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Abstract

We propose an estimator for nonlinear systems with unmatched unknown inputs and under measurement noise. The estimator

design is based on the combination of observer design for descriptor systems, sliding-modes theory and adaptive control. The

estimation of the measurement noise is achieved thanks to the transformation of the original system into a singular form where

the measurement noise makes part of the augmented state. Two adaptive parameters are updated online, one to compensate

for the unknown bounds on the states, the unkown inputs and the measurement noise and a second one to compensate for

the effect of the nonlinearities. To join robust state estimation and unknown-inputs reconstruction, our approach borrows

inpiration from sliding-mode theory however, all signals are comtinuously implemented. We demonstrate that both state and

unknown-inputs estimation are achieved up to arbitrarily small tolerance. The utility of our theoretical results is illustrated

through simulation case-studies.

Keywords: Sliding modes, unknown-input observer, stability.

1 Introduction

One of the most challenging obstacles in observer design is to deal with systems that are nonlinear in the unmeasured

variables. A large number of articles have been written on the subject based on various types of conditions such as:

(global) Lipschitz conditions –[1], sector conditions –[3], boundedness of nonlinearities –[4], boundedness of state

trajectories –[19], high-gain designs –[2], sliding-mode design –[30].

Sliding-mode observer design consists in defining an attractive sliding manifold and using discontinuous inputs to

steer the estimation error trajectories to this manifold in finite time. Without doubt one attractive feature of sliding-

mode design is its ability to reject disturbances exactly, albeit its sensitivity to measurement noise. Regarding linear

systems, see for instance [27] for a Lyapunov-based result and [12] for a method based on the ability to transform

the system into a canonical form. It is commonly assumed that the unknown input is upper-bounded; in the case

that the upper-bound is unknown, parameter adaptation is typically used –see e.g., [28, 13, 29].

Relying on literature on the left-invertibility problem –[18] sliding-mode design for linear systems has also been

extended to the realm of nonlinear systems with unknown inputs, via homogeneous transformations and output

injection, to obtain an observability normal form –see for instance [5]. One of the advantages of this method is that it

applies to systems with high relative degree (between the unknown input and the measured output) then, the system

is transformed to a canonical form where the unknown inputs appear only in the ‘last’ equation (this assumption is
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safya.belghith@enit.rnu.tn (Safya Belghith).

Preprint submitted to Syst. & Contr. Lett. 26 September 2012



sometimes called observability matching condition). The method has been successfully used in the design of high-order

sliding mode estimators; in this case, one may establish finite-time estimation and unknown input reconstruction

recursively (step by step). See for instance [6, 14] as well as the works on high-order differentiators by [20, 21]. The

main and clear disadvantage of this method is that it relies on coordinate transformations which are valid locally.

In this paper, we propose a continuously-implemented sliding-mode estimator for nonlinear systems with “Lipschitz”

nonlinearities 1 such that the Lipschitz constant is unknown, unknown inputs and measurement noise. Both states,

unknown inputs and measurement noise are assumed bounded with unknown upper-bounds. To the best of our

knowledge, the problem of joint robust state estimation and unknown-inputs reconstruction in such scenario has not

been solved yet; in particular, the problem of designing sliding mode observers for systems with unknown inputs and

measurement noise simultaneously remains open. In [12] the authors consider linear systems with unknown inputs

and measurement noise but not simultaneously and although the recent article 2 [15] is a rare exception since noise

and unknown inputs are handled simultaneously, this work is limited to linear systems and it is also assumed that

the same additive perturbation affects both the dynamics and the outputs.

Our estimation approach consists in three main parts, in accordance with the system’s structure: first, we transform

the original system into a descriptor form by considering the measurement noise as a supplementary state variable

(this idea is reminiscent of the design of augmented-state observers to cope with the unknown inputs as additional

states –see [23, 24]), then we design an observer for the ‘nominal’ linear part of considered descriptor system. Secondly,

we use terms inspired from sliding-mode theory as well as the concept of the equivalent control to reconstruct the

unknown inputs. Our method is reminiscent of conventional first-order sliding-mode unknown-input observers except

that we replace the commonly-used discontinuous functions by smooth saturations; also, some of our technical

conditions such as the relative-degree-one assumption, recall those in [11] and subsequent work by the authors.

However, our estimator design approach does not rely on coordinate transformations. Thirdly, based on the Lyapunov

theory, we incorporate an adaptation law to compensate for some constant depending on the unknown upper-bounds

on the states, the unknown inputs and the measurement noise; similarly, adaptation is used to cope with the effect

of the Lipschitz nonlinearities.

From a technical viewpoint, the use of adaptation comes at the price of non-zero arbitrarily small estimation errors.

The establishment of our main result relies on a fundamental but intuitive lemma on high-gain design which follows

from [16], we prove that the estimation errors converge arbitrarily close to the sliding manifold and then, to a

neighborhood of the origin. Consequently, the states, the unknown inputs and the additive output noise may be

reconstructed with arbitrary accuracy.

The remainder of the paper is organized as follows. In the following section we formulate the problem; in Section 2

we present a preliminary result in anticipation of our main theorem; the latter is presented in Section 3. Then, two

numeric examples illustrative of the utility of our theoretical findings are discussed in Section 4 and we wrap up the

paper with conclusive remarks, in Section 5.

1.1 Problem statement

We solve the state and input estimation problem under measurement noise for nonlinear systems of the form

ẋ∗ =A0x∗ +Bf0(x∗) + Fη1(t) (1a)

y=C0x∗ +G0η2(t). (1b)

The problem consists in designing a dynamical system to reconstruct the unmeasured state vector x∗ ∈ R
n as well

as the unknown input η1 ∈ R
q1 . It is assumed that the measured output y ∈ R

p is contaminated by additive noise,

denoted by η2 ∈ R
q2 . The function f0 : Rn → R

s is assumed to be once continuously differentiable.

Systems of the form (1) include those studied for instance in [30, 12]. Under the assumption that either η1 or η2
equals zero the authors of the latter show that the system may be decomposed in two parts, one which is not affected

by the unknown inputs and another which generates the measured output; thereby making it unnecessary to design

1 As it will be clear later, we do not assume that the nonlinearities are (globally) Lipschitz but we use boundedness of

trajectories to perform the so-called Lipschitz transformation. See p. 3.
2 This reference appeared after the submission of our article.
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an unknown-input observer. In contrast, in this paper it is assumed that the system is nonlinear and both q1 > 0

and q2 > 0.

In the construction of unknown-input estimators in the absence of measurement noise, it is often assumed (see e.g.,

[30, 26]) that the dimension of the unknown inputs does not exceed that of the measured functions that is, q1 ≤ p.

This is necessary to satisfy the detectability condition rank(C0F ) = rank(F ). In turn, the latter is necessary in most

unknown-input observers designs –see e.g. [25]; it is also used in Lyapunov-based designs as in e.g., [27] and [16]

or in order to decompose the system, as in [30] and [12]. A notable exception (for linear systems) is [14] where the

authors propose a method to transform the system into a new canonical form; however, even though the authors

of [14] succeed in avoiding the relative degree one assumption, it is assumed that measurements are noise-free i.e.,

y = C0x∗. This work was extended in [6] to the case of nonlinear systems, yet locally transformed into a specific

triangular observable form, for which a higher order sliding mode observer was introduced.

In the present setting that is, with measurement noise, we also need to impose that q2 ≤ p which is a necessary

condition for G0 to be of full rank. In turn, the latter is needed to guarantee the feasibility of the estimator.

Thus, we make the following standing hypothesis,

Assumption 1.1

a) η1, η2 and y are such that q1 + q2 ≤ p ;

b) F and G0 are full-column-rank and rank(C0F ) = rank(F );

c) the unknown inputs η1(t) and η2(t) are bounded and with bounded first derivatives;

d) the solutions x∗(t) of (1) are forward complete and uniformly bounded.

The constraint q1 + q2 ≤ p in Condition 1.1a) is imposed as a sufficient condition for both q1 ≤ p and q2 ≤ p to hold

simultaneously. In practice, this assumption is achievable if it is assumed that not all outputs are corrupted by the

noise or all the measurements are affected by the same noise signal. Although this constraint clearly restricts the

class of systems under consideration, it is necessary in a number of examples.

Condition 1.1c) is a harmless technical condition, recurrent in sliding-mode literature.

Condition 1.1d) is used to apply the so-called Lipschitz transformation on f0. Let
3 x∗ = [x∗1, . . . , x∗n]

⊤, Ω = {x∗ ∈

R
n, |x∗i| ≤ ωi, 1 ≤ i ≤ n} for a set of n given numbers ωi > 0. Let ς : Rn → Ω be a locally linear saturation function

that is, such that ς(x∗) = x∗ for all x∗ ∈ Ω and |ς(x∗i)| = 1 elsewhere, for each component of x∗. Then, define

f1 : Rn → R
s such that f1(x∗) = f0(ς(x∗)); we obtain f1(x∗) = f0(x∗) for each x∗ ∈ Ω. Hence, applying the mean

value theorem, we can show that f1 is globally Lipschitz with Lipschitz constant Kf i.e.,

|f1(x1)− f1(x2)| ≤ Kf |x1 − x2| ∀ x1, x2 ∈ R
n. (2)

It follows that for all t such that x∗(t) ∈ Ω, the trajectories of the system (1) coincide with those of

ẋ∗ =A0x∗ +Bf1(x∗) + Fη1(t) (3a)

y=C0x∗ +G0η2(t). (3b)

Hence, without loss of generality we assume that item (d) of Assumption 1.1 holds for the compact set Ω used above.

The estimator design problem for (1) reduces to that for (3).

Next, let us introduce the extended state x = [x⊤
∗ , η⊤2 ]

⊤ and correspondingly,

A =
[

A0 0

]

, C =
[

C0 G0

]

, T =
[

In 0

]

and f : Rn+q2 → R
s such that f(x) = f1(x∗). Then, the equations (3) take the descriptor-system form

T ẋ=Ax+Bf(x) + Fη1(t) (4a)

y=Cx. (4b)

3 The symbol | · | stands for the (generalized) norm of elements in R
n×m for any n ≥ 1 and m ≥ 1.
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Our motivation to address this problem lies on synchronization of chaotic systems used to encode information to

be transmitted –see the example in Section 4. However, this problem is of broader interest, as for instance in the

context of fault-detection –see [8, 23] or estimation of switching rules in certain hybrid systems –see [22]. In the first

two references, the state is augmented by the faults (unknown inputs); measurements are noise-free.

Our main result consists in an estimator for system (4). This is presented in Section 3; in anticipation of which,

preliminary results are presented next.

2 Sliding-mode unknown-input observer

The estimator consists in three main parts. Firstly, we construct an observer for the “nominal” linear part T ẋ = Ax.

Secondly, adaptive high-gain is added to compensate for the Lipschitz nonlinearity Bf(x). Thirdly, we use sliding-

mode based correction terms to estimate the unknown inputs η1.

2.1 An observer for T ẋ = Ax

Let P : Rn+q2×n and E : Rn+q2×p be two constant design matrices such that

PT = I + EC (5)

for given matrices C and T . To investigate the solubility of (5) we re-write it in the form

[

P E

]




T

−C



 = In+q2
(6)

where In+q2 denotes the identity matrix of dimension n+q2. Equation (6) is of the formXR1 = R2 with R1 =




T

−C



,

R2 = In+q2 and X =
[

P E

]

. The latter Equation is solvable for X if and only if

Rank




R1

R2



 = Rank
[

R1

]

. (7)

Moreover, for any arbitrary matrix Za the solution is

X = R2R
+
1 − Za(I −R1R

+
1 ) (8)

where R+
1 denotes the generalized inverse of R1. In turn, applied to the solution of (6) the condition (7) is

Rank












In 0

−C0 −G0

In 0

0 Iq2












= Rank




In 0

−C0 −G0





which holds if and only if G0 is full rank –cf. Assumption 1.1b) and [10, 7].

Now we pose the following natural choice of an estimator for the “nominal” descriptor system T ẋ = Ax,

PT ˙̂x = PAx̂− v1 (9)

where v1 represents correcting additional terms yet to be determined so that the origin is an exponentially stable

equilibrium for the estimation error equation

PT (ẋ− ˙̂x) = PA(x− x̂) + v1. (10)
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What is more, define e = x− x̂ then, we look for v1 such that (10) become

ė = Ke (11)

where K is Hurwitz. Using (5) in (10) we obtain

ė+ ECė= PAe+ v1

ė+ Eẏ − EC ˙̂x= PAe+ v1 − ˙̂x+ ˙̂x

ė= PAe+ v1 − Eẏ + (EC + I) ˙̂x− ˙̂x

= PAe+ v1 + PT ˙̂x− (Eẏ + ˙̂x).

Define z := Ey + x̂ then

ė = PAe+ v1 + PT ˙̂x− ż.

Now, let L be such that

K = PA− LC (12)

is Hurwitz. Such matrix L, i.e. satisfying (12), exists provided that the pair (A,C) is observable; its numerical

computation on a case-by-case basis, constitutes a standard pole-placement problem. So we see that by imposing

v1 = −LCe+ ż − PT ˙̂x, (13)

we obtain (11), which is exponentially stable at the origin.

Now we show how to implement (13) which in view of (9), is equivalent to PAx̂ = −LCe+ ż. The latter holds if and

only if

ż = PAz − PAEy + LCe

= PAz − PAEy − LCx̂+ LCx

= PAz − PAEy − LC(z − Ey) + LCx

=Kz −KEy + Ly

=Kz + (L−KE)y.

In summary, the estimator

ż =Kz + Jy, J = L−KE (14a)

x̂= z − Ey (14b)

with L such that PA − LC = K is Hurwitz, yields the estimation error dynamics (11) whose null solution is

exponentially stable –see also [7].

2.2 Adaptive compensation of nonlinearities

Next, we consider the system (4) with f globally Lipschitz (after a Lipschitz transformation) with constant Kf ,

considered to be unknown. We modify the estimator (9) designed for T ẋ = Ax, by introducing the compensation

terms H1f(x̂) , H2u and 1
2 β̂H1M(y − Cx̂), with H1 := PB and H2 = PF . In place of (9), let

PT ˙̂x = PAx̂− v1 +
1

2
β̂H1M(y − Cx̂) +H1f(x̂) +H2u (15)

and equivalently, let the input (13) be implemented via the estimator

ż =Kz + Jy +H1f(x̂) +
1

2
β̂H1M(y − Cx̂) +H2u (16a)

x̂= z − Ey (16b)
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in which the input u is used to estimate η1. As we show below, u is designed following ideas reminiscent of the

equivalent control-input notion that is, u = η1 on the sliding mode –cf. [24, 11]. Furthermore, we use certainty-

equivalence principle and the terms H1f(x̂) and 1
2 β̂H1M(y − Cx̂) to compensate for the effect of the Lipschitz

non-linearities. However, since the Lipschitz constant Kf is unknown, we use the adaptation law

˙̂
β = γ1 |M(y − Cx̂)|2 − σ2β̂ (17)

where γ1 and σ2 > 0, β̂ is the estimate of a parameter β which is defined below and dominates over the effect of

the Lipschitz nonlinearity and we define M as follows. Let G = NC ∈ R
q1×(n+q2) with N ∈ R

q1×p be s.t. GH2 is

nonsingular and

AG =
[

I −H2(GH2)
−1G

]

PA (18)

BG =
[

I −H2(GH2)
−1G

]

H1. (19)

After [9], if (and only if) for each complex number λ such that Re(λ) ≥ 0,

rank(CBG) = rank(BG) (20)

rank




AG − λI BG

C 0



 = n+ rank(BG) (21)

then, for any positive definite symmetric matrix Q there exist PG = P⊤
G , L and M such that

[AG − LC]⊤PG + PG[AG − LC] = −Q (22)

PGBG = (MC)⊤. (23)

To solve (22), (23), we find the smallest ρ∗ such that

PG > 0 (24)

PGAG +A⊤
GPG +RC + C⊤R⊤ < 0 (25)




ρ∗I B⊤

GPG −MC

PGBG − C⊤M⊤ ρ∗I



 ≥ 0 . (26)

The solution to the latter yields the minimum ρ∗ = 0 such that PG, M , R and L = −P−1
G R satisfy (22) and (23).

We carry on the estimator design by introducing a discontinuous input u with the aim at steering the error trajectories

into an invariant manifold in which e(t) converges to zero. Define the sliding manifold {S ≡ 0} where

S(t) := NCe(t) +

∫ t

0

GLCe(τ)dτ (27)

which is equivalent to

Ṡ = Gė+GLCe . (28)

We premultiply (4a) by P and subtract (15). Then, proceeding as in Section 2.1, we obtain

ė = PAe− LCe−
1

2
β̂H1M(y − Cx̂) +H1

[

f(x)− f(x̂)
]

+H2(η1 − u) (29)

where we used (13) –we recall that v1 is a virtual input used only in the analysis. Replacing (29) in (28), we obtain

Ṡ = G(PA− LC)e+GH1

[

f(x)− f(x̂)
]

+GH2(η1 − u)

−
1

2
β̂GH1M(y − Cx̂) +GLCe. (30)
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Next, let

u = (GH2)
−1

[

(δ + ρ̂)
S

|S|
−GPAx̂−GH1f(x̂)

−
1

2
GH1β̂M(y − Cx̂)

]

(31)

where ρ̂ is a design gain, updated according to

˙̂ρ = γ2 |S| − σρ̂. (32)

Then, if we use (31) in (30) we obtain

Ṡ = −(ρ̂+ δ)
S

|S|
+Φ(η1, x) (33a)

Φ(η1, x) :=GH2η1 +GPAx +GH1f(x). (33b)

Now, in view of Assumption 1.1, ϕ(t) := Φ(η1(t), x(t)) is bounded, let this bound be

ρ := sup
t≥0

|ϕ(t)| . (34)

Define ρ̃ = ρ− ρ̂ and consider now the positive definite radially unbounded function

V1(S, ρ̃) =
1

2
|S|2 +

1

2γ2
ρ̃2; (35)

its total time derivative along the trajectories of (33a) and (32) yields

V̇1 ≤ |ϕ(t)| |S| − (ρ̂+ δ) |S|+ ρ̃
[

− |S|+
σ

γ2
(ρ− ρ̃)

]

≤ −δ |S| −
σ

γ2
ρ̃2 +

σ

γ2
ρρ̃ (36)

which implies that the trajectories are bounded. To see this, note that using the triangle inequality 2ρρ̃ ≤ ρ2 + ρ̃2,

we have V̇ ≤ −δ |S| − σ
2γ2

ρ̃2 + σ
2γ2

ρ2, that is, V̇ ≤ 0 for large values of [|S| , |ρ̃|
2
]⊤ –see [17].

Corollary 2.1 Let Ω be a compact set and assume that x(t) ∈ Ω for all t. Consider the estimator given by (16),

(31) and (17) and let ρ̂ ≡ ρ. Then, the sliding mode {S = 0} is reached in finite time.

The proof of the first claim follows directly from the previous computations, observing that V1(S) is a quadratic

function of S and its derivative is negative definite and satisfies V̇1 ≤ −2δV
1/2
1 .

Remark 2.1 Although the statement of the corollary does not establish necessity it is also implicit in the previous

computations that only in the case that the parameter ρ is known, the sliding manifold may be reached (in finite

time).

2.3 Convergence of estimation errors

Now we investigate the dynamic behavior of the error trajectories on the sliding manifold. Solving (30) for (η1 − u),

we obtain

(η1 − u) = (GH2)
−1

[1

2
β̂GH1MCe−GLCe

−GH1 [f(x)− f(x̂)]−GKe+ Ṡ
]

(37)

where we also used K = PA− LC. We replace (η1 − u) by the right-hand side of (37) in (29) to obtain

ė = [AG − LC]e+BG

[

f(x)− f(x̂)−
1

2
β̂MCe

]

+H2(GH2)
−1Ṡ. (38)
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Let β be such that

det

∣
∣
∣
∣
∣
∣

λm(Q)
2 Kf

Kf β

∣
∣
∣
∣
∣
∣

≥ 0 (39)

and define β̃ = β − β̂ then, the total derivative of the positive definite radially unbounded continuous function

V2(e, β̃) = e⊤PGe +
1

2γ1
β̃2 (40)

along the estimation error trajectories (38) and

˙̃
β = −γ1 |M(y − Cx̂)|

2
+ σ2β̂,

yields

V̇2 ≤ −e⊤Qe+ 2e⊤PGBG

[

f(x)− f(x̂)−
1

2
βMCe

]

−2e⊤PGH2(GH2)
−1Ṡ +

1

γ1
β̃
[

σ2(β − β̃)
]

, (41)

for which we used (22) and (23). Furthermore, using once more (23) as well as (2), we obtain

V̇2 ≤ −λm(Q) |e|
2
− β |MCe|

2
+ 2Kf |e| |MCe|

+2
∣
∣PGH2(GH2)

−1
∣
∣ |e|

∣
∣
∣Ṡ
∣
∣
∣−

σ2

γ1
β̃2 +

σ2

γ1
ββ̃ (42)

hence,

V̇2 ≤ −
λm(Q)

2
|e|

2
−




|e|

|MCe|





⊤ 



λm(Q)
2 −Kf

−Kf β








|e|

|MCe|



+ 2
∣
∣PGH2(GH2)

−1
∣
∣ |e|

∣
∣
∣Ṡ
∣
∣
∣−

σ2

γ1
β̃2 +

σ2

γ1
ββ̃ .

(43)

Next, we use the definition of the unknown constant β given above by Equation (39) to obtain

V̇2 ≤ −
λm(Q)

2
|e|

2
+ 2

∣
∣PGH2(GH2)

−1
∣
∣ |e|

∣
∣
∣Ṡ
∣
∣
∣−

σ2

γ1
β̃2 +

σ2

γ1
ββ̃ .

so in view of (39) and introducing cb such that
∣
∣PGH2(GH2)

−1
∣
∣ ≤ cb hence 2cb |e|

∣
∣
∣Ṡ
∣
∣
∣ ≤ c2b

∣
∣
∣Ṡ
∣
∣
∣

2

+ |e|
2
, we obtain

V̇2 ≤ −

[
λm(Q)

2
− 1

]

|e|
2
+ c2b

∣
∣
∣Ṡ
∣
∣
∣

2

−
σ2

2γ1
β̃2 +

σ2

2γ1
β2. (44)

We conclude that on the sliding manifold {S ≡ 0}, the trajectories e(t) converge to a small neighborhood of the

origin with radius dependent on β, σ2 and γ1, provided that λm(Q) > 2 –see [17].

In the particular case that the gain σ2 = 0 or if β is known (44) becomes

V̇2 ≤ −

[
λm(Q)

2
− 1

]

|e|
2

hence, one may conclude by invoking Barbălat’s lemma, that e(t) converges to zero asymptotically provided that the

trajectories are on the sliding manifold. Although this is unfeasible, this observation helps us to establish our main

theorem.

8



3 Main result

In previous sections we showed that in the case that the parameters ρ and β are known, the sliding manifold is

reached in finite time and the estimation errors converge asymptotically to zero 4 . In the scenario considered in

this paper this cannot be guaranteed. Nonetheless, the error trajectories converge and remain arbitrarily close to

the sliding manifold and consequently, they tend to an arbitrarily small compact set which contains the origin. We

establish this next.

Theorem 1 For the system (1) under Assumption 1.1 consider the estimator defined by (17), (27), (32) and the

continuously-implemented counter-part of the input u in (31),

u = (GH2)
−1

[

δS + ρ̂
S

ε+ |S|
−GPAx̂−GH1f(x̂)−

1

2
GH1β̂M(y − Cx̂)

]

, ε > 0. (45)

Let (20), (21) hold and

I + EC − PT = 0 (46a)

H1 = PB (46b)

H2 = PF (46c)

K = PA− LC is Hurwitz (46d)

J = L−KE. (46e)

Then, the estimation error trajectories converge to a compact set centered at e = 0 and which may be diminished at

will for large values of γ1 and δ.

Remark 3.1 The conditions of the theorem clearly restrict the class of systems for which the proposed unknown-input

observer applies. To satisfy all the conditions the estimator parameters are computed in the following order:

(1) P and E are generated by Eq. (8) with X = [P E], R1 = [T⊤ − C⊤]⊤, and R2 = In+q2 ;

(2) H1 and H2 are defined by Eqs. (46b) and (46c);

(3) N and G are selected such that GH2 = NCH2 is nonsingular;

(4) AG and BG are generated via (18) and (19) subject to the structural conditions (20), (21) ;

(5) L = −P−1
G R where PG and M are generated by the solution of the optimization problem described above

by Equations (24)–(26);

(6) K is defined by (46d);

(7) J is defined by (46e).

Proof of Theorem 1.

The proof builds upon the material of the previous section. Roughly, we first show along the lines of Section 2.2,

that S(t) and ρ̃(t) tend to an arbitrarily small ball. Secondly, we show the same property for Ṡ(t) so that asymptotic

practical stability may be concluded, in view of (44). Furthermore, instrumental in the proof (to show convergence

of Ṡ) is the following technical lemma that follows as a corollary from [16, Theorem 2].

Lemma 2 Consider the ordinary differential equation

ζ̇(t) = −δζ(t) + ν(t), t0 ∈ R+, ζ(t0) = ζo ∈ R
n, δ > 0 (47)

where ν is uniformly continuous and bounded on its domain, R+. Then,

lim
δ→+∞

ζ̇(t, δ) = 0 (48)

uniformly for all t > t0.

4 Actually, it is implicit in the previous developments that convergence to zero is ensured only in the case that parameters

are known.
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1.– Convergence of S(t) and ρ̃(t).

After the development in Section 2.3, the estimation error trajectories satisfy (38) hence, (44). On the other hand,

the dynamics of the sliding surface is defined by (30). Replacing in the latter the expression of u given in (45), yields

Ṡ = −δS +Φ(η1, x)− ρ̂
S

ε+ |S|
. (49)

The total time derivative of V1 defined in (35), using (49) and ρ̂ = ρ− ρ̃, satisfies

V̇1 ≤ S⊤
[

− δS + ϕ(t)
]

+
ρ̃

γ2
[−γ2 |S|+ σ(ρ− ρ̃)]

+
(

ρ− ρ̃
)[

|S| −
|S|2

|S|+ ε

]

≤−δ |S|
2
−

σ

γ2
ρ̃2 +

σ

γ2
ρρ̃+ (ρ− ρ̃)

ε |S|

|S|+ ε
(50)

and in view of the inequalities

|S|

|S|+ ε
≤ 1

ρρ̃ ≤
1

2

(
ρ2 + ρ̃2

)

ρ̃ε =

(

ρ̃
[ σ

2γ2

]1/2
)(

ε
[2γ2

σ

]1/2
)

≤
1

2

[
ρ̃2σ

2γ2
+

2ε2γ2
σ

]

we see that

V̇1 ≤ −δ |S|2 −
σ

4γ2
ρ̃2 +

σ

2γ2
ρ2 + ρε+ ε2

γ2
σ
, (51)

where the last three terms on the right-hand side are constant. Next, define

c2(ρ, ε, γ2, σ) :=
σ

2γ2
ρ2 + ρε+ ε2

γ2
σ
, (52)

then

V̇1 ≤ −min
{

2δ,
σ

2

}
[

|S|
2

2
+

ρ̃2

2γ2

]

+ c2. (53)

That is, defining K0 := min
{
2δ, σ

2

}
we see that the trajectories satisfy

V̇1(S(t), ρ̃(t)) ≤ −K0V1(S(t), ρ̃(t)) + c2

so by integrating on both sides of the latter and invoking the comparison theorem, it follows that

lim
t→∞

V1(S(t), ρ̃(t)) ≤
c2(ρ, ε, γ2, σ)

K0(σ, δ)
.

Let ε ∝ (1/γ2), then the quotient c2/K0 can be arbitrarily diminished by enlarging γ2 and δ. It is concluded that

S(t) and ρ̃(t) tend asymptotically to an arbitrarily small compact set centered at {S = 0, ρ̃ = 0}.

2.– Convergence of Ṡ(t)

We invoke Lemma 2 with ζ = S and ν(t) = ν̃(t, ρ̂(t), S(t)) where

ν̃(t, ρ̂, S) := ϕ(t)− ρ̂
S

|S|+ ε
.

To that end, we first show that ν(t) is bounded and uniformly continuous in t.
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Uniform boundedness of ν(t) follows from boundedness of ρ̃(t) hence of ρ̂(t) = ρ− ρ̃(t), of S(t) and of ϕ(t) –see (34).

Uniform continuity follows from the fact that ν̇(t) is also bounded. To see the latter we write

˙̃ν = ϕ̇(t)− ˙̂ρ
S

|S|+ ε
− ρ̂F (S)Ṡ

where

F (S) =
ε

(|S|+ ε)2
≤

1

ε

hence

ν̇(t) ≤ |ϕ̇(t)|+
∣
∣ ˙̃ρ(t)

∣
∣+

1

ε

[

ρ+ |ρ̃(t)|
] ∣
∣
∣Ṡ(t)

∣
∣
∣ . (54)

To investigate the boundedness of ν̇(t) we analyze the right-hand side of (54) term by term. After (49)

Ṡ(t) = −δS(t) + ϕ(t)−
[

ρ− ρ̃(t)
] S(t)

|S(t)|+ ε

and since S(t), ρ̃(t) and ϕ(t) are bounded so is Ṡ(t). In addition, the norm of

ϕ̇(t) = GH2η̇1(t) +GPAẋ(t) +GH1
∂f

∂x
(x(t))ẋ(t)

is bounded in view of Assumption 1.1. Finally, we observe from (32) that

∣
∣ ˙̃ρ(t)

∣
∣ ≤ σρ+ γ2 |S(t)|+ σ |ρ̃(t)|

which is bounded for all t ≥ 0 as well. We conclude that ν̇(t) is bounded and consequently, ν(t) is uniformly

continuous.

Next, from Lemma 2, it follows that

lim
δ→∞

Ṡ(t, δ) = 0

uniformly for all t > t0 ≥ 0. That is, for any ∆c > 0, there exists δc > 0 such that for all δ ≥ δc,

∣
∣
∣Ṡ(t)

∣
∣
∣ ≤ ∆c ∀ t > t0. (55)

3.– Convergence of e(t)

We recall the function V2 defined in (40). Its total derivative satisfies (44) regardless of the definition of u and whether

the sliding mode is achieved or not. Let pm > 0 be such that e⊤PGe ≥ pm |e|2. Let ∆c > 0: then, there exists δc such

that Inequality (55) is satisfied, and consequently we have

V̇2 ≤−σ2

(
1

2γ1
β̃2

)

−
λm(Q)− 2

pm

(
1

2
pm |e|

2

)

+
σ2

2γ1
β2 +∆2

cc
2
b

︸ ︷︷ ︸

c3

≤−min

{

σ2,
λm(Q)− 2

pm

}

V2 + c3(δ, γ1, σ2).

Integrating on both sides of the latter along the trajectories, from t0 to t we obtain that V2(e(t), β̃(t)) tends asymp-

totically to the compact set






(e, β̃) ∈ R

n+q2 × R : V2(e, β̃) ≤
c3

min
{

σ2,
λm(Q)−2

pm

}






.
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Note that the previous upper-bound on V2(e, β̃) may be reduced at will for any fixed σ2, by enlarging γ1 and δ.

The statement of the theorem follows. �

3.1 Reconstruction of the unknown input η1

That the unknown input η1 may be reconstructed with arbitrary accuracy follows as a direct corollary from the

results established previously.

Corollary 3 For any tolerance εη > 0 there exist gains δ, γ1, γ2, σ2 and 0 < Tη < ∞ such that

|u(t)− η1(t)| ≤ εη ∀t ≥ t0 + Tη

Proof . From (37) we have

|u(t)− η1(t)| ≤
∣
∣(GH2)

−1
∣
∣

[1

2

∣
∣
∣β̂(t)

∣
∣
∣ |GH1| |MCe(t)|+ |GLCe(t)|+ |GH1Kf | |e(t)|+ |GK| |e(t)|+

∣
∣
∣Ṡ(t)

∣
∣
∣

]

.

We have showed that β̂(t) = β − β̃(t) is bounded and all terms on the right hand side of the expression above are

factors of e(t) and Ṡ(t) which converge to an arbitrarily small compact set centered at the origin. The statement of

the corollary follows. �

4 Numerical examples

For the sake of illustration we consider two numerical examples which are illustrative of different scenarios where

our theoretical results are useful. The first consists in the state estimation of a robot arm with noisy measurements

and under the influence of unknown friction. The second example consists in a problem of synchronization of chaotic

systems with application to the secured transmission of information.

4.1 Single-link flexible-joint robot arm

We consider the model of a single-link robot arm with flexible joint, excited by a sinusoidal input i.e.,

J2θ̈2 + F2θ̇1 +K(θ2 − θ1) +mgl cos(θ2) = 0 (56a)

J1θ̈1 + F1θ̇1 +K(θ1 − θ2) =Kt sin(t) (56b)

where θ1 and θ2 are the angular rotations of the motor and the link, respectively. The parameters of the robot arm

are as follows: J1 = 3.7 × 10−3 kgm2 and J2 = 3.7 × 10−3 kgm2 are the motor and the link inertias, respectively;

m = 2.1×10−1kg is the pointer mass, l = 0.15m is the position of the center of gravity of the link, K = 0.18Nms/rad

is the joint stiffness constant, F1 = 4.6 × 10−3Nms/rad and F2 = 6.4 × 10−3Nms/rad represent respectively the

viscous friction coefficients of the motor and the link, respectively and Kt = 32× 10−3Nms/rad is an input gain.

We define the state x∗ = [x∗1, x∗2, x∗3, x4∗]
⊤ where x1∗ = θ1, x2∗ = θ2, x3∗ = θ̇1 and x4∗ = θ̇2. Let y = [y1 =

x∗1+η2, y2 = x∗2+x4∗]
⊤ be the measured output vector where η2(t) represents the measurement noise (a zero-mean

Gaussian noise) that is, as in [30], we assume that the angular rotation of the motor and the sum of the angular

rotation and velocity of the link are measured. We recall that x = [x∗, η2]
⊤ is the augmented state. We assume that

the viscous friction parameter F2 is unknown which generates the unknown signal η1(t) =
F2

J2

θ̇2. Hence, the system

(56) may be written in the form (1) with

A0 =












0 0 1 0

0 0 0 1

−48.6486 48.6486 −12.4324 0

19.3548 619.3548 0 0












, B =












0

0

0

−33.1935












, F =












0

0

0

−1












,

C0 =




1 0 0 0

0 1 0 1



 , G0 =




1

0



 , f0(x∗) = cos(x∗2).
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The design matrices are obtained following the procedure described in Remark 3.1:

E =















0 0

0 −0.33

0 0

0 −0.33

−1 0















, P =















1.0000 0 0 0

0 0.66 0 −0.33

0 0 1 0

0 −0.33 0 0.66

−1 0 0 0















, L =















0.4955 −0.0013

0.0002 0.9969

−24.3170 24.3251

0.0001 −0.0001

0.4954 0.0011















,

K =















−0.4955 0.0013 1 0.0013 −0.4955

−6.4512 5.4541 0 −0.3302 −0.0002

−24.3316 24.3235 −12.4324 −24.3251 24.3170

12.9037 −12.9038 0 −0.3332 −0.0001

−0.4954 −0.0011 −1 −0.0011 −0.4954















, N =
[

0 3

]

.

The design parameters are chosen as follows: ε = 0.001, δ = 100, σ = 100 and γ2 = 1000. The initial conditions are:

x(0) = [3, 1, 1, 2, − 0.8]⊤, x̂(0) = [−2, 0, 2, 4, 2.17]⊤, ρ̂ = 0.

Simulation results are as follows. Figure 1 illustrates that the states and the measurement noise η2 are efficiently

estimated, hence the effect of noise is perfectly canceled (we recall that e5 = x5 − x̂5 represents the estimation error

of the measurement noise). Figure 2 depicts that the unknown input η1 is well reconstructed.
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Fig. 1. Estimation errors e1 = x1 − x̂1, e2 = x2 − x̂2 , e3 = x3 − x̂3, e4 = x4 − x̂4 and e5 = x5 − x̂5
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Fig. 2. The unknown input η1 and its estimate

4.2 Chaotic communication system with channel noise

We present simulation results to test the performance of the proposed methodology. We take as case-study a problem

of synchronization of chaotic systems, motivated by applications in the domain of secured communication –cf. [7].
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The context is the following. A master system is designed to generate a chaotic carrier. Information is encoded and

transmitted using such carrier. A receiver measures the transmitted signal and it is required to recover the encoded

information. In the context of the unknown-input observers, the plant corresponds to the master system, the observer

corresponds to the slave system. The unknown input corresponds to the encoded information to be recovered. It is

assumed that the transmission channel is contaminated by noise, η2.

The master system is a Lorenz chaotic oscillator subject to unknown inputs that is,

ẋ∗1 =−a1x∗1 + a2x∗2 (57a)

ẋ∗2 = rx∗1 − x∗2 − x∗1x∗3 + η11 (57b)

ẋ∗3 = x∗1x∗2 − bx∗3 + η12 (57c)

The measured outputs are

y1 = x∗1 + η2 (58a)

y2 = 2x∗2 + η2 (58b)

y3 = x∗3 + η2. (58c)

The system (57) may be written in the form (1) with x = [x∗1, x∗2, x∗3]
⊤ as the state vector, y = [y1, y2, y3]

⊤ as the

measured output vector, η1(t) = [η11(t); η12(t)] as the unknown inputs vector to be estimated, η2 as noise and

A0 =









−10 10 0

28 −1 0

0 0 −8/3









, B =









0 0

1 0

0 1









, F =









0 0

1 0

0 1









, C0 =









1 0 0

0 2 0

0 0 1









, f0(x∗) =




−x∗1x∗3

x∗1x∗2



 , G0 =









1

1

1









.

The unknown input is the transmitted message η1 = [η11, η12] where η11 and η12 are assumed to be sinusoidal

signals of respective amplitudes equal to m1max = 1, m2max = 3 and frequencies fr1 = 0.33Hz and fr2 = 1.32Hz.

The channel noise η2(t) consists on a zero mean Gaussian noise of frequency 10Hz and variance equal to 1, generated

between lower and upper bounds respectively equal to -3 and 3. We initialize the vector states of systems (57) at

x∗0 = [0.2,−0.4,−0.2]⊤.

The system (57) presents chaotic behavior for a1 = a2 = 10, b = 8/3 and r = 28 even in the presence of the inputs

η1, hence, the solutions are bounded and the Lipschitz extension transformation may be applied. Finally, the design

constants are chosen as follows: ε = 0.0001, δ = 1000, σ = 1000 and γ2 = 10000.

Note that in this example B = F which leads to BG = 0 hence, β̂ does not need to be updated. We initialize the

states of the observer (16) at x̂(0) = [−0.11,−0.14, 0.2,−0.38]⊤ and the adaptive parameter at ρ̂(0) = 0.

Simulation results illustrate that the effect of noise is perfectly canceled out (measurement noise is estimated) by the

proposed receiver (observer) and the error synchronization is not affected –see Figure 3. Furthermore, despite the

presence of noise in the public channel, the transmitted messages are well recovered by the receiver (16) as seen in

Figure 4.

5 Conclusion

We presented robust unknown-input observer via continuously-implemented sliding modes. The estimator is able to

reconstruct the unknown inputs and state with arbitrary accuracy. We have illustrated the utility and performance

of the estimator via an example of a single-link robot and an application of a master-slave synchronization problem

of chaotic systems for secured transmission of information.
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