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Study of a ”sparse” multifractal signal
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Abstract

Our goal is to study the multifractal properties of functions of a given

family which have few non vanishing wavelet coefficients. They are indeed

somehow ”sparse” signals. We compute at each point the pointwise Hölder

exponent of these functions and also their local Lp regularity, computing

the so-called p-exponent. We prove that in the general case the Hölder and

p exponent are different at each point. We also compute the dimension

of the sets where the functions have a given pointwise regularity and

prove that these functions are multifractal both from the point of view

of Hölder and Lp local regularity with different spectra of singularities.

Furthermore, we check that multifractal formalism type formulas hold for

the functions in that family.

Keywords: Multifractal analysis, pointwise regularity, wavelet bases, fraction-
nal derivatives.

Mathematics Subject Classification: 26A16, 26A33, 26B35, 42C40.

1 Introduction

Multifractal analysis for signal analysis was developped in the context of fully
developped turbulence in order to study the signal of velocity of turbulent fluid,
whose regularity is changing from point to point.

Indeed one criterium for estimating pointwise regularity of a signal at a point
x0 is to compute the pointwise Hölder exponent . Recall its definition.

Definition 1. Let x0 ∈ R
d and α ≥ 0.

A locally bounded function f : Rd → R belongs to Cα(x0) if there exists C > 0
and a polynomial Px0 with deg(P ) ≤ [α] and such that on a neighborhood of x0,

|f(x)− Px0(x)| ≤ C|x− x0|
α. (1)
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The pointwise Hölder exponent of f at x0 is hf (x0) = sup{α : f ∈ Cα(x0)}.

Under these assumptions, let α ∈ R be fixed and set Ef (α) = {x0 : hf (x0) = α}.
Performing the multifractal analysis of the signal f is computing for every α
the Hausdorff dimension df (α) of the set Ef (α).

If Ef (α) is non empty for more than two values of α the function is called a
multifractal function (if it isn’t empty for one single value of α it will be called
a monofractal function). The map α 7→ df (α) is called the spectrum of Hölder
singularities of the function f .

For example one can see that the classical Weierstrass function

f : x 7→
∑

n∈N

An cos(Bnx) with AB > 1 and A < 1

is a monofractal function, indeed df (α) = −∞ for α 6= − ln(A)
ln(B) and 1 for

α = − ln(A)
ln(B) . Other examples can be found in numerous works and studies

of multifractal functions (see [12] for references).

Other types of pointwise singularities can be studied. Calderon and Zygmund
in [3] introduced a local exponent based on Lp norms, the ”p exponent”.

Definition 2. Let p ∈ [1,∞] and u such that u ≥ −d
p . Let f be a function

in Lp
loc. f belongs to T p

u (x0) if there exists R > 0, P a polynomial such that
deg(P ) ≤ u, and C > 0 such that

∀ρ ≤ R :

(

1

ρd

∫

|x−x0|≤ρ

|f(x)− P (x)|pdx

)
1
p

≤ Cρu. (2)

The p-exponent of f at x0 is upf (x0) = sup{u : f ∈ T p
u (x0)}

Under these assumptions, let α ∈ R be fixed. We denote Ef,p(α) = {x0 :
upf (x0) = α} and df,p(α) the Hausdorff dimension of Ef,p(α). The map α 7→
df,p(α) is called the spectrum of p-singularities of the function f .

The p exponent was studied in the context of multifractal analysis in [9], [8] for
instance, but as far as we know there weren’t many contributions where exam-
ples of multifractal functions were studied from this point of view. The work
of [6] proves that generically (in the sense of prevalence) in a given functional
space like a Sobolev or Besov space, the spectrum of Hölder singularities and
the one of p singularities coincide. Indeed the author proves the existence of
a prevalent set of functions in a given Sobolev or Besov space (i.e a set whose
complement is a Haar-null set) which have the same spectra. Our family of
functions don’t belong to this prevalent set, especially because the structure of
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the wavelet coefficients for our family is not at all the same as the one of the
functions in this set. Indeed in our case we have ”few” non vanishing coefficients
(there is actually a lot of scales where they all vanish) which is not the case in
the prevalent set. One of the consequences of many vanishing coefficients is that
the p exponent and Hölder exponent may differ as we will see in the following.
Let us mention that this could be the goal of a further study to check if there are
other prevalent sets based on such families of sparse signals where the spectrum
of Hölder singularities and the spectrum of p-singularities don’t coincide.

One can easily build functions were the two pointwise exponents are different
at least at one given point.

Let f such that at x0 ufp(x0) and hf (x0) are defined. Then remark that

ufp(x0) ≥ hf (x0). One can check that the p exponent doesn’t provide the same
local information as the Hölder exponent. For example let α > 0 and the func-
tion x 7→ g(x) = |x |α

∑∞
j=1 IDj

(x) with Dj = [ 1/2j − 1/23j , 1/2j ] for j ≥ 0.
The function g satisfies hg(0) = α < upg(0) = α+ 1/p for any p ≥ 1.

Remark that the signal g is in the same time a sparse signal (with few non
vanishing entries) and oscillating since as far as we go to zero it has oscillations.
Actually one can check using the properties of the p exponent, that if at a point
it is different from the pointwise Hölder exponent there should be oscillations
of the function at this point (see for example [9] for details).

In this work we study a slight modification of the family of functions introduced
by S. Jaffard [11], and prove that for each member of this family the spectrum
of Hölder singularities and the one of p singularities are different. Actually we
will compute at each point of R the pointwise Hölder exponent, as well as the
p-exponent. One will see with the description of this kind of signals that it can
be described as ”sparse” since many of its wavelet coefficients vanish. On the
other hand, it is multifractal since the computation of its spectra of singularities
proved that they are non trivial. Our results seem to confirm the idea that the p
exponent could be a good indicator of sparsity of multifractal signals whenever
the computation proves that it is different from the Hölder exponent.

Furthermore we will also check that the spectra of singularities satisfy multi-
fractal formalism type formulas. These formulas are generally heuristic formulas
whose goal is to compute the spectrum of singularities with the help of global
quantities. The first one was introduced by Frish and Parisi in the context of
fully developped turbulence [14]. It was then rewritten using wavelet analysis by
A. Arnéodo and al. [1]. The domain of validity, counter examples and generic
properties of this kind of formulas were the subjects of studies and they are still
active fields [15]. We will focus on the multifractal type formulas described in
[10] since they fit with the kind of singularities we study. We will prove that
these formulas are satisfied by our signals.
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2 Notations and definitions

• In all the following Λ denotes the set of all dyadic intervals λ = [k2−j , (k+
1)2−j ], j ∈ Z, k ∈ Z and Λj with j ∈ Z the subset of dyadic cubes λ of
the type λ = [k2−j , (k + 1)2−j ] with k ∈ Z. We will sometimes write
λ = (j, k) if no confusion is possible. The notation [x] significates that [x]
is the integer part of x, and ⌈x⌉ denotes the smallest integer not less than
x.
Recall that a wavelet basis is a set of functions such that φ and ψ are func-
tions in L2(R) and such that they satisfy Ψ = {φ(.−k), k ∈ Z}

⋃

{2j/2ψ(2j .−
k), j ≥ 0; k ∈ Z} is an orthonormal basis of L2(R). We will use a wavelet
basis regular enough, i.e φ and ψ are functions in Cr+1(R) and with com-
pact support. We will call r the regularity of the basis Ψ. This is always
possible (see for example [4] for such constructions).

In order to simplify the notations we will write ψλ(x) = 2j/2ψ(2jx− k).

To sum up we have the following equality in L2(R)

∀f ∈ L2(R), f(x) =
∑

k∈Z

ckφ(x− k) +
∑

j≥0

∑

λ∈Λj

cλψλ(x) (3)

with

ck =

∫

f(x)φ(x− k)dx, ∀k ∈ Z

cj,k = cλ =

∫

f(x)ψλ(x)dx.

(4)

• Let α ≥ 1 and Sα the set of dyadic points such that k′

2j′
∈ Sα if one can

find (j, k) such that k′

2j′
= k

2j−1 ± 1
2αj with k

2j−1 an irreducible fraction of
order j − 1.

We will need the rate of approximation of x0 by dyadics in a given set Sα

given by

rα(x0) = lim sup
j′→∞

log(|Kj′(x0)2
−j′ − x0|)

log(2−j)
, (5)

where Kj′(x0) = argmink,k2−j′∈Sα
(|x0−k2

−j′ |) and (j, kj−1(x0)) the inte-

gers such that
Kj′ (x0)

2j′
=

kj−1(x0)
2j−1 ± 1

2αj with
kj−1(x0)

2j−1 an irreducible fraction.

Since we always have |
Kj′ (x0)

2j′
− x0| ≤ 2−j , then rα(x0) ≥ 1. Given

the definition of rα(x0), for every δ > 0 there exists a subsequence m′
n

4



(m′
n → ∞ when n→ ∞) and mn,

with
Km′

n
(x0)

2m
′
n

=
kmn−1

2mn−1 ± 1
2αmn

such that,

|Km′

n
(x0)2

−m′

n − x0| < 2−mn(rα(x0)−δ). (6)

Furthermore, still using the definition of rα(x0), for every ε > 0, there
exists a constant M > 0 such that for all m′ ≥M ,there is m ≥M/α

|Km′(x0)2
−m′

− x0| > 2−m(rα(x0)+ε). (7)

• We need to recall the definition of the Hausdorff dimension.

Definition 3. Let A ⊂ R
d; if ε > 0, an ε-covering of A is a countable

collection R = {Ai}i∈N such that each diameter |Ai| is less than ε, and

R ⊂

∞
⋃

i=1

Ai. If δ ∈ [0, d], set

M δ
ε = inf

R

(

∑

i

|Ai|
δ

)

,

where the infimum is taken on all ǫ-coverings R.

For any δ ∈ [0, d], the δ-dimensional Hausdorff measure of A is mesδ(A) =
lim
ε→0

M δ
ε . There exists δ0 ∈ [0, d] such that

∀δ < δ0, mesδ(A) = +∞ and ∀δ > δ0, mesδ(A) = 0;

this critical δ0 is the Hausdorff dimension of A, and will be denoted by
dim(A).

Suppose that A is a subset of Rd, and that a numerical quantity H(x) tak-
ing values in R

m is attached to each point of A. If H(x) has no regularity,
then the level sets of H

EH = {x : H(x) = H}

may be fractal sets. We will consider here the special case where H(x)
is the pointwise Hölder exponent at point x of function f , i.e hf (x), and
for p ≥ 1 be fixed the case where H(x) is the p-exponent at point x of
function f , i.e ufp(x).

We will denote the Hölder spectrum of f df : h 7→ dim(Eh) with Eh =
{x : hf (x) = h} and the p spectrum of f dpf : u 7→ dim(Ep

u) with

Ep
u = {x : ufp(x) = u}.
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3 Description and results on Jaffard’s model

3.1 Notations and definitions

Let α ≥ 1, β ≥ 1 be two integers.
In [11], S. Jaffard considers the following function. Let Gm the set of dyadic
numbers such that if k

2j ∈ Gm then j = [αβm] and one can find (ε1, ..., εm) ∈

{−1, 1}m such that k
2j =

m
∑

l=1

εl
2αl .

The set of dyadic cubes λ = (j, k) with k
2j ∈ Gm is denoted L

(α,β)
m , and

L(α, β) =
⋃

m≥1

L
(α,β)
m .

Let γ > 0 and g be

g(x) =
∑

λ∈L(α,β)

2−(γ+1/2)jψλ(x),

Since the set L(α, β) is symetric we will restrict our study to the interval [0, 1].

We consider here a slight modification of Jaffard’s model which coincides with
it in the special case α = 1.

3.2 Modification of Jaffard’s Model

We define a function f as a modification of Jaffard’s Model. This function has
three parameters α, β and γ, with α ≥ 1 and β ≥ 1 integers and γ > 0 a non
integer. We set

f(x) =
∑

λ∈Λ(α,β)

2−(γ+1/2)jψλ(x). (8)

In (8), Λ(α, β) =
⋃

m≥1 Λ
(α,β)
m , where Λ

(α,β)
m is the set of λ = (j, k) such that

• j = αβm

• 2−jk = ε1ℓ1 + . . .+ εm−1ℓm−1 + ε′mℓ
′
m, where εi = ±1, ε′i = ±1, ℓi = 2−i

and ℓ′i = 2−αi, for each i ≥ 1 and ε1 = 1.

Remark that this definition implies that each j > 1 creates 2m−1 coefficients
located at k

2m−1 ± 1
2αm , k odd, at the scale αβm, and its values are all equal to

2−(γ+1/2)αβm.

We can verify that for α = 1, the function is the same as the one of Jaffard.
Following the characterization of Cγ(R) (see for example [12]) with the help of
wavelet coefficients we have f ∈ Cγ(R) since its wavelet coefficients satisfy: for
all j ≥ 0 and all dyadic cube λ ∈ Λj , |cλ| ≤ 2−j(γ+1/2).

Remark also that f is in fact compactly supported, thus it is in all Lp spaces for
p ≥ 1. Following [7] (see Chapter 5 Section 5.3), and the fact that f is bounded
and in Cγ(R), we get that the serie in (8) converges in all Lp for 1 ≤ p ≤ ∞.
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3.3 Results

We will prove the following results.

Theorem 1. Let α, β and γ, with α ≥ 1 and β ≥ 1 two integers and γ > 0 a
non integer. Let p ≥ 1.

• Suppose x0 ∈ [−1, 1] and rα(x0) ≤ αβ then hf (x0) =
αβγ

rα(x0)

and upf (x0) =
αβγ

rα(x0)
+
(

αβ
rα(x0)

− 1
)

1
p

• Suppose x0 ∈ [−1, 1] and rα(x0) > αβ then hf (x0) = αβγ and upf (x0) =

αβγ + αβ−1
p .

• x0 /∈ [−1, 1] then hf (x0) = upf (x0) = +∞

As a corollary we get

Corollary 2. The Hölder spectrum of f is the function df defined on the inter-
val [γ, αβγ] such that df (h) =

h
αβγ . The p spectrum is the function df,p defined

on the interval [γ, αβγ + αβ−1
p ] and such that df,p(u) =

u+ 1
p

αβ(γ+ 1
p )
.

The proof of Theorem 1 is given in Section 4 and the one of Corollary 2 in
Section 5.

The results on the multifractal formalisms can be found in Section 6.

4 Local regularity

4.1 Hölder regularity

We first want to study the pointwise Hölder regularity of the function f at
each point x0 ∈ R. This amounts to compute the pointwise Hölder exponent
at x0 ∈ R. Recall that we can apply Theorem 1 of [12] which relates the so
called wavelet leaders, which depend on the wavelet coefficients of f , with the
pointwise Hölder exponent at x0. We need to start with a definition.

Definition 4. [12] Two dyadic cubes λ1 and λ2 are called adjacent if they are
at the same scale and if dist(λ1, λ2) = 0 (note that a dyadic cube is adjacent to
himself). We denote by λj(x0) the dyadic cube of size 2−j containing x0 and
3λj(x0) the set of 3 dyadic cubes adjacent to λj(x0).

More precisely if λ = (j, k) then we denote λl = (j, k − 1) and λr = (j, k + 1).

Then
dj(x0) = sup

λ∈3λj(x0)

dλ (9)
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with
dλ = sup

λ′⊂λ
|2j

′/2cλ′ | (10)

dλ is called a ”wavelet leader”.

Theorem 3. [12] Let α > 0, x0 ∈ R and f be a function in L∞(R). Suppose
Ψ is a wavelet basis of regularity r > [α] + 1.

• Suppose f is in Cα(x0). Then there exists C > 0 such that

∀j ≥ 0, dj(x0) ≤ C2−αj (11)

• Conversely suppose that (11) holds and furthermore there exists ε > 0 such
that f ∈ Cε(R). Thus f belongs to Cα′

(x0) for all α′ < α. In particular
this means that hf (x0) ≥ α.

• Suppose f ∈ Cε(R). Then hf (x0) = lim inf
j→∞

ln(dj(x0))
ln(2−j)

Since f belongs to Cγ(R) we only need to compute, at each point x0, dj(x0) at
each scale j ≥ 0. This is what we do in Section 4.3.

4.2 Lp pointwise regularity

To study and compute the p exponent at each point x0 in R, we also compute
some quantities related to wavelet coefficients.
Define the so-called p leader

Dλ,p =

(

∑

λ′⊂λ

|c′λ|
p2j

′( p

2−1)

)1/p

, (12)

We set

Dj,p(x0) =





∑

λ′⊂3λj(x0)

|c′λ|
p2j

′( p

2−1)





1/p

, (13)

with the notation λ′ = (j′, k′).

It is easy to see that actually Dj,p(x0) =

(

∑

λ∈3λj(x0)

Dp
λ,p

)1/p

Before stating the characterization theorem of [10], we need to recall the char-
acterization of Besov spaces Bs,p

p [13].

Theorem 4. Let s ∈ R and ∞ > p > 0, q > 0 and r an integer such that
r > [s] + 1. Let Ψ be a r regular wavelet basis.

Suppose f is a tempered distribution with ck, k ∈ Z, (cjk)j≥0;k∈Z its wavelet
coefficients defined by (4).
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A tempered distribution f belongs to Bs,p
p if (ck) belongs to lp and if

∑

j≥0

∑

k

∣

∣

∣cj,k2
(s+1/2−1/p)j

∣

∣

∣

p

< +∞ (14)

Remark that a compactly supported function in Cε(R) belongs to any Besov
space Bs,p

p for s < ε.

We have the following theorem of [10] in a slightly modified version in compar-
ison to the original one

Theorem 5. Let p ≥ 1 and u > −1
p . Let Ψ a r regular wavelet basis with

r ≥ [u] + 1.

• Suppose f belongs to T p
u (x0) then there exists a constant C > 0 such that

for all j ≥ 0
Dj,p(x0) ≤ C2−j(u+1/p) (15)

• Suppose f belongs to Bδ,p
p for some δ > 0. If there exists a constant C > 0

such that (15) holds for all j ≥ 0 then f ∈ T p
u′(x0) for all u′ < u.

• Suppose f ∈ Bδ,p
p for some δ > 0. Then ufp(x0) = lim inf

j→∞

ln(Dj,p(x0))
ln(2−j) − 1

p

Remark that we always have dj(x0) ≤ Dj,p(x0). This means that whenever the
Hölder exponent at a point x0 of a function f is defined, and if this function
satisfies the hypothesis of Theorems 3 and 5 we immediately have

hf (x0) ≤ upf (x0) (16)

4.3 Study of the pointwise regularity of the function f

4.3.1 Wavelet and p leaders

Let λ be a dyadic cube indexed by (j, k). Let m0 such that αβ(m0 − 1) < j ≤
αβm0 and m1 such that α(m1 − 1) ≤ j < αm1. Obviously we have m0 ≤ m1

since α and β are some positive integers.

Let p ≥ 1 and denote ap = γp+ 1. Remark that −apαβ + 1 < 0.

1. Suppose α = 1.

Remark that in this case the dyadic cubes λ = (j, k) of Λ(α, β) satisfy that
k
2j is an irreducible fraction of order j in ]− 1, 1[, i.e k is an odd number.
Actually it is easy to prove that the set of irreducible fractions of order j
in ]−1, 1[ k

2j with k odd, matches exactly the set of dyadic cubes in Λ(α, β).

9



(a) If β = 1 remark that the computation of dλ is trivial since in this
case j has to be exactly m0. Since every two dyadic number at scale
j is an irreducible fraction we have dλ = 2j/22−j(γ+1/2) = 2−jγ or
dλ = 2(j+1)/22−(j+1)(γ+1/2) = 2−(j+1)γ . The same kind of computa-
tion yields Dλ,p = C2−j(γ+1/p).

(b) If β ≥ 2, remark that the first scale j′ ≥ j at which non vanishing
coefficients appear is the scale βm0. These non vanishing coefficients
take place at all locations K

2m0
with K

2m0
an irreducible fraction such

that K is an odd number.

Remark that we have the following obvious partition.

Λj = {(j, k), k = −2j + 1, . . . 2j − 1}

=

j
⋃

m=m0

{(m,K)K = −2m + 1,−2m + 3, . . . ,−3,−1, 1, 3, . . . 2m − 1}

i. Thus, we have for λ = (j, k) with k
2j = K

2m and j ≥ m ≥ m0.

dλ = sup
λ′⊂λ

2j
′/2|cλ′ | = 2−γβm (17)

For what concerns the p leader we get, summing all the coeffi-
cients located in the dyadic cube λ

Dp
λ,p = 2−(γ+ 1

2 )βmp+βm( p

2−1) + 2−(γ+ 1
2 )β(j+1)p+β(j+1)( p

2−1)

+

∞
∑

ℓ=j+2

2ℓ−j2−(γ+ 1
2 )βℓp+βℓ( p

2−1)

= 2−apβm + 2−apβ(j+1) +

∞
∑

ℓ=j+2

2ℓ−j2−apβℓ

= C
[

2−apβm + 2−apβj
]

.

with C > 0 independent of j and k.

ii. If m < m0 we have

dλ = sup
λ′⊂λ

2j
′/2|cλ′ | = 2−γβ(j+1) (18)

For what concerns the p leader the only difference with the pre-
vious case will be on the first terms.

Dp
λ,p = 2−apβ(j+1) + 2−apβ(j+2) +

∞
∑

ℓ=j+3

2ℓ−j2−apβℓ

= C2−apβ(j+1) (19)
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with C > 0 independent of j and k.

2. If α > 1, we can do the same kind of computation for the wavelet leader,
we just need to have more cases.

(a) suppose first that k
2j = K

2m−1 ± 1
2αm with m ≥ m0. This yields m0 ≤

m ≤ m1 − 1 since we need to have mα ≤ j. Thus dλ = 2−βγ(αm).

For what concerns the p leader since m ≤ m1 − 1 we can have a non
vanishing coefficient located at λ′ ⊂ λ with λ′ = (j′, k′) such that
k′

2j′
= k

2j +
1

2α(αm+1) if α(αm+1) ≥ j. Otherwise the first scale j′ > j
at which a non vanishing coefficient can appear is αβ(j + 1). This
yields in all the cases

2−apαβm +

∞
∑

ℓ=j+1

2ℓ−j2−apαβℓ ≤ Dp
λ,p ≤ 2× 2−apαβm +

∞
∑

ℓ=j+1

2ℓ−j2−apαβℓ

C ′2−apαβm ≤ Dp
λ,p ≤ C2−apαβm (20)

(b) Suppose k
2j = K

2m′ is an irreducible fraction which is not of the pre-
vious type, with m′ < m1. Thus the first non vanishing coefficient
appears at location K

2m′
−1 +

1
2j −

1
2α(j+1) . This yields dλ = 2−αβγ(j+1).

The p leader is given by the same kind of computation as previously
and we get

Dp
λ,p = 2−apαβ(j+1) +

∞
∑

ℓ=j+2

2ℓ−j2−apαβℓ = C2−apαβ(j+1) (21)

If k
2j = K

2m′ − 1
2j with K

2m′ irreducible, and m′ < m1, we have dλ =

2−αβγ(j+1). The p leader is given by the computation of (21)

(c) Suppose then that k
2j = K

2m′ is an irreducible fraction, and m′ ≥ m1.

Then dλ = 2−αβγm′

.

Again the p leader is simply given by

Dp
λ,p = 2−apαβm′

+

∞
∑

ℓ=j+2

2ℓ−j2−apαβℓ = 2−apαβm′

+C2−apαβj (22)

Suppose k
2j can be written k

2j = K
2m′

−1 − 1
2j with m′ ≥ m1. Thus

dλ = 2−αβγm′

. Formula (22) holds for the p leader.
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4.3.2 Computation of the local regularity of f

Let us now prove Theorem 1. Let x0 ∈ R and p ≥ 1.

1. Let us first remark that for x0 /∈ [−1, 1], we have for j large enough
dj(x0) = 0 = Dj,p(x0) since for j large enough all the wavelet coefficients
adjacent to λj(x0) are vanishing. Thus hf (x0) = ufp(x0) = +∞.

2. Let x0 ∈ [−1, 1] and rα(x0) defined as in (5). Let δ > 0. As it is explained
in Section 2, one can find sequences m′

n → +∞ and mn → +∞ which
satisfy (6).

Let jn = [mn(rα(x0)− δ)]. Let m
(n)
0 defined by

αβ(m
(n)
0 −1) < jn ≤ αβm

(n)
0 i.e. αβ(m

(n)
0 −1) < [mn(rα(x0)−δ)] ≤ αβm

(n)
0 .

(23)

and m
(n)
1 by

α(m
(n)
1 −1) ≤ jn < αm

(n)
1 i.e. α(m

(n)
1 −1) ≤ mn(rα(x0)−δ) < αm

(n)
1 .
(24)

Let kn such that λjn(x0) = (jn, kn) = λn.

Recall that λln = (jn, kn − 1), and λrn = (jn, kn + 1) .

As we already mentioned it, we have djn(x0) = sup{dλl
n
, dλr

n
, dλn

}

On the other hand for ε > 0 one can find M such that for m′ ≥M (7) is
satisfied.

Let us consider 3λj(x0) = [(kj − 1)2−j , (kj +2)2−j ]. Choose m′ such that

it is the smallest as possible such that Km′

2m′ = km−1

2m−1 ± 1
2αm ∈ 3λj(x0). We

have clearly αm ≤ j − 1.

Remark also that it is always possible to choose j large enough such that
m′ ≥M .

Thus
∣

∣

∣

∣

Km′

2m′
− x0

∣

∣

∣

∣

> 2−m(r(x0)+ε)

Since Km′2−m′

∈ 3λj(x0) we have

3

2j+1
> 2−m(r(x0)+ε)

ln(3)

ln(2)
− 1 +m(r(x0) + ε) > j

(25)

12



Thus j ≤ m(rα(x0) + ε).

Again define m0 and m1 such that

αβ(m0 − 1) < j ≤ αβm0 (26)

and m1 by
α(m1 − 1) ≤ j < αm1 (27)

We consider the following cases

(a) rα(x0) ≤ α.

Thus we have immediately mn ≥ m
(n)
1 , which yields mn ≥ m

(n)
0 .

Since (6) is satisfied,
Km′

n

2m
′
n

∈ 3λjn(x0).

And it is related to Case 2c and yields

djn(x0) ≥ C2−αβγmn . (28)

Thus for any δ > 0

hf (x0) = lim inf
j→∞

log dλj(x0)

log 2−j

≤ lim inf
n→∞

log dλjn (x0)

log 2−jn

≤
αγβmn

(rα(x0)− δ)mn
=

αβγ

rα(x0)− δ
.

(29)

On the other hand we choose ε > 0 small enough so that rα(x0)+ε <
α if rα(x0) < α, and we will have rα(x0) + ε > α if rα(x0) = α .

i. If rα(x0) < α then α(m1−1) ≤ m(r(x0)+ε) < αm and m1 ≤ m.
This is again related to Case 2c and yields

dj(x0) ≤ 2−αβγm (30)

Thus we get

hf (x0) ≥
αβγ

rα(x0)
(31)

Thus together with (29) we have hf (x0) =
αβγ

rα(x0)
.

Furthermore following the same proof and using the p leader

computed in Case 2c we have upf (x0) =
αβ(γ+ 1

p )
rα(x0)

− 1
p

13



ii. If r(x0) = α, then we still have m0 ≤ m and may have m ≤ m1,

with Km′

2m′ = k
2m−1 + 1

2αm inside 3λj(x0).

This yields in all cases again

dj(x0) ≤ 2−αβγm (32)

Thus we get

ln(dj(x0))

ln(2−j)
≥
αβγ(m+ 1)

j

≥
αβγm

m(α+ ε)

≥
αβγ

α+ ε

(33)

Thus together with (29) we have hf (x0) =
αβγ
α = αβγ

rα(x0)
.

The same computation yields upf (x0) =
αβ(γ+ 1

p )
rα(x0)

− 1
p .

(b) Suppose now α < r(x0) ≤ αβ. This yields m
(n)
0 ≤ mn < m

(n)
1 .

It is related to Case 2a and yields

djn(x0) ≥ C2−αβγmn (34)

Thus we get

hf (x0) ≤
αβγ

rα(x0)
(35)

The same computation yields in the case of the p exponent

upf (x0) ≤
αβ
(

γ + 1
p

)

rα(x0)
−

1

p
(36)

On the other hand we have to consider the following cases.

i. If α < rα(x0) < αβ, choosing ε small enough we have α <
rα(x0) + ε and rα(x0) + ε < αβ. Using the same notations as in
the general setting of this section we get m0 ≤ m but may have
m < m1. This is again related to Case 2a and yields

dj(x0) ≤ C2−αβγm (37)

Thus the following upper-bound holds

hf (x0) ≥
αβγ

rα(x0)
(38)
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Together with (35 ) this yields

hf (x0) =
αβγ

rα(x0)
(39)

The same computation yields upf (x0) =
αβ(γ+ 1

p
)

rα(x0)
− 1

p

ii. If rα(x0) = αβ remark that the upperbound (35) yields

hf (x0) ≤ γ

Since we already know that hf (x0) ≥ γ because f ∈ Cγ(R) this
yields

hf (x0) =
αβγ

rα(x0)
= γ (40)

For what concerns the p exponent the bound (36) yields

upf (x0) ≤ γ

Since we know already that upf (x0) ≥ hf (x0) = γ (see (16)) we
get

upf (x0) =
αβ(γ + 1

p )

rα(x0)
−

1

p
= γ (41)

(c) Suppose r(x0) > αβ. Thus m
(n)
0 > mn. It is related to Case 2b and

yields

djn(x0) ≥ C2−αβγjn (42)

Thus we have the upper-bound

hf (x0) ≤ lim inf
n→∞

log dλjn (x0)

log 2−jn

≤
αγβjn
jn

= αβγ.

(43)

For the lower bound we pick up ε small enough and have rα(x0)+ε >
αβ. This yields that we may have m ≤ m0 and get

dj(x0) ≤ C2−αβγj (44)

This yields

hf (x0) ≤ αβγ. (45)

Together with (43) we have

hf (x0) = αβγ (46)

The same computation yields upf (x0) = αβ(γ + 1
p )−

1
p .
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This proves Theorem 1.

5 Spectra of singularities

Let Fα
r the set of points x0 such that rα(x0) = r with r <∞.

Remark first that we can describe Fα
r as Fα

r = lim sup
j→+∞

B(xj , r
r
j ) with xj ∈

Sα, xj =
1

2j−1 ± 1
2αj and rj = 2−j .

We can thus cover Fα
r with B(xj , r

r
j ), j ∈ N and this yields that the Hausdorff

dimension of Fα
r is less or equal than r.

Several ways are possible in order to get a lower bound of the Hausdorff dimen-
sions. We will make use of recent results by Durand [5] in the version proposed
by A. Amou and Y. Bugeaud [2] since this result can be applied directly in our
case.

Definition 5. Let U be a real open interval. Let (xi)i≥1 be points in U and let
(ri)i≥1 be a sequence of positive real numbers such that lim

i→∞
ri = 0. The family

(xi, ri)i≥1 is a homogeneous ubiquitous system in U if the set lim sup
i

B(xi, ri)

is of full Lebesgue measure in U .

Theorem D of [2] proved in [5] yields the following.

Theorem 6. Let τ be a real number with τ ≥ 1. Let the family (xi, ri)i≥1 be a
homogeneous ubiquitous system in U, then the Hausdorff dimension of the set
lim supB(xi, r

τ
i ) is at least equal to 1

τ .

We have clearly that lim sup
j→+∞

B(xj , rj) is of full Lebesgue measure since all points

in [−1, 1] can be approximated by dyadics. Thus the dimension of Fα
r is exactly

r.

This yields the spectra and Corollary 2.

6 Multifractal formalism

Let us now check if the function f satisfies a formula of multifractal formalism
type.

6.1 Multifractal formalism with Oscillation spaces

Jaffard in [12] (Definition 15) gives a multifractal type formula to compute the
Hölder spectrum of singularities, the so called multifractal formalism for Hölder
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spectrum. This formula, unlike previous formulas which were stated before,
is stable under oscillating behaviors and is easy to compute once we have the
wavelet leaders dλ. We will check that it is satisfied in our case.
Recall the definition with the help of wavelet leaders. Indeed we want to com-
pute the following function of q ωf (q) = sup{s : ∀j ≥ 0, 2j(s−1)

∑

λ∈λj

dqλ < +∞}.

Then the multifractal formalism claims d(h) = dO(h) with

dO(h) = inf
q
(hq − ωf (q) + 1)

Let us check if this formula is true for our function f .
As usual definem0 = ⌈ j

αβ ⌉ andm1 = ⌊ j
α⌋. We have 2j+1 dyadics cubes at scale j

inside [−1, 1] with 2m irreducible fractions of type k
2m−1 ±

1
2αm for m0 ≤ m ≤ m1

with a general count of 2αm+1 of irreducible fractions at scale αm.
Let

2j(s−1)

(

m1−1
∑

m=0

2m+12−qαγβ(j+1) +

j
∑

m=m1

2m+12−αβγqm +

m1−1
∑

m=m0

2m2−αβγqm

)

= Ωf (j, q)

(47)
Some dyadic cubes are counted twice in Ωf (j, q). But we can say that we have
anyway

1

2
Ωf (j, q) ≤ 2j(s−1)

∑

λ∈λj

dqλ ≤ Ωf (j, q) (48)

we have the following cases

1. Suppose 1− αγβq < 0, thus 1
αγβ < q then we have

hence ωf (q) = − 1
αβ + qγ

2. Suppose 1− αγβq ≥ 0, thus 1
αγβ ≥ q then we have,

ωf (q) = −1 + qαβγ

Let h be fixed and f(q) = hq − ωf (q) + 1. We have

f(q) =

{

hq − γβq + 1
αβ if 1

γβα < q

hq − αβγq + 1 otherwise
(49)

• Suppose h > αγβ or h < γ. Thus f is unbounded by below and dO(h) =
−∞.

• Suppose γ ≤ h ≤ αγβ. The minimum of f is at p0 = 1
αγβ and we have

f(p0) =
h

αγβ

Since df (h) = dO(h) for all h the multifractal formalism with oscillation spaces
is satisfied.
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6.2 Multifractal formalism with p-Oscillation spaces

The same kind of formula as in the Hölder case exists in order to compute
the p spectrum. The claim is the following (see [10] for details): compute
ωf (p, q) = sup{s : ∀j ≥ 0, 2j(s−1)

∑

λ∈λj

Dq
λ,p < +∞}.

Then
dp(h) = inf

q
(hq − ωf (p, q) + 1)

should give dp(h) = df,p(h).

We will check that this is actually true for our function f . Indeed remark
that it is enough to replace γ by a in the previous computation of Section 6.1
to compute exactly the formula for the p spectrum and get it exactly. The
multifractal formalism for the p exponent is satisfied.
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