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Adaptive state estimation for a class of uncertain nonlinear systems
with output time-delays

Habib Dimassi, Antonio Loria, Safya Belghith

Abstract— In this paper, we propose an adaptive observer for
nonlinear systems with slope restricted nonlinearities, unknown
parameters and delayed outputs. The delay is assumed constant
and the unknown parameter is assumed piece-wise constant.
Based on the Lyapunov-krasovskii approach, we show that, for
sufficiently small values of the time-delay, both state estimation
and parametric convergence are ensured under a condition of
persistent excitation. The result is illustrated via two numerical
examples.

I. INTRODUCTION

Time-delays occur frequently in many engineering ap-
plications such that communication systems, biochemical
reactors, mechanical systems and many other applications.
In this context, the issue of state estimation of systems with
time-delays which may appear in states, inputs or outputs
has received increasing attention. For instance, in [1], the
problem was considered for the case of only delayed states
and in [2] the authors investigate the case of delayed inputs.
Particularly, the problem of observer design for nonlinear
systems with delayed outputs has attracted specific attention
in the last decade. The existing approaches in the recent
literature extend principally the available results on the
nonlinear observer design to the case of delayed outputs;
however, there exists only a countable number of publica-
tions investigating this particular issue and it remains many
possible extensions to be investigated. For instance, in the
reference [3], based on the design of state observers from
a drift-observability property, the authors has presented a
solution for the case of delayed outputs by proposing a chain
of observation algorithms which ensure global exponential
convergence of the estimation error. A similar conceptually
design method has been adopted in [4], however the pro-
posed nonlinear observer possesses a state-dependent gain
which is computed from the solution of a system of first-
order singular partial differential equations and the condi-
tions ensuring the convergence of the observation error were
given. In [5], the authors propose two cascaded observers
to reconstruct the system states of a linear time invariant
system with delayed measurements where the time-delay is
assumed a known piece-wise function of time. On the other
hand, in [6], the authors propose a nonlinear observer for a
class of drift observable nonlinear systems with a bounded
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time varying observation delay. Based on the Lyapunov-
Razumikhiin approach, asymptotic and exponential conver-
gence of the estimation error have been proved to be guaran-
teed under some conditions. More recently, in the references
[71.[8]; an elegant approach based on high gain observer
design for a class of triangular nonlinear systems with re-
spectively constant and time varying delayed measurement
has been proposed and asymptotic convergence was shown
to be ensured by choosing a suitable Lyapunov-Krasovskii
functional if some condition relating the observer gain and
the upper bound of the time delay is satisfied.

On the other hand, the problem of joint state and unknown
parameters estimation using adaptive observers has been
widely investigated in the literature for the cases of linear
and nonlinear systems. For instance, in [9], the author
introduces a unifying adaptive observer form for nonlinear
systems under some additional “passivity-like” condition on
the observation error. Another solution to the adaptive esti-
mation problem was also proposed in [10] for the case of a
class of MIMO linear time-varying systems. This approach
has been combined with high gain observer design in [11] to
reconstruct a new adaptive observer for a class of single out-
put uniformly observable systems. More recently, in [12],
the authors address the problem of the adaptive observer
design for a class of nonlinear time-varying systems with
parametric uncertainties in the context of synchronization
of chaotic systems by exploiting the persistent excitation
property of chaotic systems.

Motivated by the design approach developed in the ref-
erences [7],[8], we propose in this paper a new adaptive
observer tailored for a class of nonlinear systems with slope
restricted nonlinearities, unknown parameters (the regres-
sors are also assumed slope restricted) and delayed outputs.
To the best of our knowledge, adaptive state estimation in
such scenario is not solved yet, however this problem is
motivated by many applications where modeling errors, un-
certainties and measurement delays occur simultaneously.
Furthermore, chaotic communication under transmission
delays is an important application of the considered scenario
in this paper.

Based on the Lyapunov-Krasovskii approach, we show that
for sufficiently small values of the time-delay, both state
estimation and parametric convergence are ensured under
a condition of persistent excitation. The paper is organized
as follows. In the following section, we motivate and for-
mulate the problem. In section III, we present the adaptive
observer and analyze both state and parameter convergence.
In section IV, we show the effectiveness of the proposed
approach via two numerical examples. Finally, some con-

2346



cluding remarks will be given in section V.

Notation. The following notation is used throughout this
paper. |-| denotes the absolute value for scalars, the Eu-
clidean norm for vectors, and the induced norm for matrices.
I represents the identity matrix. The smallest and largest
eigenvalues of S are denoted by s,,, and s, respectively.

II. PROBLEM STATEMENT

In this paper, we address the problem of observer design
for the following class of nonlinear systems

q
Az + Ff(Hz,u) + B> U (Rya,u)6) (la)
k=1

jj‘ =

y = Cz(t—h) (1b)

where © € R”™ denotes the state vector, u € R! denotes
the input vector and y € RP? represents the output vector
subject to the observation delay h. It is assumed that the
delay h is known and constant. A € R"*" B € R"*5,
FeRY™™ O e RP*"and H = (Hy,Hs,...,H,)T €
R™ " and Ry = (Rp1,...,Rrs)? € R**™ are constant
matrices; with H; is the ¢ — th raw of H; fori = 1..m
and Ry, is the ¢ — th raw of Ry; for « = 1l.s We
define § = (61,...,0,)7 the unkown parameters vec-
tor, where 0;(t) € R are assumed piece-wice constant.
f : R™ x Rl — R™ is a nonlinear function such that
f(Hz,u) = (fi(Hiz,u),. .., fo(Hyr,uw)) and UF @ RS x
R! — R* represent persistently exciting functions such that
\Ijk(kav ’LL) = (\Iﬂf(Rklxa U), ceey \IJ];(Rksxa U))

We assume that Vi € 1..m, f;(-) satisfies the following slope
restriction condition,

Vu € R V& € R such that & # &, we have the

following
o< fildnw) — fils,w)
& —&
Similiary, we assume that U*(Ryx,u) satisfy the same

properties of f(Hx,u) detailed above such that the slope is
restricted in [0, by, with k = 1..q.

2

The addressed plant in this paper is motivated by many
systems and applications subject to the slope restricted
nonlinearities (2) such as mechanical systems (e.g. active
magnetic bearing model), in robotics (e.g. robot arm with
flexible joint), chaotic systems (e.g. Chua, Duffing, Van
der Pol..), etc. We investigate in this paper the problem
of joint state and unknown parameters in the presence of
measurement delays which occur frequently in practice.
To the best of our knowledge, the problem of observer
design was solved only in the presence of either unknown
parameters or measurement delays, but not simultaneously.
We note also that an important application of the addressed
problem is the synchronization of chaotic systems for the
transmission of informations under communication delays
— see the illustrative example in section IV-B.

In summary, our objective is to design a dynamical
system (adaptive observer) which estimates the state x(t)
and the unknown parameter 6(t) of the considered nonlinear
system (1) despite the time-delay affecting the measured
output.

III. MAIN RESULT

The problem of observer design for nonlinear systems
with slope restricted nonlinearities in the case of non de-
layed outputs was investigated in the last decade and partic-
ularly by Arcak and Kokotovi¢ who introduced, in [13], an
approach making use of the bounds of the nonlinear term
slope to prove the convergence of the estimation error. On
the other hand, the problem of joint state and unknown pa-
rameters estimation using adaptive observers in the case of
non delayed outputs was investigated in the literature —see
[9], [10]. Motivated by the nonlinear observers for systems
with slope restricted nonlinearities and adaptive-observers
design, we propose the following adaptive observer:

q
Az+ Ff(Hz,u)+ BZ U (Rpz,u)0y

o=
k=1

+K(j— Cz(t — h)) (3a)

0, = pY 0 (Ryz,u)T M(y(t) — Cz(t — h))
(3b)

T, = —aT.+Y*Rz,u)TBYBU*(Ryz,u)
(3¢)
Th(0) > 0, k=1.q (3d)

where z(t) and 6,(t) denote respectively the estimated
state and the estimated parameters; p and « are positive
constants.
We define the observation error e(t) := x(t) — 2(t) and the
adaptation error 0(t) := (0,(t),...,0,(t)), where O(t) :=
Or(t) — Ox(t), for k = 1..q.
Using the fact that 6, (¢) = 0 almost every where, the error
system is described by the following equations

e = Ae—KCe(t— h) + Fn(He,z,u)
—|—BZ (Rre,z,u)0 + \I/k(sz u)@k)(4a)
ék = —pT,;I\I/ (Rrz,u)T MCe(t — h), (4b)

where n(He, z,u) = (n (Hie,x,u), ...
such that for 7 = 1..m,

ni(Hie,x,u) = fi(Hz,u) — fi(Hix — Hie,u);

and 7 (Rye, v, u) = (7f(Rie,z,u), ..., 7% (Rse,x,u) such
that for i = 1..s,
ﬁf (Rk’ie; €T, U) =

1 (Hme, @, u))

Uk (R, u) — UF(Rypiw — Ryie, u).

We initialize the estimation error equation (4a) as
e()=o¢(W), YV —h<9<0. (5)

where ¢(-) is a continuous function defined in the interval
[_ha O] .
Now, in view of the slope restriction (2) with £ = H;x

and & = H,x — H;e, Ve # 0,Vx,Vu
ni(Hieaxau)

0< —= <. 6

< He < (6)

Multiplying on both sides of (6) by n;(H;e,z,u)H;e, we
get: fori = 1..m, Vt > 0, Ve, Vz, Vu

ni(HieaanU)[m(Hiea%U) _bHie] <0 (7)
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which means that n(He,x,u) belongs to the sector [0,b].
Let D = diag(dy,da, . ..,dy) with d; > 0, Vi = 1..m,. Af-
ter some manipulations, one can easily obtain the following
relation

—nT(He,z,u)Dn(He,z,u)
+bn(He,z,u)DHe > 0. ®)

Proceeding with the same reasoning for U*(Ry.z, u), we ob-

tain the following: Vk = 1..q and Dy, = diag(dg1,. . ., dks)
with dy; > 0, Vi = 1..s.
—i*T (Rye, x,u) Dyij( Rye, x,u)
+ bﬁk (Rke, Z, U)DkRke Z O (9)

Assumption 1: We assume that there exist a symmetric
positive definite matrix P, diagonal positive matrices D,
D, ..., Dg; regular matrices M and K of appropriate di-
mensions and a positive constant ¢ such that

—Q+¢cI  PF+bHTD A
S=| FTP+bDH —2D 0 |<o
AT 0 —2D
(10a)
BTP = MC (10b)

where Q = —[(A - KC)T'P + P(A - KC)],
A= (PB+bRTDy, - ,PB+bsRTD,) and
D = block — diag(D:, ..., Ds)

Remark 1: Similar forms to the matrix inequality (10a)
may be found in the literature of master-slave synchroniza-
tion of Lur’e systems under transmission delays — see [14].
One notes also that the additional constraint (10b) may be
solved if the relative degree one assumption (Rank(CB) =
Rank(B)) is verified. In order to solve the system given by
(10a)—(10b), one may transform it into a convex optimiza-
tion problem and use an LMI solver feasp, which is well
developed in Matlab LMI Toolbox.

Assumption 2: We assume that for any trajectories z of
system (3), W*(Ryz,u) is bounded such that Yk = 1..q,
Jpy > 0 such that

sup [ (Ry.z(t), u(t))| < .-
t>0

(11

We assume also that 6, are bounded in the sense that Jug >
0 such that

sup |0k (t)| < pg. (12)
>0

Assumption 3: We assume that the inputs v are such that
for any trajectory z(t) of system (3), Vk = 1..¢, there exist
i, T > 0, such thatVi >0

4T
/ U*(Rez(s), u(s)T BT BUF(Ry2(s), u(s))ds > .

(13)

Remark 2: In the case where U¥(.) doesn’t satisfy the

boundedness property and if the state is confined to a

bounded set X, one can always use a smooth bounded satu-

ration function o : R — X, 2 — o(x) such that o(z) = z

to construct a new function W*(x, u) = ¥*(o(x),u) which
is bounded for any = € R™.

Lemma 1: Let Tj(t) the solution of the equation (3c),
Vk = 1l.q. If BUF(R.2(t),u(t)) satisfies the assumption

3, then Y (¢) is a positive function such that
vVt > max{Ty, k = 1..q}, Yi(t) > v, (14)

where v, = min{uze Tk k= 1..q}.
Proof: Let T (t) the solution of Equation (3¢c), Vk =
1..q. For simplicity, we define
OF(t) := UF(Ryz(t),u(t))” BT BU*(Ry2(t), u(t)).
We have

2 (et 4(1))

y = e (Tr(t) + aTi(t))

= k().

Integrating the previous equation from 0 to ¢ + T,

t+T}
ea(t+Tk)’I‘k(t+Tk) — Tk(0)+/ easq)k(s)ds
0

t+Ty
> / e Dk (s)ds.
0

Multiplying on both sides by e~*(*+7k)  we obtain

t+Ty
/ e @R (6) ds.
0

t+T}
/ e TIGF (5)ds.
t

Fort < s <t 4 Ty, e~ Tk < ¢®(s=t=Ti) < 1 hence

YTi(t+Ty) >

Y

t+T}
Yr(t+Ty) > e*aTk/ F (s5)ds.
t

Consequently, using Equation (13), V¢ > T}, we obtain
Ti(t) > /Lke_aT".
Finally, it follows that

vVt > max{Ty, k = 1..q}, Yi(t) > vy, (19)

where v,;, = min{ure= Tk k= 1..q} > 0. ]
Now, we are ready to present our main result.

Theorem 1: Consider the system (1) and the adaptive
observer (3). Let the assumptions 1, 2 and 3 hold. Then,
the null solution (e, ) = (0,0) of the error system (4) is
globally asymptotically stable for sufficiently small value
of the time-delay h.

Proof: We apply the Leibniz-Newton formula to the
observation error e(t). That is, we have

e(t)y—e(t—h) = /t_h é(s)ds

0
= / é(t +v)do. (20)
—h
Hence, The dynamics of e(t) can be rewritten as follows
0
é=(A-KC)e+ Fn(He,z,u) +KC/ é(t +19)dv
—h

4q q
+BO i (Bue,w,u)b + > W (Riz, u)fy).
k=1 k=1

21
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Let w(t) = (e7(t), 07 (t)) and w, the function defined in the
interval [—h, 0] as

w() =w(t+19), —h<v9<O0. (22)

We consider the following Lyapunov-Krasovskii functional:

V(t,wi) = Vile(t)) + Valwe) + Va(t,0(t)  (23)
with
Vile(t)) = e(t)' Pe(t), (24a)
Va(w)) = /_Oh(19+h)é(t+19)2d19, (24b)
V(t,0(1)) = qup*m(t)ém)?, (24c)
k=1

where T (t) is governed by Equation (3c). For simplicity,
we introduce the following notations.

It) := ff)hé(t—i—ﬁ)dﬁ i Ba =
By = |B| ; Be =

The time derivative of V; along the trajectories of System
(4) is given by

|Al;
1KC].

Vi=eT[(A— KC)TP+ P(A— KC)e

q

+2¢T"PFy(He, x,u) 4+ 2¢" PB Z 7" (Rye, z,u)0y,
k=1

0 q .

+ 2eTPKC/ é(t +9)d9 + 2" PBY " WF(Rez, u)0y.

—h k=1

Using (8) and (9), we obtain

Vi<el[(A-—KC)'P+P(A—-KCQ)e
0

+20n(He, z,u)DHe + 2¢" PKC / é(t +0)dd

—h

q
-2 Z ﬁkT(Rke, x,u)0p Dy j( Rye, x,u)
k=1

q
+ Z l_)kﬁk(Rke, T, u)@kaRke
k=1

q
+2¢"PBY " WH(Ryz,u)0) + 2" PFy(He, z,u)
k=1
—2n"(He,z,u)Dn(He, x,u).

Let us define
C:=le,n(He,x,u), 7 (Rye,z,u)d1, ...
then one has

777]q(Rq8, €T, U)eq]T’

Vi <CTSC+2e"PKC [, é(t +9)d0 — e e
+2eTCTMT S U (Ryz, u)y,
where we have also used (10b) and the matrix S < 0 is de-

fined above in Assumption 1. Applying the young’s inequal-
ity [2¢"d| < ye e+ 2d"d to the term “2¢(t)" PK Cé(t+9)”

with ¢’ = e(t)'PKC, d = ¢é(t + ) and v = 2, and
integrating from ¥ = —h to ¥ = 0, we obtain
0
2¢(t)T PKC / é(t + 9)dd
—h
1 [0
<2he(t)TCTKTP?2K Ce(t) + 5/ é(t +9)%dv
—h
1 0
<2hB2p%, le(t)|” + 5/ é(t + 9)%dd.
—h
hence,
. € 1[0
Vi < —(— +2nB2p3, P Vi + —/ é(t +0)*dd
pPm 2 —h

q
+2e7Ct M” Z U*(Ryz,u)0y.
k=1
The time derivative of V3 along the trajectories of System
(4) is given by
q
(ékTTkék + éngé + 65T 465).
k=1
After (3c) and (4b), one obtains

Vs =p~!

q
—2e(t —h)"CTM" Y WH(Rez,u)fy — Vs
k=1

‘./3 =
q ~,
+p 'Y U (Rez,u)" BT BUF(Ryz, u)6}. (25)
k=1

Next, applying the young’s inequality and Equation (10b),
one has

q q
20TCTMT Y " WF (Rez, u)0k < g1 + (yBopar)® Y 07,
k=1 k=1

Using the latter inequality and Equation (20), it follows that
Vs < v (07! 4030 (Bomw)* — )Va

q
—2e"CTM™ Y " WH(Ryz,u)f) + qI? (26)
k=1
where we have also used positivity of Y'(¢) —see Remark 2.
On the other hand, the time derivative of V5 is given by

0

Vo = hlé)? —/ é(t +0)2do. (27)
—h

From (21) and using the sector condition on 7(-) and 7%(-),

one easily obtains

q
hlef* < h(Ba+Betb+ Y brug)*Ppn'Vi
k=1
+hop (e Be)?Vs + hB2T2.

Next, using the Jensen’s inequality ([15], Lemma 1), it
follows that

h/o et +0)%d9 > [/0 é(t + 9)dv]® = T2,

—h —h

(28)

(29)
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Using the above inequalities (25)—(29) and re-arranging
terms, the total time derivative of V' (¢,w;) along the trajec-
tories of System (4) is given by

. € N
V < [-—4+hCJVi+(q—=+h
_[pM+ Vi+(q 2h+ﬂ)
+(Co + hvy, (1pB)* — @)V
where
q —
Ce = p;ml((ﬁa +Bc+b+ Z bk/w)z + 26217?»{),
k=1
Co = v (Bopp)*(p™" + 1)
Therefore, if h satisfies the following system of in-equations
hCe — 2:054 =
Co + hvyt (pBp)* S <0 (30)
q— 5 +hB% <0,
we have
V(t.wr) < ——Vile(t)) = SVa(1,0(1))  ae. (31)
2pM 2

Solving for & the system of in-equations (30), we deduce
that (31) holds for

h < min{m,, 7y, T} (32)
where 7, = C (2pM) me =~ 25§+252
b = U (1t Bs) "2 (5 — Co).

In summary, we have:
i) V (¢, w;) is positive definite and radially unbounded,
ii) V(t,w:) is negative definite,
hence, invoking the Lyapunov-Krasovskii Stability Theo-
rem ( [16], Theorem 4.1), we conclude that the null solution
(e,0) = (0,0) (i.,ew = 0) of the error system (4) is globally
asymptotically stable, which completes the proof.
It is to be noticed, that the same design procedure of the
proposed observer still valid when the measurement delay
is time-varying and bounded and it may be shown that for
sufficiently small value of the delay upper-bound, both state
and unknown parameters estimation are ensured. We note,
also, that the design constants « and p may be suitably
selected in such away that the interval of admissible values
of the time-delay h, as given by the constraint (32), is
enlarged.

IV. NUMERICAL EXAMPLES
A. Nonlinear Mass-Spring-Damper
Consider the uncertain mass-spring-damper system
Tp = @y,

1 1 -
= —— —u(t) — — |xy| zpb. 33
7 =ty —u(t) — — |r|ob (33)
where p € R is the position and v is the velocity. The
constants k = 0.5 and m = 1 represent respectively spring

stiffness and the mass. The damping coefficient b = 1 is is
the unknown parameter to be estimated. It is assumed also
that the sum of the position and velocity is measured and
subject to a known constant delay » = 0.03s. This system
is of the form (1) with

S S A

0
F_{l},c_[ll], (0 01]
f(Hz,u) = u(t) = sin(27t) + 10sin(nt + 5%), k=1,
Ri=[0 1],V (Riz,u)=|z,|z,, and =1

We design an observer for (33) as given by (3) (N = 2)
. Solving the system (10) given in Assumption (1), one
obtains

10.1536 1.8658

D = D = 1.8658 1.8658

e = 3.0818.

1.6905, P =

We deduce also the numeric values of the observer matrices:
—0.3136

K= [ 3.4536
We initialize the state z(¢) of System (33) at z¢ = [0,0]7,
Vs € [-0.015,0]. The observer are started with initial
conditions z(s) = [0.1,0.1]7, Vs € [—0.015,0], § = 1.5,
T = 0.2. The simulation results are as follows. Figure
1 illustrates the convergence of the observation errors
and figure 2 shows that the unknown parameter is well
recovered by the proposed adaptive observer.

, M = —1.8658, p = 10, a = 10.

e ®
— e,

15 20 25 30
Timels]

Fig. 1. Estimation errors e; = xp — 2p and e2 = =y — 2y in the presence
of a constant observation delay

— Unknown parameter

--- Its estimate

5 10 15 20 25 30
Timel(s]

Fig. 2. The unknown parameter 6 and its estimate in presence of a constant
observation delay

B. a chaos-based communication system with a transmission
time-delay using a “Duffing” oscillator

We consider a chaotic “Duffing” oscillator. A digital
information m(t) is injected in its dynamics to modulate
one of its parameters. The output y is corrupted by a known
and constant transmission delay 2 = 0.08. Note that in this
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application, m(t) plays the role of the unknown parameter.
Then, the dynamics of the chaotic transmitter is given by

X1 = Xo,
Xy = —04Xy—1.1X; — (1 +m(t) X} + cos(1.8t)
y(t) = Xu(t—h)+Xo(t—h). (34)

which is obviously of the form (1) with

[ x o 1 To
x_[XQ}’A_[OA —1.1]73—[—1}’

F:[O

_1],0:[1 1], H=[1 0],

f(Hz,u) = X} 4+ u, u(t) = cos(1.8t), k =1,
Ri=[1 0],V (Ryz,u) =X}, and 0(t) = m(t)
The receiver is given by (3). Solving the system (10) given
in Assumption (1), one obtains

12.1437 1.5679

D = D = 15679  1.5679 |’

€ = 5.9542.

2.6464, P =

‘We deduce also the numeric values of the observer matrices:

0.0596

3.4896
The state z(t) of System (34) is initialized at x¢ = [0, 0]7,
Vs € [—0.04,0]. The observer is started with initial
conditions z(s) = [1,2]T, Vs € [-0.04,0], i = 0.6,
T = 0.2. The simulation results are as follows. Figure
3 illustrates the synchronization between the transmitter
and the receiver and figure 4 shows that the transmitted
information is well recovered by the receiver based on the
proposed adaptive observer.

K = ],M:—1.5679,p:10,a20.5.

—First state X,
--- Its ostimate

) 50 700 750 200 250 300
Timels]

Fig. 3. The first state X1 and its estimate in the presence of a constant
transmission delay

PR P e —he ransmitted information m( | -
- - - Its estimate

| i SN B

50 100 200 250 300

150
Timels]

Fig. 4. The transmitted information m(¢) and its estimate in presence of
a constant transmission delay

V. CONCLUSION

In this work, we propose an adaptive observer for a
class of nonlinear systems with slope restricted nonlin-
earities, unknown parameters and delayed outputs. Both

state estimation and parametric convergence are shown to
be ensured for sufficiently small values of the time-delay
and if a condition of persistent excitation is satisfied. For
illustration, the approach was evaluated through a nonlinear
mass-spring-damper system application and a chaos-based
communication system subject to a transmission time-delay.
In a future work, we will investigate the extension of the
proposed approach to the case where the time-delay takes
large values, using cascade observers.
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