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TIME-LOCAL DISSIPATIVE FORMULATION AND
STABLE NUMERICAL SCHEMES FOR A

CLASS OF INTEGRODIFFERENTIAL WAVE EQUATIONS

C. CASENAVE† AND E. MONTSENY†

Abstract. We consider integrodifferential equations of the abstract form H(∂t)Φ = G(∇)Φ + f

where H(∂t) is a diagonal convolution operator and G(∇) is a linear anti self-adjoint differential
operator. On the basis of an original approach devoted to integral causal operators, we propose and
study a time-local augmented formulation under the form of a Cauchy problem ∂tΨ = AΨ+Bf such
that Φ = CΨ. We show that under suitable hypothesis on the symbol H(p), this new formulation is
dissipative in the sense of a natural energy functional. We then establish the stability of numerical
schemes built from this time-local formulation, thanks to the dissipation of appropriate discrete
energies. Finally, the efficiency of these schemes is highlighted by concrete numerical results relating
to a model recently proposed for 1D acoustic waves in porous media.

Key words. integrodifferential equation, partial differential equation, convolution operator,
diffusive representation, numerical scheme, Cauchy problem, energy functional, stability condition.

AMS subject classifications.

1. Introduction. In many physical problems where accurate dynamic models
are required, the contribution of some underlying and more or less ill-known dis-
tributed phenomena cannot be neglected. Although the precise local description of
such phenomena often appears excessively complex or even, in many cases, out of
scope, their macroscopic dynamic consequences can fortunately most of time be taken
into account by means of suitable time-operators of convolution nature which in fact
summarize the collective contribution of lots of hidden parameters to the global dy-
namic behavior of quantities under interest. In that sense, such integrodifferential
models therefore conciliate accuracy and simplicity, up to the loss of the so-called
time-locality property: in opposite to standard Cauchy problems for which the future
is conditioned by the present only, all the past evolution is involved here, via the
time-convolution. Last years, various problems relating to integrodifferential models
have been studied in many fields. As few examples, we can cite [2, 7, 13, 16] in
physics, [6, 10, 12] in mathematical analysis or numerical simulation, [1, 11] in control
problems, [3, 9] in electrical engineering, [18] in biology, etc.

In the particular context of partial integrodifferential equations, the crucial prob-
lem of numerical simulation is in general quite difficult. This is due for one part
to the numerical complexity of quadratures of convolution integrals, which generate
highly expensive time discretizations, particularly when long memory components
are present. Beyond this first heavy shortcoming, the stability of numerical schemes
is in general very difficult to get, namely because standard techniques devoted to
(ordinary) partial differential equations such as energy dissipation cannot be used
for integrodifferential equations. So, the construction of stable numerical schemes
remains an important challenge and it can be expected that some specific methods
devoted to analysis and approximation of convolution operators should be of great
help from this point of view. This is the topic of the present paper.

We consider in the sequel partial integrodifferential equations of the abstract form:

(1.1) H(∂t)Φ = G(∇)Φ + f on (t, x) ∈ R
+∗
t × R

n
x ,
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2 C. CASENAVE AND E. MONTSENY

where H(∂t) is an invertible1 diagonal convolution operator, and G(∇) is an anti self-
ajoint linear differential operator. Many propagation phenomena can be modelled
following (1.1). As significant examples, we can mention for example electromagnetic
waves in dissipative media [13], wave propagation in viscoacoustic media [6], etc. In
order to illustrate our results, we will consider in particular a model of 1D acoustic
waves in porous wall proposed in [5]: (H1(∂t)u,H2(∂t)P )T = (−∂xP,−∂xu)T + f ,
where u and P stand for the velocity and the pressure of the gas and the symbols Hi

take the form: H1(p) = k p + a
√

1 + b p, H2(p) = k′p + c p2

p+a′
√

1+b′p
.

On the basis of an original approach devoted to integral causal operators presented
in [14, 15] and successfully applied to various integrodifferential problems, namely in
[1, 2, 3, 9], we propose and study a new formulation both equivalent to (1.1) and
time-local, written as a Cauchy problem:

(1.2) ∂tΨ = AΨ + Bf on (t, x, ξ) ∈ R
+∗
t × R

n
x × Rξ, Ψ(0, ., .) = 0,

in such a way that the solution of (1.1) is expressed Φ = CΨ. We show in particular
that under natural hypothesis on the symbol H(p), the formulation (1.2) is dissipa-
tive in the sense of an energy functional derived, in some way, from the one of the
standard equation ∂tΦ = G(∇)Φ. Following a convenient method introduced in [14],
straightforward dissipative approximate versions of (1.2) are deduced by simple dis-
cretization of the auxiliary variable ξ. We then study numerical schemes based on
classical discretizations relating to the variables t, x and we establish their stability in
the sense of adapted energy functionals inherited from the continuous model.

The paper is organized as follows. The section 2 deals with the time-local for-
mulation of (1.1). It begins with a short presentation of the so-called diffusive repre-
sentation of causal integral operators introduced in [14]; then, the formulation (1.2)
is deduced and its dissipativity is established. In section 3, implicit and explicit nu-
merical schemes for (1.2) are stated and studied from the point of view of stability.
Finally, the efficiency of these schemes is highlighted in section 4 by means of some
numerical simulations.

2. Time-local formulation of integrodifferential equations.

2.1. Time local realization of causal convolution operators. In this sec-
tion, we present a particular case of a methodology called diffusive representation,
introduced and developed in [14] in a general framework.

We consider a causal convolution operator denoted by K(∂t), that is, for any
continuous function w : R+ → R,

(2.1) (K(∂t)w)(t)=

∫ t

0

k(t − s)w(s) ds = (k ∗ w)(t);

the function K = Lk (the Laplace transform of k) is called the symbol of operator
K(∂t).

Let wt(s) = 1]0,t](s)w(s) and let wt(s) = wt(t − s) the so-called history of w.
From causality of K(∂t), we deduce:

(
K(∂t)(w − wt)

)
(t) = 0 for all t;

1We implicitly refer to an underlying algebra of causal convolution operators. For example, for
a Cauchy problem on R

+
t with null initial condition, the inverse of H(∂t) = ∂t is ∂−1

t : v 7→
∫ t

0
v ds.
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then, we have for any continuous function w:

(2.2) (K(∂t)w)(t)=
[
L−1 (K Lw)

]
(t)=

[
L−1

(
K Lwt

)]
(t).

We then define:

(2.3) Ψw(t, p) := ept
(
Lwt

)
(p) = (Lwt) (−p);

by computing ∂tLwt, Laplace inversion and use of (2.2), it can be shown:
Lemma 2.1. 1. The function Ψw is solution of the differential equation:

(2.4) ∂tΨ(t, p) = p Ψ(t, p) + w, t > 0, Ψ(0, p) = 0, p ∈ C

2. There exists b0 ∈ R such that:

(2.5) ∀b > b0, (K(∂t)w) (t) =
1

2iπ

∫ b+i∞

b−i∞
K(p)Ψw(t, p) dp.

Proof. 1. From (2.3), we have Ψw(t, p) := ept
∫ t

0
e−ps w(s)ds, and so:

∂tΨw(t, p) = p ept

∫ t

0

e−ps w(s)ds + ept e−pt w(t).

2. From (2.2), there exists b0 ∈ R such that for any b > b0:

(K(∂t)w) (t) =
1

2iπ

∫ b+i∞

b−i∞
ept K(p)

(
Lwt

)
(p) dp =

1

2iπ

∫ b+i∞

b−i∞
K(p)Ψw(t, p) dp.

We denote Ω the holomorphic domain of K. Let γ a simple arc closed at infinity
and included in C

− = R
− + iR. We denote Ω+

γ the exterior domain defined by γ, and

Ω−
γ the complementary of Ω+

γ (see figure 2.1). By use of standard techniques (Cauchy
theorem, Jordan lemma), it can be shown:

Lemma 2.2. For γ ⊂ Ω such that K is holomorphic in Ω+
γ , if K(p) → 0 when

p → ∞ in Ω+
γ , then, for any closed simple arc γ̃ in Ω+

γ such that γ ⊂ Ω−
γ̃ (see

figure 2.1):

(2.6) (K(∂t)w) (t) =
1

2iπ

∫

γ̃

K(p) Ψw(t, p) dp.

We now suppose that γ, γ̃ are defined by functions of W 1,∞
loc (R; C), also denoted

γ, γ̃. From classical techniques, it has been shown in [14] that:
Theorem 2.3. Under hypothesis of lemma 2.2, if in addition the possible singu-

larities of K on γ are simple poles or branching points in the neighborhood of which
|K ◦ γ| is locally integrable, then:

1. with ν̃ = γ̃′

2iπ K ◦ γ̃ and ψ̃(t, .) = Ψw(t, .) ◦ γ̃:

(2.7) (K(∂t)w) (t) =

∫

R

ν̃(ξ) ψ̃(t, ξ) dξ;

2. if γ̃n → γ in W 1,∞
loc , then

γ̃′

n

2iπ K ◦ γ̃n → ν in the sense of measures;
3. ψ(t, .) = Ψw(t, .)◦γ is the unique solution of the Cauchy problem on (t, ξ) ∈ R∗+×R:

(2.8) ∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + w(t), ψ(0, ξ) = 0
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Fig. 2.1. Example of γ and γ̃ arcs

and

(2.9) (K(∂t)w) (t) = 〈ν, ψ(t, .)〉 .

For convenience, we will indifferently denote in the sequel 〈ν, ψ〉 or
∫

ν ψ dξ the
duality product between a continuous function ψ and a measure ν (in particular, for
Dirac measures: ψ(a) =

∫
δaψ dξ).

Remark 1. In the limit case γ(ξ) = −|ξ|, we have Ω−
γ = ∅. The above results

remain valid and we deduce from symmetry of the problem that there exists a measure
µ such that

∫ +∞

−∞
ν ψ dξ =

∫ +∞

0

µ ψ dξ.

This particular case will be useful in practice when K is holomorphic in C r R
−.

Definition 2.4. [14] The measure ν defined in theorem (2.3) is called the
γ-symbol of operator K(∂t).

In many cases, the arc γ can be constrained to satisfy a suitable additional con-
dition which makes equation (2.8) of diffusive type [14]. The main advantage of the
input-output formulation (2.8,2.9) lies in its time-local nature which allows to use
classical methods devoted to Cauchy problems. In particular, stable and efficient
schemes for the numerical resolution of (1.1) can be straightforwardly built from dis-
cretizations of problem (2.8) following standard techniques. This is the topic of the
following sections.

2.2. Application to a class of partial integrodifferential equations. We
consider the problem:

(2.10) H(∂t)Φ = GΦ + f, on R
+
t × Ω, Ω ⊂ R

m
x ,

where Φ = (Φ1, ...,ΦM )T is the unknown, H(∂t) is an invertible causal convolution
operator of the form:

(2.11) H(∂t) =




H1(∂t)
. . .

HM (∂t)



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and G = G(∇) is a differential operator supposed to be anti self-adjoint, that is:

(2.12) G∗
ij = −Gji,

where G∗
ij is defined by:

(
Gij u

∣∣ v
)
L2(Ω)

=
(
u

∣∣G∗
ij v

)
L2(Ω)

∀u, v ∈ D(Ω).

As usual, suitable boundary conditions associated to G, not expressed here, can com-
plete the model (2.10). The γi-symbols νi of operators Hi(∂t)

−1 are supposed to be
positive measures. Note that this property appears as physically realistic in the sense
of an energy balance, as it will be highlighted later.

By expressing equation (2.10) under the form Φ = H(∂t)
−1 (GΦ + f) , we formally

deduce from results of section 2.1, under suitable hypothesis on H−1
i (∂t), the following

diffusive time-local formulation of (2.10):

∂tψ(t, x, ξ) = γ(ξ)ψ(t, x, ξ) + G 〈ν, ψ(t, x, .)〉 + f(t, x), ψ(0, .) = 0,(2.13)

Φ(t, x) = 〈ν, ψ(t, x, .)〉 ,(2.14)

where ψ := (ψ1, ..., ψM )T , γ := diag(γ1, ..., γM ), ν := diag(ν1, ..., νM ) and 〈ν, ψ〉 :=
(〈ν1, ψ1〉 , ..., 〈νM , ψM 〉)T .

Let us now consider the functional

ψ 7−→ Eψ =
1

2

∑

i

∫∫
νi |ψi|2 dξ dx =

1

2

∫∫
ψT ν ψ dξ dx ;

thanks to the positivity of νi, the functional Eψ is positive. We have:
Proposition 2.5. For any ψ solution of (2.13), and at any t such that f(t, ·) = 0,

the functional Eψ verifies:

dEψ(t)

dt
6 0.

Proof.

dEψ(t)

dt
= 1

2

(∫∫
(∂tψ)

T
ν ψ dξdx +

∫∫
ψT ν ∂tψ dξdx

)

=

∫∫
ψT νRe(γ) ψ dξdx + 1

2

(∫
〈ν, ψ〉T G 〈ν, ψ〉 dx +

∫
(G 〈ν, ψ〉)T 〈ν, ψ〉 dx

)

=

∫∫
ψT νRe(γ) ψ dξdx

+ 1
2

∑

i,j

[(
Gij 〈νj , ψj〉

∣∣ 〈νi, ψi〉
)
L2(Ω)

+
(
〈νj , ψj〉

∣∣Gji〈νi, ψi〉
)
L2(Ω)

]
.

Because G is anti self-adjoint, we then have:

dEψ(t)

dt
=

∫∫
ψT νRe(γ)ψ dξ dx =

∑

i

∫∫
νiRe(γi) |ψi|2 dξ 6 0.
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Therefore, the time-local problem (2.13) is dissipative in the sense of the positive
functional Eψ. At this stage, standard methods of semigroup theory can be investi-
gated to study the well-posedness of this Cauchy problem in the associated energy
Hilbert space2 [19], from which will follow the well-posedness of problem (2.10) as a
simple consequence.

In practice, the numerical resolution of problems such as (2.10) presents major
difficulties due to the non-local nature of H(∂t)

−1. So, we focus here on the construc-
tion and analysis of numerical schemes for (2.13), from which approximate solutions
of (2.10) will be directly deduced. We mainly study the stability property, which
holds most of the technical difficulties.

3. Numerical schemes for (2.13). First note that in any case, it follows from
(2.14) that, in the sense of suitable topologies not specified here, approximations of
Φ solution of (2.10) will be straightforwardly obtained from discrete approximations
ψ̃ of ψ solution of (2.13) under the generic form:

Φ(tn, xk) ≃ Φ̃(tn, xk) =
∑

l

αl ψ̃(tn, xk, ξl).

So, we build and study some numerical schemes for (2.10). A general technique
for ξ-discretization presented in [14] is first introduced, followed by the statement
of fundamental properties of generic x-discretizations, inherited from the properties
of operator G. Then, we consider different ways of time discretization which define
different classes of implicit and explicit schemes.

3.1. ξ-discretization [14]. Consider K a Hilbert space such that ψ(t, x, .) ∈ K
and KL a sequence of subspaces of K of dimension L, such that ∪LKL

K
= K. Given

a mesh {ξl}l=1:L, consistent approximations ψ̃L ∈ KL of ψ are then defined by:

ψ̃L(ξ) =

L∑

l=1

ψ(ξl)Λl(ξ),

where Λl are finite element functions belonging to KL in such a way that:

∥∥∥ψ̃L − ψ
∥∥∥
K

−→
L→∞

0.

We then deduce the finitedimensional approximate state formulation of (2.13):

(3.1) ∂tψ(t, x, ξl) = γ(ξl)ψ(t, x, ξl) + G
∑

j

Cjψ(t, x, ξj), l = 1 : L,

where:

Cl = diag(cl1, ..., clM ), cli :=

∫
νi(ξ) Λl(ξ)dξ.

Note that, in practice, only a few tens of ξl are necessary to correctly approximate each
operator Hi(∂t)

−1. More details on the ξ-discretization of diffusive state realizations
of convolution operators can be found in [14].

2Up to an algebraic quotient in the possible case where supp ν 6= R, the functional Eψ then
defining a seminorm on D(Rn

x).
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In addition, for consistency with positivity of measures νi, we will suppose:

cli > 0;

this property, which will play a central role, is satisfied namely if Λl > 0. The energy
functional associated to (3.1) is then:

EL
ψ (t) =

1

2

∑

i,l

∫
cli |ψi(t, x, ξl)|2 dx =

1

2

∑

l

∫
ψ(t, x, ξl)

T Cl ψ(t, x, ξl) dx

and verifies, in the same way as previously:

dEL
ψ (t)

dt
=

∑

l

∫
ψ(t, x, ξl)

T Re(γ(ξl))Cl ψ(t, x, ξl) dx(3.2)

=
∑

l,i

∫
cli Re(γi(ξl)) |ψi(t, x, ξl)|2 dx 6 0.

3.2. x-discretization. In formulation (3.1), Gij is a differential operator; it is
approximate on a mesh {xk}k=1:K ⊂ R

m by:

(3.3) (GijΦ) (xq) ≃
K∑

k=1

gqk
ij Φ(xk), ∀q = 1 : K

where the coefficients gqk
ij define the approximation under consideration (for example

finite differences [17], finite elements or even more general Galerkin methods up to

suitable technical adaptations [4]). By denoting Φ̃ := (Φ(x1), ...,Φ(xK))T , (3.3) can
be written in a more condensed way,:

((GijΦ) (x1), ..., (GijΦ) (xK))T ≃ GijΦ̃,

where we denote Gij the matrix with terms gqk
ij . In the sequel, for simplicity Φ̃ will

be denoted Φ.

Because the operator G is anti self-adjoint, it is natural to consider approxi-
mations which preserve this property. So the block matrix G with block elements
Gij ∈ MK,K(R) must be antisymmetric, that is:

(3.4) GT
ij = −Gji.

In the sequel, we will denote SGij
the quantity:

SGij
:= max

(
max

k

∑

q

∣∣∣gqk
ij

∣∣∣ ,max
q

∑

k

∣∣∣gqk
ij

∣∣∣
)

.

The Euclidian scalar product in C
K and the associated norm will be denoted:

(X|Y ) =

K∑

k=1

XkYk, and ‖X‖ =

√√√√
K∑

k=1

|Xk|2.
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3.3. Stability analysis for an implicit scheme. We propose the following
class of time-implicit schemes, based on a Cranck Nicholson time discretization:
(3.5)

ψn+1
i (ξl)−ψn

i (ξl)

∆t
= γi(ξl)

ψn+1
i (ξl)+ψn

i (ξl)

2
+

∑

k,j

Gikcjk

ψn+1
k (ξj)+ψn

k (ξj)

2
+ fn

i

where

ψn
i (ξl) = (ψi(n∆t, x1, ξl), ..., ψi(n∆t, xK , ξl))

T

and fn
i = (fi(n∆t, x1), ..., fi(n∆t, xK))T . In a more condensed way, (3.5) can be

written:

(3.6)
ψn+1(ξl)−ψn(ξl)

∆t
= Γl

ψn+1(ξl)+ψn(ξl)

2
+G

∑

j

Qj

ψn+1(ξj)+ψn(ξj)

2
+ fn

where ψn(ξl) = (ψn
1 (ξl)

T , ..., ψn
M (ξl)

T )T , fn = (fnT
1 , ..., fnT

M )T , Γl =diag(γi(ξl) IK),
Qj =diag(cjk IK) and G is the antisymmetric block matrix defined above.

Let us now consider the quantity:

En =
∑

l

(
ψn(ξl)

∣∣∣ Qlψ
n(ξl)

)
=

∑

i,l

cli |ψn
i (ξl)|2 .

Note that, thanks to the positivity of coefficients cli, En is an energy candidate for
(3.6). We have:

Theorem 3.1. The implicit scheme (3.6) is stable.
Proof.

En+1 − En =

=
∑
l

(
Ql(ψ

n+1(ξl) + ψn(ξl))
∣∣ ψn+1(ξl) − ψn(ξl)

)
+

∑
l

2i Im
(
Qlψ

n+1(ξl)
∣∣ ψn(ξl)

)

=
∑
l

∆t
2

(
Ql(ψ

n+1(ξl)+ ψn(ξl))
∣∣ Γl(ψ

n+1(ξl)+ ψn(ξl))
)
+

∑
l

2i Im
(
Qlψ

n+1(ξl)
∣∣ ψn(ξl)

)

+ ∆t
2

∑
l,j

(
Ql(ψ

n+1(ξl) + ψn(ξl))
∣∣ GQj(ψ

n+1(ξj) + ψn(ξj))
)
.

Because G is antisymmetric, we have:
∑
l,j

(
Ql(ψ

n+1(ξl) + ψn(ξl))
∣∣ GQj(ψ

n+1(ξj) + ψn(ξj))
)

= 0,

so:

En+1 − En =

=
∑
l

∆t
2

(
Ql(ψ

n+1(ξl)+ ψn(ξl))
∣∣ Γl(ψ

n+1(ξl)+ ψn(ξl))
)
+

∑
l

2i Im
(
Qlψ

n+1(ξl)
∣∣ ψn(ξl)

)

= ∆t
2

∑
i,l

γi(ξl)cli

∣∣ψn+1
i (ξl) + ψn

i (ξl)
∣∣2 +

∑
l

2i Im
(
Qlψ

n+1(ξl)
∣∣ ψn(ξl)

)
.

As En+1 − En is real, we have:

En+1 − En = ∆t
2

∑
i,l

cli Re(γi(ξl))
∣∣ψn+1

i (ξl) + ψn
i (ξl)

∣∣2 6 0.
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3.4. Stability analysis for explicit schemes. In this section, we propose a
class of two-steps explicit schemes of the form:

(3.7) ψn+1
i (ξl) = ali ψn−1

i (ξl) + bli

∑

k

Gik

∑

j

bjk ψn
k (ξj) + bli fn

i

where ali ∈ C, |ali| < 1 and bjk ∈ R
∗
+ are depending both on time approximation and

γi(ξl) choices, and G is the antisymmetric block matrix associated to operator G.
Let us now study the stability of (3.7). We consider the functional:

En =
∑

i,l

‖ψn
i (ξl)‖2

2 + Re
(
ψn+1

i (ξl)|ψn−1
i (ξl)

)
.

Lemma 3.2. If

(3.8) Re(ali) −
bli

2

∑

k,j

bjkSGik
> 0 ∀i, l,

then there exists K > 0 such that

En
> K

∑

i,l

‖ψn
i (ξl)‖2

.

Proof. We have:

En =
∑

i,l

‖ψn
i (ξl)‖2

2 +
∑

i,l

Re(ali)
∥∥ψn−1

i (ξl)
∥∥2

2
+

∑

i,l,k,j

blibjk Re (Gik ψn
k (ξj)| ψn−1

i (ξl)
)
.

Moreover, by using the following relation:

(3.9) ∀α ∈ R, ∀u, v ∈ C
K , α Re (u|v) =

|α|
2

(‖u‖2
+ ‖v‖2 − ‖u − sign(α)v‖2

),

we get:

Re (Gik ψn
k (ξj)| ψn−1

i (ξl)
)

>
∑

p,q

|gpq
ik |
2

∣∣ψn
k (ξj , xq) + sign(gpq

ik )ψn−1
i (ξl, xp)

∣∣2

− SGik

2

∥∥ψn−1
i (ξl)

∥∥2 − SGik

2
‖ψn

k (ξj)‖2
;

so, as SGik
= SGki

:

En >
∑

i,l


1− bli

2

∑

k,j

bjkSGik


‖ψn

i (ξl)‖2
+

∑

i,l


Re(ali)−

bli

2

∑

k,j

bjkSGik


∥∥ψn−1

i (ξl)
∥∥2

+
∑

i,j,k,l,p,q

blibjk

|gpq
ik |
2

∣∣ψn
k (ξj , xq) + sign(gpq

ik )ψn−1
i (ξl, xp)

∣∣2 .

Remark 2. Note that condition (3.8) necessarily implies Re(ali) > 0 ; the
hypothesis |ali| < 1 is motivated by the term ali ψn−1

i (ξl) of (3.7).
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Remark 3. Conditions of Lemma 3.2 are necessary conditions that link ∆t (in
ali and bik) and the space discretization step (in SGik

).
Let us now consider the quantity:

En = En + En−1,

which, under the conditions of lemma 3.2, defines an energy candidate for (3.7). Then,
we have the following theorem for stability of the class of explicit schemes (3.7):

Theorem 3.3. Under the conditions of lemma 3.2 and if, for any k, j,
(3.10)

|ajk|2+
bjk

2

∑

i,l

‖Gik‖2
bli

(∣∣∣|ali|2+a2
li−ajkali−1

∣∣∣+bli

∑

p,q

bqp (|ali−ajk|+|ali−aqp|)
)

61

and

(3.11) Re(ajk)(|ajk|2 − 1) +
bjk

2

∑

i,l

bli

∣∣∣|ajk|2 + a2
jk − aliajk − 1

∣∣∣ 6 0,

then the scheme (3.7) is stable.
Proof. After computations and reorganization, we have:

En+1 − En = En+1 − En−1

=
∑

i,l

|ali|2
∥∥ψn−1

i (ξl)
∥∥2

+
∑

i,l,k,j

blibjk Re
(
aliψ

n−1
i (ξl)

∣∣ Gik ψn
k (ξj)

)

+
∑

i,l,k,j

blibjk Re
(
Gik ψn

k (ξj)
∣∣ψn+1

i (ξl)
)
+

∑

i,l

|ali|2 Re
(
ψn

i (ξl)
∣∣ψn−2

i (ξl)
)

+
∑

i,l,k,j

blibjk Re
(
aliψ

n
i (ξl)

∣∣Gikψn−1
k (ξj)

)
+

∑

i,l,k,j

blibjk Re
(
Gik ψn+1

k (ξj)
∣∣ ψn

i (ξl)
)

−
∑

i,l

(∥∥ψn−1
i (ξl)

∥∥2
+ Re

(
ψn

i (ξl)
∣∣ψn−2

i (ξl)
))

.

As Gik = −GT
ki, we have:

En+1 − En =
∑

i,l

(|ali|2 − 1)
∥∥ψn−1

i (ξl)
∥∥2

+
∑

i,l

(|ali|2 − 1)Re
(
ψn

i (ξl)
∣∣ψn−2

i (ξl)
)

+
∑

i,l,k,j

blibjk(ali − ajk) Re ((ali − ajk)ψn
i (ξl)|Gikψn−1

k (ξj)
)

=
∑

i,l

(|ali|2 − 1)
∥∥ψn−1

i (ξl)
∥∥2

+
∑

i,l

(|ali|2 − 1)Re(ali)
∥∥ψn−2

i (ξl)
∥∥2

+
∑

i,l,k,j

blibjk Re
((

|ali|2 + a2
li − ajkali − 1

)
ψn−2

i (ξl)
∣∣∣ Gik ψn−1

k (ξj)
)

+
∑

i,l,k,j,p,q

b2
libjkbqp Re

(
(ali − ajk)Gipψ

n−1
p (ξq)

∣∣ Gikψn−1
k (ξj)

)
.

By using (3.9) and the following relation:

Re (βu|v) =
1

2

(
|β| ‖v‖2

2 + |β| ‖u‖2
2 −

∥∥∥
√

βu +
√

βv
∥∥∥

2

2

)
,
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and after reorganization, we obtain:

En+1 − En =
∑

i,l

(|ali|2 − 1)
∥∥ψn−1

i (ξl)
∥∥2

+
∑

i,l

(Re(ali)(|ali|2 − 1) + bli

2

∑
k,j bjk

∣∣∣|ali|2 + a2
li − ajkali − 1

∣∣∣)
∥∥ψn−2

i (ξl)
∥∥2

− 1
2

∑

i,l,k,j,p,q

b2
libjkbqp

∥∥∥
√

ali − ajkGip ψn−1
p (ξq) +

√
ali − ajkGikψn−1

k (ξj)
∥∥∥

2

− 1
2

∑

i,l,k,j

blibjk

∥∥∥∥
√
|ali|2+a2

li−ajkali−1 ψn−2
i (ξl)+

√
|ali|2+a2

li−ajkali−1 Gikψn−1
k (ξj)

∥∥∥∥
2

+ 1
2

∑

i,l,k,j

blibjk

(∣∣∣|ali|2+a2
li−ajkali−1

∣∣∣+
∑
p,q

blibqp(|ali−ajk|+|ali−aqp|)
)

∥∥Gikψn−1
k (ξj)

∥∥2
.

By using the property
∥∥Gikψn−1

k (ξj)
∥∥ 6 ‖Gik‖

∥∥ψn−1
k (ξj)

∥∥ , we then get:

En+1 − En 6
∑

k,j


(|ajk|2 − 1) +

bjk

2

∑

i,l

‖Gik‖2
bli

[∣∣∣|ali|2 + a2
li − ajkali − 1

∣∣∣

+bli

∑

p,q

bqp (|ali − ajk| + |ali − aqp|)
])

∥∥ψn−1
k (ξj)

∥∥2

+
∑

i,l


Re(ali)(|ali|2 − 1) + bli

2

∑

k,j

bjk

∣∣∣|ali|2 + a2
li − ajkali − 1

∣∣∣


∥∥ψn−2

i (ξl)
∥∥2

− 1
2

∑

i,l,k,j

blibjk

∥∥∥∥
√
|ali|2+a2

li−ajkali−1 ψn−2
i (ξl)+

√
|ali|2+a2

li−ajkali−1 Gikψn−1
k (ξj)

∥∥∥∥
2

− 1
2

∑

i,l,k,j,p,q

b2
libjkbqp

∥∥∥
√

ali − ajkGip ψn−1
p (ξq) +

√
ali − ajkGikψn−1

k (ξj)
∥∥∥

2

.

So, if for any k, j,

|ajk|2+
bjk

2

∑

i,l

‖Gik‖2
bli

(∣∣∣|ali|2+a2
li−ajkali−1

∣∣∣+bli

∑
p,q

bqp (|ali−ajk| + |ali−aqp|)
)

61

and for any i, l, Re(ali)(|ali|2 − 1)+
bli

2

∑

k,j

bjk

∣∣∣|ali|2 + a2
li − ajkali − 1

∣∣∣ 6 0,

then En+1 6 En, from which we deduce En+1 6 En−1. Consequently, we have
En 6 max(E0, E1); from lemma 3.2, the scheme is stable.

In section 4, where a concrete application is presented, we will consider two par-
ticular explicit scheme of the form (3.7), based on two time discretizations (the first
one is rather classical, and the second can be expected to be more precise):

• in the first scheme, the time derivative is approximate by centered finite differ-
ences; we then get:

ψn+1
i (ξl) = (1 + 2∆t γi(ξl))ψn−1

i (ξl) + 2∆t
∑

k

Gik

∑

j

cjk ψn
k (ξj) + 2∆t fn

i
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which, after change of variable ψ̃n+1
i (ξl) = ψn+1

i (ξl)

√
cli

2∆t
, is rewritten under the

form (3.7) with:

(3.12) ali = 1 + 2∆t γi(ξl) and bjk =
√

2 ∆t cjk.

• the second scheme is based on another time discretization described in ap-
pendix A, and can be considered in the case where γi(ξ) is real (γi(ξ) = −ξ for
example). It is written:
(3.13)

ψn+1
i (ξl) = eγi(ξl)2∆t ψn−1

i (ξl) +
eγi(ξl)2∆t − 1

γi(ξl)




∑

k

Gik

∑

j

cjk ψn
k (ξj) + fn

i


 ;

after change of variable ψ̃n+1
i (ξl) = ψn+1

i (ξl)

√
cliγi(ξl)

eγi(ξl)2∆t − 1
, (3.13) is rewritten under

the form (3.7) with:

(3.14) ali = eγi(ξl)2∆t and bjk =

√

cjk

eγk(ξj)2∆t − 1

γk(ξj)
.

The stability of those particular schemes is obtained as corollary of the general sta-
bility theorem 3.3:

Corollary 3.4. Under conditions of lemma 3.2, and if ∆t is small enough, the
two schemes (3.7,3.12) and (3.7,3.14) are stable.

Proof. For the first scheme, we have:

ali = 1 + 2∆t γi(ξl) and bjk =
√

2∆tcjk,

so that, by supposing ∆t small enough, conditions (3.10) and (3.11) are respectively
equivalent to:

1 + 4∆t Re(γk(ξj)) 6 1 and 4∆t Re(γk(ξj)) 6 0,

which are both verified thanks to the property Re γ ⊂ R
−.

For the second scheme, we have:

ali = eγi(ξl)2∆t and bjk =

√

cjk

eγk(ξj)2∆t − 1

γk(ξj)
,

so if ∆t is small enough:

ali ∼ 1 + 2∆t γi(ξl) and bjk ∼
√

2∆tcjk,

and the same analysis as for the first scheme can be made.

4. Application to a porous wall model.

4.1. Problem under consideration. In the context of aircraft motors noise
reduction in aerospace industry, specific porous wall was proposed in [5] for absorption
of a wide part of the energy of incident acoustic waves. The following frequency model
of such a material has been established from analysis of harmonic propagating waves:
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(4.1)

{
e iω ρeff (iω) û + ∂xP̂ = 0

e iω χeff (iω) P̂ + ∂xû = 0
with

{
ρeff (iω) = ρ (1 + a

√
1+b iω
iω )

χeff (iω) = χ (1 − β iω
iω+a′

√
1+b′iω

),

where û and P̂ designate the Fourier transforms of the velocity and the pressure
in the porous medium, e denotes the thickness of the porous wall3, ρeff (iω) and
χeff (iω) are respectively the so-called effective density of Pride et al. [16] and the
effective compressibility of Lafarge [8] and ρ = ρ0 α∞, χ = 1

P0
, a = 8µ

ρ0Λ2 , a′ = 8µ
ρ0Λ′2 ,

b = 1
2a

, b′ = 1
2a′

, 0 < β = γ−1
γ

< 1. The physical parameters ρ0, P0, µ, γ, α∞, Λ,

Λ′ are respectively the density and pressure at rest, the dynamic viscosity, the spe-
cific heat ratio, the tortuosity, the high frequency characteristic length of the viscous
incompressible problem and the high frequency characteristic length of the thermal
problem. Note that all these parameters are positive by nature.

The aim of this section is to perform temporal simulations of these equations,
based on the schemes previously studied. In the time domain, (4.1) can be written
(by replacing p = iω by ∂t):

(4.2)

[
H1(∂t) 0

0 H2(∂t)

](
u
P

)
=

[
0 −∂x

−∂x 0

](
u
P

)

with:

H1(p) = e ρ (p + a
√

1 + b p) and H2(p) = e p χ (1 − β
p

p + a′√1 + b′p
).

The analytic continuations of functions H1(p)−1 and H2(p)−1 are clearly decreasing at
infinity and holomorphic in C r R−. So, from theorem 2.3, the time-local formulation
(2.13) of (4.2) with γi(ξ) = − |ξ| is valid. It takes the form:

(4.3)





∂tψ(t, x, ξ) =

[
−ξ 0
0 −ξ

]
ψ(t, x, ξ)+

[
0 −∂x

−∂x 0

](
〈ν1, ψ1(t, x, .)〉
〈ν2, ψ2(t, x, .)〉

)

u = 〈ν1, ψ1(t, x, .)〉
P = 〈ν2, ψ2(t, x, .)〉 .

After computations, the γ-symbol νi associated to operator Hi(∂t)
−1 are expressed

(δ denotes de Dirac measure):

ν1(ξ) =
a

π e ρ

√
b ξ − 1

ξ2 + a ξ
2 − a2

1ξ>2a + k1 δ(ξ − ξ1),

ν2(ξ) =
a′ β

π eχ

√
b′ ξ − 1

ξ2 (1 − β)2 + a′

2 ξ − a′2 1ξ>2a′ +
1

e χ
δ(ξ) + k2 δ(ξ − ξ2),

with

ξ1 = a(
√

17−1)
4 > 0, ξ2 =

a′(
√

1+16(1−β)2−1)

4(1−β)2 > 0,

k1 =
√

17−1
e ρ

√
17

> 0, and k2 =
β

(√
1+16(1−β)2−1

)

e χ(1−β)
√

1+16(1−β)2
> 0.

3In the model, the unit of length for x is e, so x ∈]0, 1[.
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For the ξ-discretization, we consider the classical interpolation functions:

Λl(ξ) =
ξ − ξl−1

ξl − ξl−1
1[ξl−1,ξl](ξ) +

ξl+1 − ξ

ξl+1 − ξl

1]ξl,ξl+1](ξ)

and coefficients cli are computed by simple quadrature of
∫

νi(ξ)Λl(ξ)dξ.

4.2. Numerical schemes. In this example, G =

[
0 −∂x

−∂x 0

]
. We use cen-

tered finite differences to approximate the derivative operator ∂x, so the matrix of
x-discretization G is given by:

G =

[
0 G12

G21 0

]
with G12 = G21 =

1

2∆x




0 −1
1 0 −1

. . .
. . .

. . .

1 0 −1
1 0




.

Note that this matrix is antisymmetric, so that the schemes studied in section 3 can
be used. Then, we consider:

• the implicit scheme:
(4.4)




ψn+1
1 (ξl)−ψn

1 (ξl)

∆t
=−ξl

ψn+1
1 (ξl)+ψn

1 (ξl)

2
+G12

∑
j cj2

ψn+1
2 (ξj)+ψn

2 (ξj)

2
+ fn

1

ψn+1
2 (ξl)−ψn

2 (ξl)

∆t
=−ξl

ψn+1
2 (ξl)+ψn

2 (ξl)

2
+G21

∑
j cj1

ψn+1
1 (ξj)+ψn

1 (ξj)

2
+ fn

2 ,

• the two particular explicit schemes of the form:

(4.5)

{
ψn+1

1 (ξl) = al1 ψn−1
1 (ξl) + bl1 G21

∑
j bj2 ψn

2 (ξj) + bl1f
n
1

ψn+1
2 (ξl) = al2 ψn−1

2 (ξl) + bl2 G12

∑
j bj1 ψn

1 (ξj) + bl2f
n
2 ,

respectively obtained with:

ali = 1 − 2∆t ξl, bjk =
√

2∆t cjk and ali = e−ξl2∆t , bjk =

√

cjk

e−ξj2∆t − 1

−ξj

.

4.3. Physical interpretation of stability conditions. Obviously, to be able
to correctly simulate wave propagation phenomena, explicit schemes necessarily have
a numerical influence velocity at least equal to the maximal velocity of wave fronts
in the medium under consideration. When this is not the case, a consistent explicit
scheme cannot be convergent and is therefore unstable. So, it can be expected that
the stability conditions of section 3.4 applied to (4.5) can be in some way interpreted
in terms of high frequency wave velocity. More precisely: is the sufficient stability
condition for (4.5) “optimal” in the sense that it is close to the necessary condition
mentioned above? This is studied in the present section.

Let us compute the expression of the high frequency wave velocity of model (4.2),
denoted by c. We have:

(4.6)

{
u = −H1(∂t)

−1∂xP
P = −H2(∂t)

−1∂xu,
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so we get u = H1(∂t)
−1H2(∂t)

−1 ∂2
xu. Moreover [14]:

Hi(iω)−1 =

∫
νi(ξ)

iω + ξ
dξ =

1

iω

∫
νi(ξ)

1 + ξ
iω

dξ, i = 1, 2.

So, when ω → +∞:

Hi(iω)−1 ∼ 1

iω

∫
νi(ξ) dξ.

The equation u = H1(∂t)
−1H2(∂t)

−1 ∂2
xu therefore behaves at high frequency as equa-

tion ∂2
t u = c2 ∂2

xu, with

c =

√∫
ν1(ξ) dξ

∫
ν2(ξ) dξ.

Similarly, we denote by cd the high frequency wave velocity of the continuous
model obtained after ξ-discretization of (4.2), in which Hi(iω) is replaced by its ap-

proximation H̃i(iω) [14]:

(4.7) H̃i(iω)−1 =
∑

j

cji

iω + ξj

=
1

iω

∑

j

cji

1 +
ξj

iω

, i = 1, 2.

We have, when |ω| → +∞:

H̃i(iω)−1 ∼ 1

iω

∑

j

cji,

which leads to a high frequency behavior of the form ∂2
t u = c2

d ∂2
xu with

cd =

√∑

j

cj1

∑

j

cj2.

Thanks to the expression of cli, we then have, if H̃−1
i is sufficiently close to H−1

i :

(4.8) cd ≃ c.

Moreover, SG12
= SG21

= 1
∆x

, so the stability conditions of section 3.4 applied to
(4.5) are:
∆t small enough and

(4.9) ∀(i, k) ∈ {(1, 2), (2, 1)}, ∀l = 1 : L, ali −
bli

2∆x

∑

j

bjk > 0.

For the first explicit scheme, (4.9) is expressed:

(4.10)
∆x

∆t
> vd := max

(i,k)
max

l

√
cli

1 − 2∆t ξl

∑

j

√
cjk,

where ∆x
∆t

is the numerical influence velocity of the scheme. For the second explicit
scheme, the order one approximation leads to the same condition. Then, we have the
following result:
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Proposition 4.1. vd > cd.
Proof. Without loss of generality, we can consider that:

vd = max
(i,k)

max
l

√
cli

1 − 2∆t ξl

∑

j

√
cjk = max

l

√
cl1

1 − 2∆t ξl

∑

j

√
cj2.

So we have:

c2
d =

∑
j cj1

∑
j cj2 6 max

l

√
cl1

∑
j

√
cj1 max

l

√
cl2

∑
j

√
cj2

6 max
l

√
cl1

1 − 2∆t ξl

∑
j

√
cj2 max

l

√
cl2

1 − 2∆t ξl

∑
j

√
cj1

6

(
max

l

√
cl1

1 − 2∆t ξl

)2 (∑
j

√
cj2

)2

= v2
d.

As expected, we deduce from (4.10) and proposition 4.1 that the numerical influ-
ence velocity of the scheme necessarily satisfies:

∆x

∆t
> cd.

The sufficient stability condition (4.10) is of course not necessary. However, in nu-
merical results of paragraph 4.4, the gap between this condition and the instability of
the scheme is small: then, this condition is quasi optimal in this case.

Remark 4. The numerical velocity vd of (4.5) could also be compared to the one
of a (theoretical) scheme in which the variable ξ remains continuous, by consider-

ing the continuous equivalent of the quantity vd = max(i,k) maxl

√
cli

1−2∆t ξl

∑
j

√
cjk in

(4.10). Namely, by supposing by simplicity that νi are positive and continuous func-
tions4 with bounded support, that ∆ξ = ξl+1 − ξl is constant and with Λl = 1[ξl,ξl+1],

there exists ν′
li ∈ [νi(ξl), νi(ξl+1)] such that: cli =

∫ ξl+1

ξl
νi(ξ) dξ = ν′

li ∆ξ; so,

√
cli

∑

j

√
cjk =

√
ν′

li

∑

j

√
ν′

jk ∆ξ ≃
√

ν′
li

∫ √
νk(ξ) dξ,

and therefore, with ∆t such that 1 − 2∆t ξ > 0 for any ξ ∈ supp ν1 ∪ supp ν2:

vd ≃ max
(i,k)

max
l

√
ν′

li

1 − 2∆t ξl

∫ √
νk(ξ) dξ 6 v := max

(i,k)
sup

ξ

√
νi(ξ)

1 − 2∆t ξ

∫ √
νk dξ.

Then, similarly to proposition 4.1, it can be easily shown that v > c. Note however that
besides the boundness of supp νi which is a quite unrealistic hypothesis, this estimation
can be in some cases excessively pessimist.

4.4. Numerical results. We give in this section some numerical results ob-
tained with the explicit schemes. The values of parameters are [5]:

Λ = Λ′ = 0.1 10−3 m, ρ0 = 1.2 kg.m−3, P0 = 105 Pa

µ = 1.8 10−5 kg.m−1.s−1, γ = 1.4, α∞ = 1.3, e = 5 10−2 m.

The frequency responses of the approximations of Hi(∂t)
−1 obtained with (4.7) are

given in figure 4.1. Only 15 (resp. 20) ξl are used to approximate H1(∂t)
−1 (resp.

H2(∂t)
−1) on a range of 6 decades with a good accuracy.

4Dirac and L1
loc

components could be similarly treated up to suitable technical adaptations.
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Fig. 4.1. Exact (—) and approximate (- - -) frequency responses of operators H1(∂t)−1 (at
left) and H2(∂t)−1 (at right)

For illustration, the evolution of P obtained from simulation with explicit schemes
is shown in figure 4.2 (the two curves are superposed); the x-domain of (4.2) is Ω =
]0, 1[ and boundary conditions are:

P (t, 0) = (1 − cos(2πf t))1[0, 1
f
](t), u(t, 1) = 0,

with f = 5 kHz.We can clearly observe the dissipation and dispersion due to operator
H(∂t).
In figure 4.3 we can see at a particular time, the functions ψ1 which are involved in
the synthesis of u.
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Fig. 4.2. Evolution of P̃ =
∑

l bl2ψ2(ξl) (N.B: the unit of length for the x-axis is 10−2m)
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Fig. 4.3. Functions ψ1(t, ., ξl) l = 1 : L at time t = 1.3ms
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4.5. Comparison between experimental and theoretical stability con-
ditions. In the case of explicit schemes, the (sufficient) stability conditions are:

condition 1. ∆t small enough,

condition 2. ali − bli

2∆x

∑
k bkj > 0.

We propose to compare from numerical simulations the stability condition 2 with
the experimental one. In the same conditions as previously, for different values of ∆t

∆x
,

we test the experimental stability of the schemes and verify if condition 2 is satisfied
or not. The results are presented in table 4.1 (resp. in table 4.2) for the first (resp. the
second) scheme. In the two cases, the results confirm that condition 2 is a sufficient
stability condition. Because the interval of ∆t

∆x
values for which condition 2 is not

verified whereas the scheme remains stable is small, this condition is in fact “almost
necessary”.

Finally, to make the link with section 4.3, we can remark that the experimental
stability bounds are intimately linked to propagation velocities. Indeed, the values of
velocities defined in section 4.3 are (in length unit e per second):

c = 5992, cd = 5038 and vd = 6856,

which correspond to the physical values c = 299.6 m.s−1, cd = 251.9 m.s−1 and
vd = 342.8 m.s−1. We can remark that, as expected, the schemes become unstable
when ∆x

∆t
6

1
1.98 10−4 ≃ cd, that is when the numerical propagation velocity is less

than the model’s one.

Table 4.1

First explicit scheme

value of ∆t/∆x condition 2 Stability
6 1.47 10−4 verified yes

from 1.48 10−4 to 1.97 10−4 not verified yes
> 1.98 10−4 not verified no

value of ∆t/∆x condition 2 Stability
6 1.47 10−4 verified yes

from 1.48 10−4 to 1.98 10−4 not verified yes
> 1.99 10−4 not verified no

Table 4.2

Second explicit scheme

Appendix A. A particular time discretization.
For a linear differential system in C

M :

∂tϕ = Aϕ + Bw, ϕ(0) = 0,

the solution ϕ is given by:

ϕ(t) =

∫ t

0

eA(t−s)B w(s) ds.

For w constant in [t − ∆t, t + ∆t], we have:

ϕ(t+∆t) =

∫ t−∆t

0

eA(t+∆t−s)B w(s) ds+

∫ t+∆t

t−∆t

eA(t+∆t−s) dsB w(t) = Fϕ(t−∆t)+Gw(t),
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with F = e2∆tA and G = A−1(e2∆tA−I)B. So we get the following numerical scheme:

ϕt+∆t = Fϕt−∆t + Gwt.

Note that this scheme is especially useful in the case where A is diagonal.
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fluide viscothermique, PhD thesis, Université du Maine, 1993.
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