
HAL Id: hal-00831404
https://hal.science/hal-00831404v2

Submitted on 4 Mar 2014 (v2), last revised 30 Jul 2015 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A family of functions with two different spectra of
singularities

Claire Coiffard, Clothilde Melot, Thomas Willer

To cite this version:
Claire Coiffard, Clothilde Melot, Thomas Willer. A family of functions with two different spectra of
singularities. Journal of Fourier Analysis and Applications, 2014, 20 (5), pp.961-984. �10.1007/s00041-
014-9341-6�. �hal-00831404v2�

https://hal.science/hal-00831404v2
https://hal.archives-ouvertes.fr


A family of functions with two different spectra of

singularities

Claire Coiffard ∗

Institut de Recherche Mathématique Avancée (IRMA)
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Abstract

Our goal is to study the multifractal properties of functions of a given
family which have few non vanishing wavelet coefficients. We compute at
each point the pointwise Hölder exponent of these functions and also their
local Lp regularity, computing the so-called p-exponent. We prove that
in the general case the Hölder and p exponent are different at each point.
We also compute the dimension of the sets where the functions have a
given pointwise regularity and prove that these functions are multifractal
both from the point of view of Hölder and Lp local regularity with dif-
ferent spectra of singularities. Furthermore, we check that multifractal
formalism type formulas hold for the functions in that family.

Keywords: Multifractal analysis, pointwise regularity, wavelet bases, fraction-
nal derivatives.

Mathematics Subject Classification: 26A16, 26A33, 26B35, 42C40.

1 Introduction

Multifractal analysis for signal analysis was developped in the context of fully
developped turbulence in order to study the signal of velocity of turbulent fluid,
whose regularity is changing from point to point.

Indeed one criterium for estimating the pointwise regularity of a signal at a
point x0 is to compute the pointwise Hölder exponent. Recall its definition.
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Definition 1. Let x0 ∈ R
d and α ≥ 0.

A locally bounded function f : Rd → R belongs to Cα(x0) if there exists C > 0
and a polynomial Px0

with deg(P ) ≤ [α] and such that on a neighborhood of x0,

|f(x)− Px0(x)| ≤ C|x− x0|
α. (1)

The pointwise Hölder exponent of f at x0 is hf (x0) = sup{α : f ∈ Cα(x0)}.

Under these assumptions, let α ∈ R be fixed and set Ef (α) = {x0 : hf (x0) = α}.
Performing the multifractal analysis of the signal f is computing for every α
the Hausdorff dimension df (α) of the set Ef (α).

If Ef (α) is non empty for more than two values of α the function is called a
multifractal function (if it is not empty for one single value of α it will be called
a monofractal function). The map α 7→ df (α) is called the spectrum of Hölder
singularities of the function f .

For example one can see that the classical Weierstrass function

f : x 7→
∑

n∈N

An cos(Bnx) with AB > 1 and A < 1

is a monofractal function, indeed df (α) = −∞ for α 6= − ln(A)
ln(B) and 1 for

α = − ln(A)
ln(B) . Other examples can be found in numerous works and studies

of multifractal functions (see [17] for references).

Other types of pointwise singularities can be studied. Calderon and Zygmund
in [4] introduced a local exponent based on Lp norms, the ”p exponent”.

Definition 2. Let p ∈ [1,∞] and u such that u ≥ −d
p . Let f be a function

in Lp
loc. f belongs to T p

u (x0) if there exists R > 0, P a polynomial such that
deg(P ) ≤ u, and C > 0 such that

∀ρ ≤ R :

(

1

ρd

∫

|x−x0|≤ρ

|f(x)− P (x)|pdx

)
1
p

≤ Cρu. (2)

The p-exponent of f at x0 is upf (x0) = sup{u : f ∈ T p
u (x0)}

Under these assumptions, let α ∈ R be fixed. We denote Ef,p(α) = {x0 :
upf (x0) = α} and df,p(α) the Hausdorff dimension of Ef,p(α). The map α 7→
df,p(α) is called the spectrum of p-singularities of the function f .

The p exponent was studied in the context of multifractal analysis in [13], [12]
for instance, but as far as we know there were not many contributions where
examples of multifractal functions were studied from this point of view. The
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work of [8] proves that generically (in the sense of prevalence) in a given func-
tional space like a Sobolev or Besov space, the spectrum of Hölder singularities
and the one of p singularities coincide. Indeed the author proves the existence
of a prevalent set of functions in a given Sobolev or Besov space (i.e a set whose
complement is a Haar-null set) which have the same spectra. It is actually
possible exhibit families of functions which do not belong to this prevalent set.
This is actually the case of the functions we will study.

Let us see that one can easily build functions were the two pointwise exponents
are different at least at one given point. For example let α > 0 and the function
x 7→ g(x) = |x |α

∑∞
j=1 IDj

(x) with Dj = [ 1/2j − 1/23j , 1/2j ] for j ≥ 0. The
function g satisfies hg(0) = α < upg(0) = α+ 1/p for any p ≥ 1.

In this work we study a slight modification of the family of functions introduced
by S. Jaffard [16], and prove that for each member of this family the spectrum
of Hölder singularities and the one of p singularities are different. Actually we
will compute at each point of R the pointwise Hölder exponent, as well as the
p-exponent. Whenever the two exponents are different, this is the signature of
an oscillating behavior of ”chirp” type (see details in Section 4.2 and also [10],
[11] on oscillating behaviors and wavelets) and we will prove that oscillating
exponents that detect this kind of behavior are actually non trivial.

Furthermore we will also check that the spectra of singularities satisfy multi-
fractal formalism type formulas. These formulas are generally heuristic formulas
whose goal is to compute the spectrum of singularities with the help of global
quantities. The first one was introduced by Frish and Parisi in the context of
fully developped turbulence [19]. It was then rewritten using wavelet analysis by
A. Arnéodo and al. [2]. The domain of validity, counter examples and generic
properties of this kind of formulas were the subjects of studies and they are still
active fields [20]. We will focus on the multifractal type formulas described in
[14] since they fit with the kind of singularities we study. We will prove that
these formulas are satisfied by our signals.

The content of the paper is as follows. We present some preliminary notions
on wavelets and Hausdorff dimension in Section 2, then the family of functions
under study in Section 3, and the main results of the paper in Section 4. After-
wards we provide developments and proofs of the main results separately: local
regularity, spectra of singularities, and multifractal formalism are adressed in
Section 5, 6 and 7 respectively.
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2 Definitions and notations

2.1 Wavelet basis

In all the following Λ denotes the set of all dyadic intervals λ = [k2−j , (k+1)2−j [,
j ∈ Z, k ∈ Z and Λj with j ∈ Z the subset of dyadic intervals λ of the type
λ = [k2−j , (k + 1)2−j [ with k ∈ Z. We will sometimes write λ = (j, k) if no
confusion is possible. The notation [x] significates that [x] is the integer part of
x, and ⌈x⌉ denotes the smallest integer not less than x.

Recall that a wavelet basis is a set of functions such that φ and ψ are functions
in L2(R) and satisfy Ψ = {φ(. − k), k ∈ Z}

⋃

{2j/2ψ(2j . − k), j ≥ 0; k ∈ Z} is
an orthonormal basis of L2(R). We consider a wavelet basis regular enough, i.e
φ and ψ are functions in Cr+1(R) with compact support. We will call r the
regularity of the basis Ψ. This is always possible (see for example [5] for such
constructions).

In order to simplify the notations we will write ψλ(x) = 2j/2ψ(2jx− k).

To sum up we have the following equality in L2(R)

∀f ∈ L2(R), f(x) =
∑

k∈Z

ckφ(x− k) +
∑

j≥0

∑

λ∈Λj

cλψλ(x) (3)

with

ck =

∫

f(x)φ(x− k)dx, ∀k ∈ Z

cj,k = cλ =

∫

f(x)ψλ(x)dx.

(4)

2.2 Hausdorff dimension

Definition 3. Let A ⊂ R
d; if ε > 0, an ε-covering of A is a countable collection

R = {Ai}i∈N such that each diameter |Ai| is less than ε, and A ⊂

∞
⋃

i=1

Ai. If

δ ∈ [0, d], set

M δ
ε = inf

R

(

∑

i

|Ai|
δ

)

,

where the infimum is taken on all ǫ-coverings R.
For any δ ∈ [0, d], the δ-dimensional Hausdorff measure of A is mesδ(A) =
lim
ε→0

M δ
ε . There exists δ0 ∈ [0, d] such that

∀δ < δ0, mesδ(A) = +∞ and ∀δ > δ0, mesδ(A) = 0;

this critical δ0 is the Hausdorff dimension of A, and will be denoted by dim(A).
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Suppose that A is a subset of Rd, and that a numerical quantity H(x) taking
values in R

m is attached to each point of A. If H(x) has no regularity, then the
level sets of H

EH = {x : H(x) = H}

may be fractal sets. We consider here the special case where H(x) is the point-
wise Hölder exponent at point x of a function f , i.e hf (x), and for p ≥ 1 the
case where H(x) is the p-exponent at point x of a function f , i.e ufp(x). Thus
we focus on two spectra, which are defined as follows.

Definition 4. For some function f , we define the Hölder spectrum by:

df : h 7→ dim(Eh), with Eh = {x : hf (x) = h},

and the p spectrum by:

dpf : u 7→ dim(Ep
u), with Ep

u = {x : ufp(x) = u}.

3 Functions under study

We define a function f on [0, 1] as a modification of a model by Jaffard [16].
This function has three parameters α, β and γ, with α ≥ 1 and β ≥ 1 integers
and γ > 0 a non integer. We set

f(x) =
∑

λ∈Λ(α,β)

2−(γ+1/2)jψλ(x). (5)

In (5), Λ(α, β) =
⋃

m≥1 Λ
(α,β)
m , where Λ

(α,β)
m is the set of λ = (j, k) such that

• j = αβm, m > 1,

• 2−jk = ε1ℓ1 + . . . + εm−1ℓm−1 + ε′mℓ
′
m, where ε1 = 1, and for each i > 1

εi = ±1, ε′i = ±1, ℓi = 2−i and ℓ′i = 2−αi.

In the sequel, we will denote by cλ the wavelet coefficients of the function f :

cλ =< f, ψλ > .

Let us notice that for α = 1, the function is the same as the one of Jaffard [16].

Remark that the definition of f implies that each m > 1 creates 2m−1 non van-
ishing coefficients identified by the dyadics k

2m−1 ± 1
2αm , k odd, and their scale

αβm. Its values are all equal to 2−(γ+1/2)αβm.

• In the special case where α = β = 1, this means that at each scale j all
the irreducible fractions k

2j , k odd, yield non vanishing wavelet coefficients.
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j = 6

j = 5

j = 4

j = 3

j = 2

j = 1

0 1

m = 1

m = 2

m = 3

• •

• • • •

- if we choose m = 2 and j = 4, then k

2j
= ε1ℓ1 + ε′2ℓ

′
2 = 1

2
±

1

24
yields non

vanishing coefficients at scale j = 4.

- if we choose m = 3 and j = 6, then k

2j
= ε1ℓ1 + ε2ℓ2 + ε′3ℓ

′
3 = 1

2
±

1

4
±

1

26
yields

non vanishing coefficients at scale j = 6.

Figure 1: Case β = 1 and α = 2. The non vanishing wavelet coefficients •
appear on dyadic points k

2j = K
2m−1 ± 1

2αm with K odd and j = αm.

• In the case where β = 1 and α = 2 each fraction k
2m−1 ±

1
2αm , k odd, is an

irreducible fraction at scale j = αm.

This amounts to say that the non vanishing coefficients appear at scale
j = αm on irreducible fractions which can be written k

2j = K
2m−1 ± 1

2αm .
Figure 1 provides the repartition of the wavelet coefficients at scale j =
1, .., 6 with α = 2 and β = 1.

• In case β > 1 the fraction of type K
2m−1 ± 1

2αm is no more irreducible at
scale j = αβm. The coefficient will appear at a finer scale than scale αm.
Figure 2 gives an insight of this situation for α = β = 2.

Following the characterization of Cγ(R) (see for example [17]) with the help of
wavelet coefficients we have f ∈ Cγ(R) since its wavelet coefficients satisfy: for
all j ≥ 0 and all dyadic interval λ ∈ Λj , |cλ| ≤ 2−j(γ+1/2).

Remark also that f is compactly supported, thus it is in all Lp spaces for p ≥ 1.
Following [9] (see Chapter 5 Section 5.3), and the fact that f is bounded and
in Cγ(R), we get that the serie in (5) converges in all Lp for 1 ≤ p ≤ ∞.
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j = 12
j = 11
j = 10
j = 9
j = 8
j = 7
j = 6
j = 5
j = 4
j = 3
j = 2
j = 1

0 1

m = 2

m = 3

• •

• • • •

Figure 2: Case β = 2 and α = 2. The non vanishing wavelet coefficients •
appear on dyadic points k

2j = K
2m−1 ± 1

2αm with K odd and j = αβm.

4 Results

4.1 Hölder and p-singularities

One of the key point in multifractal analysis of a function is to understand the
underlying structure of the sets Eh and Ep

u. It turns out as we will see in the
following that there is a deep connection between these sets and sets of points
approximated by special sequences of dyadics. Let us introduce what we mean
by these ”special sequences”.

Let α be an integer larger or equal than 1, and Sα the set of dyadic points such
that k′

2j′
∈ Sα if one can find (j, k) such that k′

2j′
= k

2j−1 ± 1
2αj with k

2j−1 an
irreducible fraction of order j − 1. The set Sα describes exactly the location of
non vanishing wavelet coefficients in f .

We will need the rate of approximation of x0 by dyadics in this set Sα given by

rα(x0) = lim sup
j′→∞

log(|Kj′(x0)2
−j′ − x0|)

log(2−j)
, (6)

where Kj′(x0) = argmink / k2−j′∈Sα
(|x0 − k2−j′ |) and (j, kj−1(x0)) the integers

such that
Kj′ (x0)

2j′
=

kj−1(x0)
2j−1 ± 1

2αj with
kj−1(x0)

2j−1 an irreducible fraction.

Since we always have

∣

∣

∣Kj′(x0)2
−j′ − x0

∣

∣

∣ ≤ 2−(j−1), (7)

then rα(x0) ≥ 1.
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Remark that dyadic points satisfy exactly rα(x0) = 1. Indeed if x0 = K0

2j0
is a

dyadic point then for j′ large enough |x0 − Kj′(x0)2
−j′ | = 1

2j−1 − 1
2αj , which

yields rα(x0) = 1.

Given the definition of rα(x0), for every δ > 0 there exists a subsequence m′
n

(m′
n → ∞ when n→ ∞) and mn,

with
Km′

n
(x0)

2m
′
n

=
kmn−1

2mn−1 ± 1
2αmn

such that,

|Km′

n
(x0)2

−m′

n − x0| < 2−mn(rα(x0)−δ). (8)

Furthermore, still using the definition of rα(x0), for every ε > 0, there exists a
constant M > 0 such that for all m′ ≥M ,there is m ≥M/α

|Km′(x0)2
−m′

− x0| > 2−m(rα(x0)+ε). (9)

We can now give the results we want to prove in the following.

Theorem 1. Let α, β and γ, with α ≥ 1 and β ≥ 1 two integers and γ > 0 a
non integer. Let p ≥ 1.

• Suppose x0 ∈ [0, 1] and rα(x0) ≤ αβ then hf (x0) =
αβγ

rα(x0)

and upf (x0) =
αβγ

rα(x0)
+
(

αβ
rα(x0)

− 1
)

1
p

• Suppose x0 ∈ [0, 1] and rα(x0) > αβ then hf (x0) = αβγ and upf (x0) =

αβγ + αβ−1
p .

• x0 /∈ [0, 1] then hf (x0) = upf (x0) = +∞

As a corollary we get

Corollary 2. The Hölder spectrum of f is the function df defined on the inter-
val [γ, αβγ] such that df (h) =

h
αβγ . The p spectrum is the function df,p defined

on the interval [γ, αβγ + αβ−1
p ] and such that df,p(u) =

u+ 1
p

αβ(γ+ 1
p )
.

The proof of Theorem 1 is given in Section 5 and the one of Corollary 2 in
Section 6.

The results on the multifractal formalisms can be found in Section 7.

4.2 Oscillation singularities

Our main theorem proves that whenever x0 is such that rα(x0) 6= αβ we have
hf (x0) < upf (x0). We will prove that the singularity at x0 is an oscillating one
by computing the oscillating singularity exponent. This will precise quantita-
tively the behavior of the function at x0.

8



Let us first explain what we mean by ”oscillating exponent”. We first give some
notations.

Let t > 0 and let htf (x0) denote the Hölder exponent of the fractional primitive
of order t at x0 of a function f ∈ L∞

loc. More precisely let φ be a C∞ compactly
supported function satisfying φ(x0) = 1. Let (Id −∆)−t/2 be the convolution
operator which amounts to multiply the Fourier transform of the function with
(1 + |ξ|2)−t/2; we denote by htf (x0) the Hölder exponent at x0 of the function

f t = (Id−∆)−t/2(φf). The following definition was introduced in [1] (see also
[15], where alternative definitions are discussed).

Definition 5. Let f : Rd → R be a bounded function. If hf (x0) 6= +∞, then
the oscillation exponent of f at x0 is defined by

βf (x0) =

(

∂

∂t
htf (x0)

)

t=0

− 1 (10)

(where the derivative at t = 0 should be understood as a right-derivative).

Note that the mapping t −→ htf (x0) is a concave increasing function [1]. So
that the derivative in (10) always exists (but may be infinite).

One can check that for the function f : x 7→ |x|α sin
(

1
|x|β+1

)

with α > 0 and

β > 0 we have hf (x0) = α and βf (x0) = β > 0 (see [15] for more details on
chirp-type behavior in a wavelet basis-setting). This example is typical for the
kind of behavior we wish to describe with the oscillating singularity exponent.

We will see that we can derive directly the computation of the oscillating sin-
gularity exponent from the previous theorem.

Proposition 1. Let α, β and γ, with α ≥ 1 and β ≥ 1 two integers and γ > 0
a non integer.

• Suppose x0 ∈ [0, 1] and rα(x0) ≤ αβ then βf (x0) =
αβ

rα(x0)
− 1

• Suppose x0 ∈ [0, 1] and rα(x0) > αβ then βf (x0) = αβ − 1.

• x0 /∈ [0, 1] then βf (x0) = 0

If x0 ∈ [0, 1] the critical case rα(x0) = αβ is the only one for which βf (x0) = 0.

As a corollary we can compute the dimension of the set of points E(h,βo) = {x0 :
(hf (x0), βf (x0)) = (h, βo)} that we will denote d(h, βo).

Corollary 3. Let α, β and γ, with α ≥ 1 and β ≥ 1 two integers and γ > 0 a
non integer.
The function (h, βo) 7→ d(h, βo) is supported on the segment h = (βo + 1)γ with
βo ∈ [0, αβ − 1] and on this segment d(h, βo) =

h
αβγ = βo+1

αβ .
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5 Local regularity and wavelet coefficients

5.1 Hölder regularity

We first want to study the pointwise Hölder regularity of the function f at
each point x0 ∈ R. This amounts to compute the pointwise Hölder exponent
at x0 ∈ R. Recall that we can apply Theorem 1 of [17] which relates the so
called wavelet leaders, which depend on the wavelet coefficients of f , with the
pointwise Hölder exponent at x0. We need to start with a definition.

Definition 6. [17] Two dyadic intervals λ1 and λ2 are called adjacent if they
are at the same scale and if dist(λ1, λ2) = 0 (note that a dyadic interval is adja-
cent to himself). We denote by λj(x0) the dyadic interval of size 2−j containing
x0 and 3λj(x0) the set of 3 dyadic intervals adjacent to λj(x0).

More precisely if λ = (j, k) then we denote λl = (j, k − 1) and λr = (j, k + 1).

Then let
dj(x0) = sup

λ∈3λj(x0)

dλ (11)

with
dλ = sup

λ′⊂λ
|2j

′/2cλ′ | (12)

dλ is called a ”wavelet leader”.

Theorem 4. [17] Let δ > 0, x0 ∈ R and f be a function in L∞(R). Suppose Ψ
is a wavelet basis of regularity r > [δ] + 1.

• Suppose f is in Cδ(x0). Then there exists C > 0 such that

∀j ≥ 0, dj(x0) ≤ C2−δj (13)

• Conversely suppose that (13) holds and furthermore there exists ε > 0 such
that f ∈ Cε(R). Then f belongs to Cδ′(x0) for all δ′ < δ. In particular
this means that hf (x0) ≥ δ.

• Suppose f ∈ Cε(R). Then hf (x0) = lim inf
j→∞

ln(dj(x0))
ln(2−j)

Since f belongs to Cγ(R) we only need to compute, at each point x0, dj(x0) at
each scale j ≥ 0. This is what is done in Section 5.4.

5.2 Lp pointwise regularity

To study and compute the p exponent at each point x0 in R, we also compute
some quantities related to wavelet coefficients.
Define the so-called p leader

10



Dλ,p =

(

∑

λ′⊂λ

|cλ′ |p2j
′( p

2−1)

)1/p

, (14)

We set

Dj,p(x0) =





∑

λ′⊂3λj(x0)

|cλ′ |p2j
′( p

2−1)





1/p

, (15)

with the notation λ′ = (j′, k′).

It is easy to see that actually Dj,p(x0) =

(

∑

λ∈3λj(x0)

Dp
λ,p

)1/p

.

Before stating the characterization theorem of [14], we need to recall the char-
acterization of Besov spaces Bs,p

p [18].

Theorem 5. Let s ∈ R and ∞ > p > 0, q > 0 and r an integer such that
r > [s] + 1. Let Ψ be a r regular wavelet basis.

Suppose f is a tempered distribution with ck, k ∈ Z, (cjk)j≥0;k∈Z its wavelet
coefficients defined by (4).

A tempered distribution f belongs to Bs,p
p if (ck) belongs to lp and if

∑

j≥0

∑

k

∣

∣

∣cj,k2
(s+1/2−1/p)j

∣

∣

∣

p

< +∞ (16)

Remark that a compactly supported function in Cε(R) belongs to any Besov
space Bs,p

p for s < ε.

We have the following theorem of [14] in a slightly modified version in compar-
ison to the original one

Theorem 6. Let p ≥ 1 and u > −1
p . Let Ψ a r regular wavelet basis with

r ≥ [u] + 1.

• Suppose f belongs to T p
u (x0) then there exists a constant C > 0 such that

for all j ≥ 0
Dj,p(x0) ≤ C2−j(u+1/p) (17)

• Suppose f belongs to Bδ,p
p for some δ > 0. If there exists a constant C > 0

such that (17) holds for all j ≥ 0 then f ∈ T p
u′(x0) for all u′ < u.

• Suppose f ∈ Bδ,p
p for some δ > 0. Then ufp(x0) = lim inf

j→∞

ln(Dj,p(x0))
ln(2−j) − 1

p

11



Remark that whenever the Hölder exponent at a point x0 of a function f is
defined, and if this function satisfies the hypothesis of Definitions 1 and 2 we
immediately have

hf (x0) ≤ upf (x0) (18)

5.3 Oscillating singularities

Exactly as previously we can define the s-wavelet leader for s > 0

dsj(x0) = sup
λ′⊂3λj(x0)

|2j
′(−s+ 1

2 )cλ′ |, (s− leader) (19)

The following characterization, derived from Theorem 4 holds.

Proposition 2. Let f be in Cε(R) for ǫ > 0. Then hsf (x0) = lim inf
j→∞

ln(ds
j(x0))

ln(2−j)

5.4 Study of the pointwise regularity of the function f

We give in the next section 5.4.1 the proof of Theorem 1 in the case β = 1.
For seek of completeness, the modifications needed to be done when β > 1 are
given in section 5.4.2. We end up by proving in Section 5.4.3 Proposition 1 as
a consequence of Theorem 1.

In all what follows we have p ≥ 1 and denote ap = γp+ 1.

5.4.1 Case β = 1

Wavelet and p leaders Let λ be a dyadic interval indexed by (j, k). Let m1

be an integer such that α(m1 − 1) < j ≤ αm1.

1. Suppose k
2j = K

2m′ is an irreducible frac-
tion with m′ ≥ m1. It means that the
coefficient associated with the irreducible
fraction will appear at scale α(m′ + 1) ≥
j. So this coefficient will be the first
non vanishing coefficient. Then dλ =
supλ′⊂λ |2

j′/2c′λ| = 2−αγ(m′+1).
j = 6

j = 5

j = 4

j = 3

j = 2

j = 1

• •

×
k
2j

K
2m′

For what concerns the p-leaders, we already talked about the first non-
vanishing coefficient. The following coefficient is located in k

2j + 1
2j and

appears at scale α(j + 1) if m < j, and if m = j at scale α(j + 2) at
location k

2j + 1
2j+1 − 1

2α(j+2) . We get in all cases

2−apα(m′+1) ≤ Dp
λ,p ≤ 2−apα(m′+1)+

∞
∑

ℓ=j+1

2ℓ−(j+1)2−apαℓ = 2−apα(m′+1)+C2−apαj .

12



2. Now suppose that k
2j = K

2m′ is an irre-
ducible fraction with m′ < m1. That
means that the coefficient associated
with this irreducible fraction appears at
scale αm′ < j, so before the scale we
consider. But in that case, we can notice
that k

2j + 1
2j is irreducible and one of

the corresponding coefficient appears at
location k

2j + 1
2j − 1

2α(j+1) . This yields

dλ = 2−αγ(j+1). j = 6

j = 5

j = 4

j = 3

j = 2

j = 1

• •

×
k
2j

K
2m′

Again, the p-leader is simply given by

Dp
λ,p = 2−apα(j+1) +

∞
∑

ℓ=j+2

2ℓ−(j+2)2−apαℓ = C2−apαj .

Computation of the local regularity of f Let us now prove Theorem 1 in
case β = 1. Let x0 ∈ R and p ≥ 1.

1. Let us first remark that for x0 /∈ [0, 1], we have for j large enough
dj(x0) = 0 = Dj,p(x0) since for j large enough all the wavelet coeffi-
cients adjacent to λj(x0) are vanishing. Thus hf (x0) = ufp(x0) = +∞.

2. Let x0 ∈ [0, 1] and rα(x0) defined as in (6). Let δ > 0. As it is explained
in Section 2, one can find sequences m′

n → +∞ and mn → +∞ which
satisfy (8).

Let jn = [mn(rα(x0)− δ)]. Let m
(n)
1 defined by

α(m
(n)
1 −1) ≤ jn < αm

(n)
1 i.e. α(m

(n)
1 −1) ≤ mn(rα(x0)−δ) < αm

(n)
1 .
(20)

Let kn such that λjn(x0) = (jn, kn) = λn.

Recall that λln = (jn, kn − 1), and λrn = (jn, kn + 1) .

As we already mentioned it, we have djn(x0) = sup{dλl
n
, dλr

n
, dλn

}

On the other hand for ε > 0 one can find M such that for m′ ≥M (9) is
satisfied.

Let us consider 3λj(x0) = [(kj −1)2−j , (kj +2)2−j [. Choose m′ the small-

est integer such that Km′

2m′ = km−1

2m−1 − 1
2αm or Km′

2m′ = km−1

2m−1 + 1
2αm belongs to

13



3λj(x0). We have clearly αm ≥ j − 1.

Remark also that it is always possible to choose j large enough such that
m′ ≥M .

Thus
∣

∣

∣

∣

Km′

2m′
− x0

∣

∣

∣

∣

> 2−m(r(x0)+ε)

Since Km′2−m′

∈ 3λj(x0) we have

3

2j+1
> 2−m(r(x0)+ε)

ln(3)

ln(2)
− 1 +m(r(x0) + ε) > j

(21)

Thus j ≤ m(rα(x0) + ε).

Again define m1 such that

α(m1 − 1) ≤ j < αm1 (22)

We consider the following cases

(a) rα(x0) ≤ α.

Thus we have immediately mn ≥ m
(n)
1 . Since (8) is satisfied,

Kmn

2mn
∈

3λjn(x0).

It is related to Case 2 and yields

djn(x0) ≥ C2−αγmn . (23)

Thus for any δ > 0

hf (x0) = lim inf
j→∞

log dλj(x0)

log 2−j

≤ lim inf
n→∞

log dλjn (x0)

log 2−jn

≤
αγmn

(rα(x0)− δ)mn
=

αγ

rα(x0)− δ
.

(24)

On the other hand we choose ε > 0 small enough so that rα(x0)+ε <
α if rα(x0) < α, and we will have rα(x0) + ε > α if rα(x0) = α .

14



i. If rα(x0) < α then α(m1−1) ≤ m(r(x0)+ε) < αm and m1 ≤ m.
This is again related to Case 2. and yields

dj(x0) ≤ 2−αγm (25)

Thus we get

hf (x0) ≥
αγ

rα(x0)
(26)

Thus together with (24) we have hf (x0) =
αγ

rα(x0)
.

Furthermore following the same proof and using the p leader

computed in Case 2. we have upf (x0) =
α(γ+ 1

p )
rα(x0)

− 1
p

ii. If r(x0) = α, then we may havem ≤ m1, with
Km′

2m′ = k
2m−1 +

1
2αm

inside 3λj(x0).

This yields in all cases again

dj(x0) ≤ 2−αγm (27)

Thus we get

ln(dj(x0))

ln(2−j)
≥
αγ(m+ 1)

j

≥
αγm

m(α+ ε)

≥
αγ

α+ ε

(28)

Thus together with (24) we have hf (x0) =
αγ
α = αγ

rα(x0)
.

The same computation yields upf (x0) =
α(γ+ 1

p )
rα(x0)

− 1
p .

(b) Suppose r(x0) > α. Thus m
(n)
1 > mn. It is related to Case 1 and

yields

djn(x0) ≥ C2−αγjn (29)

Thus we have the upper-bound

hf (x0) ≤ lim inf
n→∞

log dλjn (x0)

log 2−jn

≤
αγjn
jn

= αγ.

(30)

For the lower bound we pick up ε small enough and have rα(x0)+ε >
α. This yields that we may have m ≤ m1 and get

15



dj(x0) ≤ C2−αγj (31)

This yields

hf (x0) ≤ αγ. (32)

Together with (30) we have

hf (x0) = αγ (33)

The same computation yields upf (x0) = α(γ + 1
p )−

1
p .

5.4.2 Case β > 1

Wavelet and p-leaders. The coefficients appear every αβ scales. There is
a difference between the scale at which the location of the coefficient appears
(αm) and the scale at which the coefficient really appears (αβ(m− 1)). This is
the reason why we need to define these two coefficients m0 and m1 which satisfy
:

αβ(m0 − 1) < j ≤ αβm0,

α(m1 − 1) ≤ j < αm1.

When β > 1, we have the following situation :

0. Suppose that k
2j = K

2m−1 ± 1
2αm , with m ≥ m0. Since we need to have

mα ≤ j, this yields m0 ≤ m ≤ m1 − 1.

j = 4

j = 5

j = 6

j = 7

j = 8

1
2 + 1

24

×

•

Here we consider an example where k
26 = 1

2 + 1
24 . So, at m = 2, the

location of the coefficient appears at scale αm = 4 and the coefficient
appears at scale αβm = 8. Furthermore, since j = 6, we have m0 = 2

and m1 = 4 and then m0 ≤ m ≤ m1 − 1.

Thus, dλ = 2−αβγm.

For what concerns the p−leader, since m ≤ m1 − 1, we can have a
non vanishing coefficient located at λ′ ⊂ λ with λ′ = (j′, k′) such that

16



k′

2j′
= k

2j + 1
2α(αm+1) if α(αm+ 1) ≥ j.

Remark that if we set al = αlm+
l−1
∑

n=0
αn for l ≥ 1, whenever αal ≥ j we

will have a non vanishing coefficient located at λ′ ⊂ λ with λ′ = (j′, k′)

such that k′

2j′
= k

2j +
l
∑

n=1

1
2αan

. The contribution of these coefficients is

anyway at most

+∞
∑

n=1

2−apαβan ≤

+∞
∑

n=1

2−apαβαnm ≤

+∞
∑

n=1

2−apαβnαm

≤
2−apα2βm

1− 2−apα2βm
≤

1

2apα2βm − 1

(34)

Remark that 1
2apα2βm−1

≤ 2−apαβm with C = 1
2ap(α2

−α)β−1
independant of

m.

Otherwise the first scale j′ > j at which a non vanishing coefficient can
appear is αβ(j + 1). This yields in all the cases

2−apαβm +

∞
∑

ℓ=j+1

2ℓ−j2−apαβℓ ≤ Dp
λ,p ≤ (C + 1)× 2−apαβm +

∞
∑

ℓ=j+1

2ℓ−j2−apαβℓ

2−apαβm ≤ Dp
λ,p ≤

(

C + 1 +
2

1− 2−apαβ

)

2−apαβm (35)

The other cases are very similar to those (1. and 2.) with β = 1 and we
find

1. Suppose that k
2j = K

2m′ is an irreducible fraction with m′ ≥ m1. Then

dλ = 2−αβγm′

and the p-leader is given by

2−apαβm′

≤ Dp
λ,p ≤ 2−apαβm′

+ C2−apαβj .

2. Suppose k
2j = K

2m′ (or K
2m′ − 1

2j ) is an irreducible fraction which is not of

the type studied in 0., with m′ < m1. Thus we will have dλ = 2−αβγ(j+1),
and

Dp
λ,p = C2−apαβ(j+1).

Computation of the local regularity of f The only case that really differs
from what we have done when β = 1 is the case α < r(x0) ≤ αβ. This yields

m
(n)
0 ≤ mn < m

(n)
1 .

It is related to Case 0. and yields

djn(x0) ≥ C2−αβγmn (36)

17



Thus we get

hf (x0) ≤
αβγ

rα(x0)
(37)

The same computation yields in the case of the p exponent

upf (x0) ≤
αβ
(

γ + 1
p

)

rα(x0)
−

1

p
(38)

On the other hand we have to consider the following cases.

1. If α < rα(x0) < αβ, choosing ε small enough we have α < rα(x0) + ε and
rα(x0) + ε < αβ. Using the same notations as in the general setting of
this section we get m0 ≤ m but may have m < m1. This is again related
to Case 0. and yields

dj(x0) ≤ C2−αβγm (39)

Thus the following upper-bound holds

hf (x0) ≥
αβγ

rα(x0)
(40)

Together with (37 ) this yields

hf (x0) =
αβγ

rα(x0)
(41)

The same computation yields upf (x0) =
αβ(γ+ 1

p
)

rα(x0)
− 1

p

2. If rα(x0) = αβ remark that the upperbound (37) yields

hf (x0) ≤ γ

Since we already know that hf (x0) ≥ γ because f ∈ Cγ(R) this yields

hf (x0) =
αβγ

rα(x0)
= γ (42)

For what concerns the p exponent the bound (38) yields

upf (x0) ≤ γ

Since we know already that upf (x0) ≥ hf (x0) = γ (see (18)) we get

upf (x0) =
αβ(γ + 1

p )

rα(x0)
−

1

p
= γ (43)

This proves Theorem 1.
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5.4.3 Oscillating singularities

Let s > 0.

Remark that computing hsf (x0) or hf (x0) necessitates the same amount of ef-
forts.

Indeed we have fs =
∑

λ∈Λ(α,β)

csλψ
s
λ(x) where ψ

s is the fractional integrate of ψ,

and csλ = 2−j(γ+s+ 1
2 ) if λ ∈ Λ(α, β) and 0 otherwise.

One could argue that {ψs
λ = 2j/2ψs(2j . − k), j ≥ 0, k ∈ Z} is not exactly a

wavelet basis. Following [1] we can anyway compute the regularity of fs taking
csλ as the amplitude of the coefficients of fs in the formula of the wavelet lead-

ers. This means, following Proposition 2 that we have hsf (x0) = lim inf
j→∞

ln(d̃s
j(x0))

ln(2−j)

with d̃sj(x0) = sup
λ′⊂3λj(x0)

2j
′/2|csλ′ |

The location of the non vanishing coefficients is the same in fs and f . Their
amplitude at scale j is respectively 2−j(γ+s+ 1

2 ) and 2−j(γ+ 1
2 ). Thus we can

estimate d̃sj(x0) with the same formula which yields dj(x0) taking γ + s instead
of γ. This amounts to use the results of Theorem 1 taking γ + s instead of γ.
We have

• if rα(x0) ≤ αβ we have hsf (x0) =
αβ(γ+s)
rα(x0)

• if rα(x0) > αβ we have hsf (x0) = αβ(γ + s)

The oscillating exponent follows by Formula (10).

6 Spectra of singularities

Let Fα
r = {x0 : rα(x0) ≥ r, r <∞} and Gα

r = {x0 : rα(x0) = r, r <∞}

We want to compute the Hausdorff dimension of Gα
r . To do this we will first

compute the Hausdorff dimension of Fα
r . We will prove that its Hausdorff

dimension is exactly 1
r .

Remark that the upper bound of the Hausdorff dimension of a set is in gen-
eral rather straightforward if one can find an appropriate covering of the set.
Generally it is more difficult to obtain a lower bound.
Several results could be used to derive this lower bound but we will make use
of recent results by Durand [6] in the version proposed by A. Amou and Y.
Bugeaud [3], since this result can be applied directly in our case.
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Definition 7. Let U be a real open interval. Let (xi)i≥1 be points in U and let
(ri)i≥1 be a sequence of positive real numbers such that lim

i→∞
ri = 0. The family

(xi, ri)i≥1 is a homogeneous ubiquitous system in U if the set lim sup
i

B(xi, ri)

is of full Lebesgue measure in U .

We need also a classical extension of the definition of Hausdorff measure.

Definition 8. Let w: R
+ → R

+ be a continuous increasing function satisfying
w(0) = 0, and let A be a bounded subset of R.
If |B| denotes the diameter of the set B, let

Mw

ε (A) = inf
R







∑

(Ai)∈R

w(|Ai|)







where the infimum is taken on all coverings R by families of balls (Ai)i∈N of
radius at most ε.
The mesw-measure of A is defined as

mesw(A) = lim
ε→0

Mw

ε (A).

For a > 0 we will make use of the functions wa(x) = |x|a| log(x)|.
It is easy to prove that if a set has a meswa

-measure strictly positive then its
Hausdorff dimension is at most a.

Theorem D of [3] proved in [6] yields the following.

Theorem 7. Let τ be a real number with τ ≥ 1. Let the family (xi, ri)i≥1 be a
homogeneous ubiquitous system in some open interval U.

The Hausdorff dimension of the set lim supB(xi, r
τ
i ) is at least equal to

1
τ . Fur-

thermore mesw 1

τ

(lim supB(xi, r
τ
i )) = +∞

Our goal is to prove the following Lemma.

Lemma 1. Let r ≥ 1 and Fα
r = {x0 : rα(x0) ≥ r, r < ∞} and Gα

r = {x0 :
rα(x0) = r, r <∞}

1. The Hausdorff dimension of Fα
r is exactly 1

r

2. The Hausdorff dimension of Gα
r is exactly 1

r

Proof. 1. We first build a homogeneous ubiquitous system (xm, rm)m≥1 such
that lim sup

m→+∞
B(xm, r

r
m) ⊂ Fα

r .
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We want to have Sα = {xm,m ∈ N}. Since the points of Sα are indexed
by k and j we need to reindex it.

Let x2n = k
2j−1 − 1

2αj and x2n+1 = k
2j−1 + 1

2αj with 0 ≤ k ≤ 2j − 1 and

n = k + 2j−1. We set r2n = r2n+1 = 2−(j−1) for 2j−1 ≤ n ≤ 2j − 1.

Following (7) lim sup
m→+∞

B(xm, rm) is of full Lebesgue measure. Thus follow-

ing Definition 7 (xi, ri)i≥1 is a homogeneous ubiquitous system.

We have
lim sup
m→+∞

B(xm, r
r
m) ⊂ Fα

r

with xm ∈ Sα, xm =
kjm−1

2jm−1 +
εjm
2αjm

and εjm ∈ {1,−1}.

Indeed, suppose x0 ∈ lim supB(xm, r
r
m). For all m ∈ N, there exists

n ≥ m such that x0 ∈ B(xn, r
r
n), so

∣

∣

∣

∣

xn − x0

∣

∣

∣

∣

≤ 2−r×rn

log |
kjn−1

2jn−1 +
εj

2αjn
− x0|

log(2jn−1)
≥ r,

Remark that we have

rα(x0) = lim sup
n→+∞

log |
kjn−1

2jn−1 +
εj

2αjn
− x0|

log(2jn)
= lim sup

n→+∞

log |
kjn−1

2jn−1 +
εj

2αjn
− x0|

log(2jn−1)
(44)

Thus we have rα(x0) ≥ r. Hence the first inclusion.

Furthermore let δ > 0 such that r − δ > 0. We have in fact

lim sup
m→+∞

B(xm, r
r
m) ⊂ Fα

r ⊂ lim sup
m→+∞

B(xm, r
r−δ
m ) (45)

Indeed we can use (8) and (44) on the right-hand side inequality and the
conclusion is straightforward.

Denote Ar = lim sup
m→+∞

B(xm, r
r
m) for r ≥ 1.

We separate now two cases.
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(a) Suppose r = 1.

Since A1 = lim sup
m→+∞

B(xm, rm) is of full Lebesgue measure, we have

clearly dim(F 1
α) = 1.

(b) Suppose r > 1.

• We start by computing an upper bound for the Hausdorff dimen-
sion of Fα

r .

Take δ′ and δ such that δ′ > δ and r−δ > r−δ′ > 1. We can com-
pute an upper-bound for the 1

r−δ′ dimensional Hausdorff mea-

sure of Ar−δ. Indeed by definition Ar−δ =
⋂

n∈N

⋃

m≥n

B(xm, r
r−δ
m ).

Thus for all n ∈ N

mes 1
r−δ′

(Ar−δ) = mes 1
r−δ′





⋂

n∈N

⋃

m≥n

B(xm, r
r−δ
m )





≤

∞
∑

m=0

mes 1
r−δ′

(B(xm, r
r−δ
m )

≤

∞
∑

j=0

2j2
−(j−1)

(

r−δ

r−δ′

)

≤

∞
∑

j=1

2
−j

(

r−δ

r−δ′
−1

)

= C

(46)

Thus for all δ′ > δ we have mes 1
r−δ′

(Ar−δ) ≤ C, which proves

dim(Ar−δ) ≤
1

r−δ .

Thus for all δ > 0 we have dim(Fα
r ) ≤ 1

r−δ . This proves

dim(Fα
r ) ≤

1
r

• Let now give a lower bound for the Hausdorff dimension of Fα
r .

Since (xm, rm)m≥1 is a homogeneous ubiquitous system, we can
apply Theorem 7 and get a lower bound for dim(Ar). This yields
immediately that dim(Fα

r ) ≥
1
r .

Combining the upper bound and the lower bound we get dim(Fα
r ) =

1
r .

2. Let compute the Hausdorff dimension of Gα
r .

Remark that Fα
r = Gα

r

⋃

n∈N⋆

Fα
r+ 1

n

. Thus we have dim(Gα
r ) ≤

1
r .
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Following Theorem 7 we have mesw 1

r

(Fα
r ) = +∞.

On the other hand since dim(Fr+ 1
n
) = 1

r+ 1
n

, using standart computations

(see for example Chapter 2.5 of [7]) mesw 1

r

(

Fα
r+ 1

n

)

= 0.

Since Fα
r = Gα

r

⋃

n∈N⋆

Fα
r+ 1

n

we have mesw 1

r

(Gα
r ) = +∞.

Thus dim(Gα
r ) ≥

1
r , which yields the result.

By Lemma 1 we get immediately Corollary 2 and Corollary 3.

7 Multifractal formalism

Let us now check if the function f satisfies a formula of multifractal formalism
type.

7.1 Multifractal formalism with Oscillation spaces

Jaffard in [17] (Definition 15) gives a multifractal type formula to compute the
Hölder spectrum of singularities, the so called multifractal formalism for Hölder
spectrum. This formula, unlike previous formulas which were stated before,
is stable under oscillating behaviors and is easy to compute once we have the
wavelet leaders dλ. We will check that it is satisfied in our case.
Recall the definition with the help of wavelet leaders. Indeed we want to com-
pute the following function of q

ωf (q) = sup{s : ∀j ≥ 0, 2j(s−1)
∑

λ∈Λj

dqλ < +∞} (47)

Then the multifractal formalism claims d(h) = dO(h) with

dO(h) = inf
q
(hq − ωf (q) + 1)

Let us check if this formula is true for our function f .
As usual define m0 = ⌈ j

αβ ⌉ and m1 = ⌊ j
α⌋. We have 2j dyadics intervals at scale

j inside [0, 1] with 2m irreducible fractions of type k
2m−1 ±

1
2αm for m0 ≤ m ≤ m1

with a general count of 2αm−1 of irreducible fractions at scale αm.
Let

Ωf (j, q) = 2j(s−1)(A1(j, q) +A2(j, q) +A3(j, q)) (48)
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with

A1(j, q) =
m1−1
∑

m=0
2m−12−qαγβ(j+1) (49)

A2(j, q) =
j
∑

m=m1

2m−12−αβγqm (50)

A3(j, q) =
m1−1
∑

m=m0

2m2−αβγqm (51)

In Ωf (j, q) we sum on each scale m all the contributions of leaders located at
irreducible fractions K

2m . Actually irreducible fractions of type k
2m′

−1 ±
1

2αm′ are
counted twice. But we can say that we have anyway

1

2
Ωf (j, q) ≤ 2j(s−1)

∑

λ∈λj

dqλ ≤ Ωf (j, q) (52)

This yields the following cases

1. Suppose 1− αγβq < 0, which is equivalent to 1
αγβ < q. We have

A1(j, q) = 2−qαγβ(j+1)
m1−1
∑

m=0
2m−1 ∼ C2−qαγβj+ j

α (53)

A2(j, q) ∼ C2m12−αβγqm1 = C2
j
α
−qβγj (54)

A3(j, q) ∼ C2m02−αβγqm0 = C2
j

αβ
−qγj (55)

We have clearly A1(j, q) << A2(j, q).

Let compare A2(j, q) and A3(j, q). We have 1
α − qβγ = β

(

1
αβ − qαβγ

)

≤
1
αβ − qαβγ since 1

αβ − qαβγ < 0 and β ≥ 1.

Thus if β = 1 we haveA2(j, q) ∼ A3(j, q) and if β > 1A3(j, q) >> A2(j, q).

Thus in all cases we have

Ωf (j, q) ∼ C2j(s−1+ 1
αβ

−qγ) (56)

This yields, following (47) ωf (q) = − 1
αβ + qγ + 1.

2. Suppose 1 − αγβq ≥ 0, thus 1
αγβ ≥ q then we have, following the same

method as previously

A1(j, q) = 2−qαγβ(j+1)
m1−1
∑

m=0
2m−1 ∼ C2−qαγβj+ j

α (57)

A2(j, q) ∼ C2j2−αβγqj = C2j(1−αβγq) (58)

A3(j, q) ∼ C2m12−αβγqm1 = C2
j
α
−qβγj (59)
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Remark that 1− αβγq = α( 1
α − qβγ). Since α ≥ 1 and 1− αβγq ≥ 0 we

have A2(j, q) ∼ A3(j, q) if α ≥ 1 and A2(j, q) >> A3(j, q) if α > 1.

Once again we have

Ωf (j, q) ∼ C2j(s−1+1−αβγq) (60)

This yields ωf (q) = qαβγ.

Let h be fixed and f(q) = hq − ωf (q) + 1. We have

f(q) =

{

hq − γq + 1
αβ if 1

γβα < q

hq − αβγq + 1 otherwise
(61)

• Suppose h > αγβ or h < γ. Thus f is unbounded from below and dO(h) =
−∞.

• Suppose γ ≤ h ≤ αγβ. The minimum of f is at p0 = 1
αγβ and we have

f(p0) =
h

αγβ

Since df (h) = dO(h) for all h the multifractal formalism with oscillation spaces
is satisfied.

7.2 Multifractal formalism with p-Oscillation spaces

The same kind of formula as in the Hölder case exists in order to compute
the p spectrum. The claim is the following (see [14] for details): compute
ωf (p, q) = sup{s : ∀j ≥ 0, 2j(s−1)

∑

λ∈λj

Dq
λ,p < +∞}.

Then
dp(h) = inf

q
(hq − ωf (p, q) + 1)

should give dp(h) = df,p(h).

We can check that this is actually true for our function f . Indeed remark
that it is enough to replace γ by a in the previous computation of Section 7.1
to compute exactly the formula for the p spectrum and get it exactly. The
multifractal formalism for the p exponent is satisfied.
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