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Abstract: In this paper, we propose an adaptive observer-based synchronization approach
for a class of chaotic Lur’e systems with slope restricted nonlinearities and delayed outputs.
The delay is assumed bounded and time varying and the information to be transmitted is
assumed piece-wise constant. Based on the Lyapunov-Krasovskii approach, we show that for
sufficiently small values of the time-delay upper bound, both synchronization and information
reconstruction objectives are ensured under a condition of persistent excitation and after solving
a convex optimization problem. The result is illustrated via a numerical example of a chaotic
communication system subject to a transmission delay.

Keywords: Chaos, synchronization, communications, time delay, state observers, adaptive

control

1. INTRODUCTION

The problem of synchronization of chaotic Lur’e systems
with a propagation delay has attracted specific attention
in the last decade. Indeed, time delays are unavoidable
in practice and occur frequently in master-slave synchro-
nization configurations and their applications in chaotic
transmission schemes. To solve this problem, a common
approach in the literature is to use error state or/and
output feedback controllers and exploit sector and slope
restrictions properties of Lur’e systems —see Yalcin et al.
(2001), Cao et al. (2005), Han (2007a), Han (2007b), Lee
et al. (2010).

The first work investigating this problem was done in
the reference Yalcin et al. (2001) in which a delay de-
pendent synchronization criterion was given based on a
Lyapunov-Krasovskii functional. This result has motivated
many researches on the synchronization of chaotic Lur’e
systems using feedback controllers. In Cao et al. (2005),
both delay dependent and delay independent criteria for
synchronization are given. In Han (2007a), the proposed
feedback controller includes both the current error state
feedback and the delayed static error output feedback;
and based on a more general Lur’e-Postnikov Lyapunov
functional, a new delay dependent criteria are presented
in the form of linear matrix inequalities (LMIs). This
problem was extended in Han (2007b) for the case of
continuous uniformly bounded time varying delays and
differentiable uniformly bounded time varying delays with
bounded derivatives. More recently, a less conservative
delay dependent synchronization criterion was obtained
in Lee et al. (2010) using a new Lyapunov-Krasovskii
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functional which employs redundant state of differential
equations shifted in time by a fraction of the time delay.

On the other hand, the problem of observation of nonlinear
systems in the case of delayed outputs was investigated in
the last decade. In the reference Germani et al. (2000),
based on the design of state observers from a drift-
observability property, the authors propose a chain of
observation algorithms which ensure global exponential
convergence of the estimation error. In a recent work
Cacace et al. (2010), the authors propose a nonlinear
observer for a class of drift observable nonlinear systems
with a bounded time varying observation delay. Based
on the Lyapunov-Razumikhin approach, asymptotic and
exponential convergence of the estimation error have been
proved to be guaranteed under some conditions. Another
predictor based on high gain observer design for a class
of triangular nonlinear systems with respectively constant
and time varying delayed measurements was given in
Ahmed-Ali et al. (2009) and Assche et al. (2011); the
convergence was shown to be ensured by choosing a
suitable Lyapunov-Krasovskii functional if some condition
relating the observer gain and the upper bound of the time
delay is satisfied.

In Nijmeijer and Mareels (1997), it was shown that the
master-slave synchronization problem may be considered
from a control viewpoint in a paradigm of observer design
where the slave system is considered as an observer of the
master system. A particular problem of observer design
is to join state and unknown parameters estimation using
adaptive observers. The recent reference Loria et al. (2009)
investigates this problem in the context of synchroniza-
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tion of chaotic systems with parametric uncertainties by
exploiting the property of persistent excitation. Adaptive
observer-based synchronization methods were employed in
chaotic communication schemes to transmit digital data
using the chaotic modulation method based on modulat-
ing one of the master system parameters by the encoded
information —see Dimassi and Loria (2011), Feki (2003).

In the present paper, we propose an adaptive observer-
based synchronization approach for a class of chaotic Lur’e
systems with slope restricted nonlinearities and delayed
outputs. The paper is organized as follows. In the following
section, we motivate and formulate the problem. In Section
3, we present our approach and the stability analysis.
In Section 4, we illustrate our results via a numerical
example of a chaotic transmission application. Finally,
some concluding remarks will be given in Section 5.

Notation. In this paper, |-| denotes the absolute value for
scalars, the Euclidean norm for vectors, and the induced
norm for matrices. I represents the identity matrix. The
smallest and largest eigenvalues of S are denoted by
Amin (S) and Apaz (S) respectively.

2. PROBLEM STATEMENT

We consider a chaotic communication system consisting
of a transmitter and a receiver. Taking into account the
presence of a transmission delay in the communication
channel, the transmitter is based on a class of chaotic Lur’e
systems and represented as follows

2(t) =Ax(t) + Ff(Hxz(t)) + BY(t)0(t) (1a)

y(t) = Cx(t — h(t)) (1b)
where x € R" denotes the state vector; y € R? represents
the output vector (subject to the transmission delay h(t)).
It is assumed that the delay h(t) is a knwon time varying
function satisfying 0 < h(t) < hpmas, V& > 0. A €
R*™" B € R*™* F ¢ R™™  C € RP*" and H =
(Hy,Hs,...,H,)T € R™*" are constant matrices; H; is
the ¢ — th raw of H; i € {1,2,...,m}. The function 6(¢) :
R>o — R? represents the vector of the information signal
to be transmitted. We assume 6(t) piece-wise constant.
U(t) : Ry — R®*7 is a persistently exciting function. It is
assumed that 3V, .. > 0 such that

sup |\Ij(t)| S \I/maz- (2)
>0

Remark 1. The assumption that the time-delay is known
in real-time which is frequently used in the literature may
be restrictive from a practical view point. It means that
at the actual time ¢, the output y(¢) and the instant ¢, at
which the signal arrives at the receiver end are assumed
known, hence the delay may be calculated as h(t) =t —¢,.

f(-) : R™ = R™ is a nonlinear function where

f(Hz) = (fi(H1z), f2(H2z), ..., fr(Hp));

we assume that Vi € {1,2,...,m}, fi(-) satisfies the
following slope restriction condition,

V&1, & € R such that & # &, we have

fi(§1) — fi(€2)

& —&
Remark 2. 1f instead of the condition (3), f;(-) satisfies
V&1, & € R such that & # &, we have

0< <b (3)
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a; < M < b, (4)
&1 — &

by considering the function fi(€) == fi(€) — aié, it is not
difficult to show that f;(-) satisfies the slope restriction
(3) with b = max{b; — a;,i = 1,2,...,m}, and rewrite the
system (1) as
= Az(t) + Ff(Hz(t)) + BU()0(t)
=Cz(t — h(t)),

with f(Hz) = (fi(Hi), f2(Hax), ..., fm(Hpe)) and
A=A+ FA4H, where Ay = diag(ay,as,...,am).

On the other side, if f;(+) is continuously differentiable such
that a; < a%-_l(:]) < b; , Yw € R, then applying the mean
value theorem, f;(-) satisfies the slope restriction (4). In
this manner, the class of chaotic Lur’e systems that we
consider in this paper is enlarged.

(5a)
(5b)

The objective of this paper is to design a slave system
(the receiver) which synchronizes with the master system
(1) and reconstructs the information signal 6(¢) despite the
time varying transmission delay h(t).

3. MAIN RESULT

The slave system that we propose is designed as an
adaptive observer described by the following equations

i(t) = Az(t) + Ff(Hz(t)) + BU(t)d(t)

. +EK(y(t) — Cz(t — h(t))) (6a)
() = p0 (1)U ()" M(y(t) — C=(t — h(t))) (6D)
T(t)=—aY(t) + ¥ ()" BT BU(t) (6¢)
T(0)="7(0)" > 0. (6d)

where z(t) and 6(t) denote respectively the estimated state
and the recovered information vectors; p and « are positive
constants.

We define the synchronization error e(t) := z(t) — z(¢) and
the adaptation error A(t) := 0(t) — 0(t).

Let ep,(t) := e(t—h(t)). Using the fact that 6(t) = 0 almost
everywhere, the error system is described by

é(t) = Ae(t) — {{Ceh(t) + Fn(He(t), x(t))

FBU(4)A(t)
8(t) = —pY (1)~ W(t)T MCey, (1)

a.e;
where
n(He(t), x(t)) = (m(He(t), z(t)), .., nm (Hme(t), 2(1)))
and n;i(Hie(t),z(t)) = fi(Hx(t)) — fi(Hix(t) — Hie(t));
i€ {1,2,...,m}. Now, using the slope restriction (3) with
&1 = H;x(t) and & = H,;x(t) — Hie(t), we have
Vt > 0, Ve(t) # 0,Va(t)
ni(Hie(t), z(t))

0 e b (8)
Multiplying on both sides of (8) by n;(H;e(t), z(t))H;e(t),
Wi t:
foi %ee {1,2,...,m}, Vt >0, Ve(t), Va(t)

ni(Hie(t), (1)) [n: (Hie(t), (t)) — bHie(t)] <0 (9)
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which means that n(He(t),z(t)) belongs to the sector
[0,b]. Let D = diag(dy,da,...,dy,) where d; > 0;Vi €
{1,2,...,m}. After some manipulations, one can easily
obtain the relation

=" (He(t), x(t)) Dn(He(t), 2(t))
+bn(He(t),z(t))DHe(t) >0 (10)
Assumption 1. We assume that there exist a symmetric
positive definite matrix P, a diagonal positive matrix D;

regular matrices M and K of appropriate dimensions and
a positive constant € such that

~Q+el PF+bH'D
[FT152+ bDH — —2D . (11a)
BTP = MC (11b)

where Q = —[(A - KC)T'P + P(A - KO)]
Assumption 2. The matrix function BU(t) is persistently
exciting in the sense that there exist pu, 7" > 0, such that

t+T
/ U(s)T'BTBU(s)ds >pul  Vt>0. (12)
t
Remark 3. To solve (11), we consider the following convex
optimization problem:
To minimize ¢ subject to

P >0 (13)
D >0 (14)
e >0 (15)

= PF +bHTD
FTP+bDH —2D <0 (16)
I B'P-MC| <0, (17)

PB-C™MT oI

where 2= PA+ATP+WC +C W' 4¢l.
The solution to this problem yields the minimum ¢ = 0, ¢,
P, D, M and W such that K = —P~1W satisfies (11a).

The following two Lemmas are required in the proof of our
main result.

Lemma 1. Let Y(t) the solution of the equation (6¢). If
B (t) satisfies the assumption 2, then Y(t) is a symmetric
positive definite matrix function such that

Vt>to+T, Y(t) > pe T, (18)

Proof. The proof of Lemma 1 is provided in the Ap-
pendix.

Lemma 2. (Jensen’s Inequality) (Pan (2008) )
For any constant matrix £ € R"*" FE = E* > 0, a vector
function w : [0, 7] — R™ such that the integrations are well

defined, then
T/ w’ (s)Bw(s)ds > (/ w s)ds)TE/ w(s)ds.(19
0 0 0
Now, we are ready to present our main result.

Theorem 1. Consider the master system (1) and the slave
system (6). Let the assumptions 1 and 2 hold. Then, the

origin (e,6) = (0,0) of the error system (7) is globally
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asymptotically stable for sufficiently small value of the
time-delay upper bound A,qq-

Proof. Let us apply the Leibniz-Newton formula to the
synchronization error e(t). That is

e(t) —en(t) = /th(t) é(s)ds.

Then, the dynamics of the synchronization error e(t) can
be rewritten as follows

(20)

é(t) = Ae(t) — KCe(t)+ Fn(He(t), z(t))
t
+BU(1)0(t) + KC / é(s)ds. (21)
t—h(t)
Next, consider the Lyapunov-Krasovskii functional:
V(t,e,0) = Vi(e) + Va(t) + Va(t,0), (22)
Vi(e) =e" Pe, (23)
t
Va(t) = / (5 — £ + honae)é(s)?ds,  (24)
t_hwnaz'

V(t,0) =p~ 671 (1)6, (25)

where Y(t) is governed by Equation (6¢). One notices also
that Y (¢) is bounded since ¥(t) is bounded. Let us define:

t
I'(t) := / é(s)ds ;5 Ba = |Al;
t—h(t)
_ B, = |KCI.

The time derivative of V} is given by

Vi(e)=eT[(A— KC)TP+ P(A— KC)e

+2eT PFn(He(t), z(t))

+2¢"PKC / (s)ds + 2T PBUA.  (26)

Using (10), we have

Vi(e) <eT[(A—KC)'P+ P(A—KC)le
+2eT PFn(He(t), (t))
—2n" (He(t), z(t)) Dn(He(t), x(t))

+2bn(He(t), z(t))DHe(t)

+2¢"PKC / (s)ds + 2T PBUA.  (27)

Let ((t) := (e(t),n(He(t),z(t)))T. Using the expression of
() defined above in assumption 1, then one has

T
: < T —-Q+¢l PF+0H'D
¢
+2€TPKO/ é(s)ds
t—h
+2e7CTMTWO — ¢ e, (28)

where we have also used (11b). After Assumption 1, we
obtain
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t
Vi(e) <2eT"PKC é(s)ds
t—h

+2eTCT MW — ¢ (29)
Applying the triangle inequality |2ch| < yele + %de
to the term “2e(t)' PKCé(s)” with ¢I' = e(t)' PKC,
d = é(s) and v = 2, and integrating from s = t — h(t)
to s = t, we obtain

2¢(t) T PKC /t t . é(s)ds

el

t
§2h(t)e(t)TCTKTP2KOe(t)+% / é(s)%ds
t—h

1 t
<hmazB Amaz (P)? |e(t))® + 5 / é(s)2ds
t

_hwnaz

hence,

Vie) <(—

&
)\mam (P)

I _
/ é(s)%ds + 27 CT MT W0,
t hﬂlal‘

+ 2w B2 Amaz (P)? (Amin (P)) ™) Vi (€)

+_

5 (30)

The time derivative of V3 is given by
Va(t,0) =070 + 6770 + 67 T6.
Using (6¢) and (7b), one obtains

Va(t,0) = — 2L CTMT WO — ap~ 10716
+p 0T UTBTBUO,  ae.

and after (20),
Vs(t,0) = — 2e7CT MT WO + 217 CT MT o
+ pfléT\I/TBTB\IJ@~ — ozpfléTTé a.e.

Now, using the triangle inequality and Equation (11b), we
obtain

20T CT MTWH < T2 + (Vyna B Aman (P)) 262,
hence,

Va(t,0) < — 2¢"CTMTU6 + (V100 BoAmas (P)) 26>
+p B0l + T — ap™ 070,

Using Lemma 1, it follows that

_1ﬁ2\113nax (Bbqjmam)\mam(P))2
luefaT

—aVz —2TCTMTYh + 12

Vs(t,6) <

Vs
a.e. (31)

On the other hand, the time derivative of V5 is given by

V(t) = Mg [E(0)% — /t_h Hods. (32)

From (21) and using the sector property of 7(-), we obtain

6] S(AI+ |KCl+B) e] + Wmas | BI|8] + [KCIT

6] <(Ba + Be +b) le] + UrmaaBs \ + 4.,
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hence
hma;ﬂ |€|2 Shmam(ﬁa + ﬁc + b)2()\mzn(P))_1V1 (e)

+ hinawBe0? 4 hina ™ €T (WinaaB) V5 (1, 0),

(33)

where we have used Lemma 1. Next, using the Jensen’s
inequality, it follows that

e /ti é(s)2ds > | /:h(t)ds)dsf

In summary, using the above inequalities (30)-(34) and

re-arranging terms, the total time derivative of V (¢, e, 0)
along the trajectories of the system (7),

I'(t)% (34)

hmaz

€

V(ta ;9) S( /\m (P) + hmaxce)vl
(CG + hmamﬂ_leaT(ﬁbqlmam) - O‘)‘/?;
1 2\12
+(1- ST, + hnazB2)T a.e,
where
Ce = (Amin(P)) " ((Ba + Be +)* + 2(BeAmaz (P))?),

CO = N_leaT(ﬁb\I]maw)2(p_l + (/\mam(P))2)

Therefore, if hy,q, satisfies the system of in-equations

g

hmaxce - S O
2)\maw(P)
CO + hmawﬂ_leaT(BbqlmaI)2 - % <0 (35)
1— 1 h ﬁz <0
2hmaz e =
we have
. £ «
V<e—— V- —V- .€. 36
= T an(P) 1 5 3 a.e (36)

Solving for hp,., the system of in-equations (35), we
deduce that (36) holds for sufficiently small values of h,az
such that

hmam S min{ﬂ-aa Ty, 7Tc} (37)
P 14414282
where 1, = C; (72/%;(13))’ Te = ——5
and 7, = ,ue_O‘T(Bb\IJmM)_Q(% —Cy) .

Hence, applying the Lyapunov-Krasovskii Stability Theo-
rem (Loria et al. (2005), Theorem 4.1), we conclude that
the null solution (e,m) = (0,0) (i.e w = 0 ) of the error
system (7) is globally asymptotically stable.

4. NUMERICAL EXAMPLE: A CHAOS-BASED
COMMUNICATION SYSTEM WITH A
TRANSMISSION TIME-DELAY USING A LUR'E
SYSTEM

We consider a chaotic Lur’e system which consists of two
unidirectionally coupled “Chua” systems —see Yalcin et al.
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(2001). A continuous piece-wise constant information m(t)
is injected in its dynamics. The output y = [y1, 2] " is cor-
rupted by a known and bounded time varying transmission
delay h(t) which corresponds to a uniformly distributed
piece-wise function generated between lower and upper
bounds respectively equal to 0 and 0.03 . That is, the
dynamics of the chaotic transmitter is given by

1 =9(z2 — g(z1)) + (sin(3t) + cos(27t))m (38a)
o =x1 — To + T3 (38Db)
iy = —14.28x, (38¢)
24 =9(22 — g(24)) (38d)
5 =x4 — x5 + x5 + 0.01 (x5 — 22) (38e)
d = —14.2815 (381)
y1=z1(t — h(?)) (382)
y2 = z4(t — h(t)) (38h)

with g(z;) = 3(lo; — 1] — |z; + 1)), i € {1,4}.
g(+) satisfy the slope restriction property (3) with b = 1.
System (38) is of the form (1) , with

—25714 9 0 0 0 0
1 -1 1 0 0 0
. 0 —14280 0 0 0
= 0 0 0-25714 9 0
0 -0010 1 —0091
0 0 0 0 —14280
B =1[100000]",

—3.8571 0

0 0

0 0

F = 0 —3.8571 |
0 0
0 0

100000

¢ = H:[ooomo]’
f(@) = lg(x1)ig(za)], W(t) =
0(t) = m(t).
The initial state of the system (38) is set to
x(s) = [-0.2,-0.2,-0.33,0.2,0.9,0.33] T, Vs € [-0.03,0].
Under these conditions, the transmitter (38) exhibits
chaotic behavior (See Figure 1).

sin(3t) 4+ cos(27t) and

Fig. 1. Attracotrs in the (21, x4) plane (right) and (22, 23)
plane (Left)

The receiver system is given by (6) . Solving the optimiza-
tion problem given in Remark (3) , we have
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D= 29.8972 0
- 0 33.4389 |

1043 0 0 0 0 0
122.58 —=6.91 0 0 0
—6.91 9.11 0 0 0

SO O OO

0 0 1096 —7.01 0.89 |~
0 0 —7.01 74.57 =7.63
0 0 0.89 —7.63 6.32

€ =8.9250 and ¢ = 0.

We obtain also numeric values of the observer matrices:

0.1992 —0.0053
1.8141 0
0.5965 0

K = M =[10.4397 0]

—0.0047 1.0278 |~
0.0005 2.5823
—0.0002 0.3639

p=0.25 and a = 8.

The estimated state is initialized at z(s) = [0,0,0,0,0,0] T,
Vs € [—0.03, 0] the equation (6¢) is initialized at Y(0) =1
and the estimated message m is initialized at mo = 1.
The simulation results are as follows. Figure 2 depicts the
evolution of the time delay function. Figure 3 illustrates
the convergence of the observation errors and finally figure
4 shows that the transmitted information is well recovered
by the proposed adaptive observer.

0.03r

o

o 20 40 60 80 100 120 140 160 180 200
Timel[s]

Fig. 2. Evolution of the time delay function h(t)

T T
15
0.50: %
0.2 O~ %
—0.5kY
0 5 10 15
0
-0.2]
-0.4 . . ; ;
0 50 100 150 200 250 300
Timel[s]

Fig. 3. Estimation errors e; = x9 — 29 and e5 = x5 — 25 in
presence of the time-varying transmission delay

— Information(unknown parameter)
- - - Its estimate

o
S
13331371
o

1 1 1
150 200 250 300
Time[s]

Fig. 4. The transmitted message m and the recovered
message m in presence of the transmission delay
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5. CONCLUSION

In this work, we propose a synchronization method based
on adaptive observers for a class of Lur’e systems with
slope restricted nonlinearities and delayed outputs. Both
state estimation and information reconstruction are shown
to be ensured for sufficiently small upper bounds of the
delay if a condition of persistent excitation is satisfied.
The design matrices of the observer are obtained after
solving a convex optimization problem. For illustration,
the approach was evaluated through a chaotic-based com-
munication system subject to a transmission time-delay.
In future works, we will investigate the case of long time-
delays using cascade observers.
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Appendix A. PROOF OF LEMMA 1

Let Y(t) the solution of the equation (6¢). We have

L0 (1)) = (T (1) + X (1))

dt
=)' BT BU(t).
Integrating the previous equation from ¢y to ¢t + T,
t+T
DY (¢ 4 T) =Y (tg) + / e U (s)" BT BU(s)ds
t
t+T ’
> / e W(s)T BT BU(s)ds.
to

Multiplying on both sides by e=**+7) we obtain

t+T
T(t+T)> / =g ()T BT BU(s)ds.

to
t+T

2/ et =Dy (5)T BT BU(s)ds.
t

Fort<s<t+T,e T <ex(s=t=T) <1 hence

t+T
Y(t+T)>e T / U(s)" BT BU(s)ds.
t
Finally, using equation (12), Vt > ¢y + T, we obtain

Y(t) > pe 11



