal formalism for Hölder spectrum. This formula, unlike previous formulas which were stated before, is stable under oscillating behaviors and is easy to compute once we have the wavelet leaders d λ . We will check that it is satisfied in our case.

Recall the definition with the help of wavelet leaders. Indeed we want to compute the following function of q ω f (q) = sup{s : ∀j ≥ 0, 2 j(s-1) λ∈Λj d q λ < +∞}. (hq -ω f (q) + 1).

Let us check if this formula is true for our function f .

As usual define m 0 = j αβ and m 1 = j α . We have 2 j dyadics intervals at scale j inside [0, 1] with 2 m irreducible fractions of type k 2 m-1 ± 1 2 αm for m 0 ≤ m ≤ m 1 with a general count of 2 αm-1 of irreducible fractions at scale αm.

Let Ω f (j, q) = 2 j(s-1) (A 1 (j, q) + A 2 (j, q) + A 3 (j, q)),

f (p 0 ) = h αγβ .

Since d f (h) = d O (h) for all h the multifractal formalism with oscillation spaces is satisfied.

Multifractal formalism with p-Oscillation spaces

The same kind of formula as in the Hölder case exists in order to compute the p spectrum. The claim is the following (see [START_REF] Jaffard | Wavelet Analysis of Fractal Boundaries. Part 2: Multifractal analysis[END_REF] for details): compute ω f (p, q) = sup{s : ∀j ≥ 0, 2 j(s-1) λ∈λj D q λ,p < +∞}.

Then

d p (h) = inf q (hq -ω f (p, q) + 1) should give d p (h) = d f,p (h). 
We can check that this is actually true for our function f . Indeed remark that it is enough to replace γ by a in the previous computation of Section 7.1 to compute exactly the formula for the p spectrum and get it. The multifractal formalism for the p exponent is satisfied.

Corollary 2 . 1 p

 21 The Hölder spectrum of f is the function d f defined on the interval [γ, αβγ] such that d f (h) = h αβγ . The p spectrum is the function d f,p defined on the interval [γ, αβγ + αβ-1 p ] and such that d f,p (u) = u+ αβ(γ+ 1 p )

Corollary 3 .

 3 Let α, β and γ, with α ≥ 1 and β ≥ 1 two integers and γ > 0 a non integer. The function (h, β o ) → d(h, β o ) is supported on the segment h = (β o + 1)γ with β o ∈ [0, αβ -1] and on this segment d(h, β o ) = h αβγ = βo+1 αβ .

4 . 3

 43 Proposition 1 as a consequence of Theorem 1.

4 .

 4 So, with m = 2, the location of the coefficient appears at scale αm = 4 and the coefficient appears at scale αβm = 8. Furthermore, since j = 6, we have m 0 = 2 and m 1 = 4 and then m 0 ≤ m ≤ m 1 -1. Thus d λ = 2 -αβγm .

Following ( 7 - 1 2 jm - 1 + εj m 2

 7112 ) lim sup m→+∞ B(x m , r m ) is of full Lebesgue measure. Thus following Definition 7 the set (x i , r i ) i≥1 is a homogeneous ubiquitous system. We have lim sup m→+∞ B(x m , r r m ) ⊂ F α r 29 with x m ∈ S α , x m = kj mαjm and ε jm ∈ {1, -1}.

(a) Suppose r = 1 .Since A 1 •

 11 = lim sup m→+∞ B(x m , r m ) is of full Lebesgue measure, we have clearly dim(F 1 α ) = 1. (b) Suppose r > 1. We start by computing an upper bound for the Hausdorff dimension of F α r . Take δ and δ such that δ > δ and r-δ > r-δ > 1. We can compute an upper-bound for the 1 r-δ dimensional Hausdorff measure of A r-δ . Indeed by definition A r-δ = n∈N m≥n B(x m , r r-δ m ).Thus for all n ∈ N for all δ > δ we have mes 1 r-δ (A r-δ ) ≤ C, which proves dim(A r-δ ) ≤ 1 r-δ .

  (47) Then the multifractal formalism claimsd(h) = d O (h) with d O (h) = inf q

Acknowledgments. The authors would like to thank Stéphane Jaffard and the two referees for their insightful and accurate comments, which helped to improve the paper significantly.

Several results could be used to derive this lower bound but we will make use of recent results by Durand [START_REF] Durand | Sets with large intersection and ubiquity[END_REF] in the version proposed by A. Amou and Y.

Bugeaud [START_REF] Amou | Exponents of Diophantine approximation and expansions in integer bases[END_REF], since this result can be applied directly in our case. Definition 7. Let U be a real open interval. Let (x i ) i≥1 be points in U and let (r i ) i≥1 be a sequence of positive real numbers such that lim i→∞ r i = 0. The family

We need also a classical extension of the definition of Hausdorff measure. Definition 8. Let w: R + → R + be a continuous increasing function satisfying w(0) = 0, and let A be a bounded subset of R.

If |B| denotes the diameter of the set B, let

where the infimum is taken on all coverings R by families of balls (A i ) i∈N of radius at most ε.

The mes w -measure of A is defined as

For a > 0 we will make use of the functions

It is easy to prove that if a set has a mes wa -measure strictly positive then its

Hausdorff dimension is at most a.

Theorem D of [START_REF] Amou | Exponents of Diophantine approximation and expansions in integer bases[END_REF] proved in [START_REF] Durand | Sets with large intersection and ubiquity[END_REF] yields the following.

apply Theorem 7 and get a lower bound for dim(A r ). This yields immediately that dim(F α r ) ≥ 1 r .

Combining the upper bound and the lower bound we get dim(F α r ) = 1 r .

Let compute the Hausdorff dimension of

Remark that

Following Theorem 7 we have mes w 1 r

On the other hand since dim(F

, using standart computations (see for example Chapter 2.5 of [START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF])

Thus dim(G α r ) ≥ 1 r , which yields the result.

By Lemma 1 we get immediately Corollary 2 and Corollary 3.

Multifractal formalism

Let us now check if the function f satisfies a formula of multifractal formalism type.

with

In Ω f (j, q) we sum on each scale m all the contributions of leaders located at irreducible fractions K 2 m . Actually irreducible fractions of type k 2 m -1 ± 1 2 αm are counted twice. But we can say that we have anyway

This yields the following cases 1. Suppose 1 -αγβq < 0, which is equivalent to 1 αγβ < q. We have

We have clearly A 1 (j, q) << A 2 (j, q).

Let compare A 2 (j, q) and A 3 (j, q). We have

Thus if β = 1 we have A 2 (j, q) ∼ A 3 (j, q) and if β > 1 A 3 (j, q) >> A 2 (j, q).

Thus in all cases we have

This yields, following (47) ω f (q) = -1 αβ + qγ + 1.

2. Suppose 1 -αγβq ≥ 0, thus 1 αγβ ≥ q then we have, following the same method as previously

Remark that 1 -αβγq = α( 1 α -qβγ). Since α ≥ 1 and 1 -αβγq ≥ 0 we have A 2 (j, q) ∼ A 3 (j, q) if α ≥ 1 and A 2 (j, q) >> A 3 (j, q) if α > 1.

Once again we have Ω f (j, q) ∼ C2 j(s-1+1-αβγq) .

(60)

This yields ω f (q) = qαβγ.

Let h be fixed and f (q) = hq -ω f (q) + 1. We have

γβα < q, hq -αβγq + 1 otherwise.

(61)

• Suppose h > αγβ or h < γ. Thus f is unbounded from below and d O (h) = -∞.

• Suppose γ ≤ h ≤ αγβ. The minimum of f is at p 0 = 1 αγβ and we have