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A simple formation-tracking controller of mobile robots based on a

“spanning-tree” communication

Janset Dasdemir and Antonio Loria

Abstract— We solve the formation-tracking control problem
for mobile robots via linear control. As in the classical tracking
control problem for two nonholonomic systems, the swarm is
driven by a fictitious robot which moves about freely. Only one
“leader” robot communicates with the reference vehicle and
in turn, acts as a leader to a second robot hence forming a
fixed spanning tree. We show that a simple condition on the
reference angular velocity (persistency of excitation) suffices to
achieve consensus tracking.

I. INTRODUCTION

In the context of consensus and synchronization, coor-

dinated control of autonomous mobile robots has received

much attention in thelast decade. In [1], [2], desired behav-

iors such as obstacle-avoidance or target-seeking are assigned

to each vehicle and formation control action is determined

by a weighted average of them. However, these works rely

on an all-to-all communication among agents. In [3], [4] the

entire formation is treated as a single body which can evolve

in a given direction and orientation to build a predefined

formation shape however, failure in the virtual robot affects

the whole swarm of agents. In [5], [6] the authors use graph-

theory to describe communication links and stability of the

system is ensured by stability of each individual system and

the connectivity of the graph. It is important to mention that

the papers mentioned above are restricted to linear systems.

There also exist various articles on leader-follower based

formation tracking control of mobile robots. In [7], an

adaptive leader-follower based formation control without the

need of leaders’ velocity information is prescribed. It is

assumed that two robots are leaders hence, they know the

prescribed reference velocity while the others considered as

followers with single integrator dynamics. Stability analysis

shows that the triangular formation is asymptotically stable

while the collinear one is not. In [8], the authors present

a three-level hybrid control architecture based on feedback

linearization and the analysis relies on graph theory; it shows

that position error system is asymptotically stable with a

bounded orientation error. In [9], a virtual vehicle is designed

to eliminate velocity measurement of the leader then using

backstepping and Lyapunov’s direct method position tracking

control problem of the follower is solved. The proposed

method guarantees asymptotic stability of the closed loop

error system dynamics.
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In [10] feedback linearization with sliding mode control

are employed for two robots under leader-follower based

formation. They exhibit robustness to bounded disturbances

and unmodeled dynamics. In [11], leader’s influence on the

trajectory tracking error dynamics is taken as an unknown

but bounded, observable disturbance and is eliminated by

the local controllers of the followers. Using adaptive dy-

namic programming with NN, it is shown that the kinematic

tracking error, the velocity tracking error and the parameter

estimation errors are all uniformly ultimately bounded. In

[12], three different formation control methods are proposed.

Two of them are developed by using virtual robot path track-

ing techniques. One is based on approximate linearization of

the unicycle dynamics and other is formed using Lyaponov-

based nonlinear time varying design. The third controller is

developed through dynamic feedback linearization.

In this paper, we follow a leader-follower approach.We

assume that the swarm of n vehicles has only one leader

which communicates with the virtual reference vehicle that

is, only one robot “knows” the reference trajectory. The

formation is ensured via unilateral communication that is,

each robot except for the leader and the tail, communicates

only with two neighbors: one follower and one leader. To

the former the robot gives information of its full state, from

the latter it receives full state information which is taken by

the decentralized controller as a reference. The tail robot has

no followers1.

Loosely speaking formation control is ensured following

the simple intuition that a recursive leader-follower approach

is sufficient. From an analytical viewpoint we establish that

as for the leader-follower tracking problem it is sufficient that

the virtual robot’s angular velocity is persistently exciting.

More precisely, we establish uniform global exponential

stability of the consensus-tracking error system.

For its simplicity, our controller is an original contribution

to the problem. For the generality of the result (uniform

global exponential stability) our main result supersedes oth-

ers which establish weaker properties such as asymptotic

stability and convergence.

The rest of the paper is organized as follows. In Section

II we recall the kinematic model of the mobile robot and

formulate the formation tracking control problem. In Section

III, we present our main result. In Section IV we present

some illustrative simulation results and we conclude with

some remarks in Section V.

1The names “leader” and “tail” are used in a graph theory sense to denote
the root and the leaf nodes, they do not determine any physical relative
posture of the robots.
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Fig. 1. Generic representation of a leader-follower configuration. For a
swarm of n vehicles, any geometric topology may be easily defined by
determining the position of each vehicle relative to its leader. This does not
affect the kinematic model.

Fig. 2. Communication topology: a spanning directed tree with permanent
communication between Ri and Ri+1 for all i ∈ [0, n− 1] . R0 denotes
the virtual leader.

II. PROBLEM STATEMENT AND ITS SOLUTION

Consider a group of n nonholonomic mobile robots with

the following kinematic model

ẋi = vi cos (θi)

ẏi = vi sin (θi) i = 1, ..., n (1)

θ̇i = wi

where the coordinates xi and yi represent the center of the

ith mobile robot with respect to a global fixed frame and

θi is the heading angle of the ith robot, see Fig 1. It is

assumed that each vehicle is velocity-controlled that is the

decentralized control inputs are vi and wi which correspond

respectively to the linear and angular velocities of the ith

robot.

The control objective is to make the n robots take specific

positions, determined by the topology designer, and make

the swarm follow a virtual reference vehicle. Note that any

geometrical configuration may be achieved and one can

choose any point in the Cartesian plane to follow the virtual

reference vehicle.

The swarm has only one ‘leader’ robot named R1 which

knows the reference trajectory, this is the child of the root

node in the graph. The other robots are intermediate robots

labeled R2 to Rn−1 that is, Ri acts as leader for Ri+1and

follows Ri−1. The ‘tail’ robot Rn has no followers (no

children in the graph). It is important to observe that the

notation Ri−1 refers to the graph topology as illustrated in

Figure 2 but it does not determine any physical formation.

The reference vehicle R0 describes the reference trajectory

defined by

ẋ0 = v0 cos (θ0)

ẏ0 = v0 sin (θ0) (2)

θ̇0 = w0

that is, v0 and w0 are respectively, the desired linear and

angular velocities communicated to the ‘leader’ robot R1.
For the sake of analysis and control design, we follow the

steps of the seminal paper [14] and write the error dynamics

of any two pairs of leader-follower robots. For the leader

robot R1 and the reference virtual vehicle we define

p1x = x0 − x1

p1y = y0 − y1 (3)

p1θ = θ0 − θ1.

Then, we transform the error coordinates [p1x, p1y, p1θ]
of the leader robot from the global coordinate frame to local

coordinates fixed on the robot that is,




e1x
e1y
e1θ



 =





cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1









p1x
p1y
p1θ



 . (4)

In these new coordinates, the error dynamics between the

reference vehicle and the leader of the swarm becomes

ė1x = w1e1y − v1 + v0 cos e1θ

ė1y = −w1e1x + v0 sin e1θ (5)

ė1θ = w0 − w1.

As is observed in a large body of literature that followed

[14], the leader-follower tracking control problem boils down

to the stabilization of the origin of (5) –see [15] and

references therein. In this paper we follow the simple linear

time-varying controller originally proposed in [17], where

uniform global exponential stability was first established.

Define

v1 = v0 + c2e1x (6)

w1 = w0 + c1e1θ

then, the closed-loop dynamics is given by

ė1x = [w0e1y − c2e1x] + [c1e1θe1y + v0(cos e1θ − 1)] (7a)

ė1y = [−w0e1x] + [−c1e1θe1x + v0 sin e1θ] (7b)

ė1θ = −c1e1θ. (7c)

The interest of the tracking controller of [17] is that the

closed-loop system (7) has a cascaded structure; this is

evident if we re-write the first two equations in the compact

form

ė1xy = f1(t, e1xy) + g(t, e1xy, eθ) (8)

where g(t, e1xy, 0) ≡ 0 and ė1xy = f1(t, e1xy) corresponds

to
[

ė1x
ė1y

]

=

[

−c2 w0 (t)
−w0 (t) 0

] [

e1x
e1y

]

(9)
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whose origin is uniformy globally exponentially stable if

w0 is locally integrable, globally Lipschiz and persistently

exciting that is if there exist positive constants µ1, µ2 and T
such that

µ1 ≤
∫ t+T

t

|w0 (τ)|2 dτ ≤ µ2 ∀t ≥ 0 (10)

The latter follows well-established results for adaptive linear

control systems -see [16].

Uniform global exponential stability of the origin of (7)

follows invoking stability theorems for non-autonomous time

varing cascaded systems; roughy speaking, the argument

relies on [18], [Lemma 2] which establishes that the origin

of a cascaded system is uniformly globally asymptotically

stable if so are the respective origins of the disconnected

subsystems that is, when the interconnection g ≡ 0 and if

the solutions of the perturbed dynamics (8) remain bounded

-see the appendix for a concrete result.

The main result of this paper consits in showing that the

controller of [17] may be used locally on each robot where

the reference velocities are replaced by those of the leader

vehicle to achieve formation control. The analysis relies on

the pbservation that the closed-loop system has a cascaded

structure and remarkably, it sufficies for consensus tracking

that the virtual vehicle’s reference angular velocity w0 be

persistently exciting.

In order to establish our main result, we proceed to write

the error dynamics between any pair leader-follower robots

starting with the leader R1. The errors are generally defined

by

pix = x(i−1) − xi − dx(i−1),i (11a)

piy = y(i−1) − yi − dy(i−1),i (11b)

piθ = θ(i−1) − θi i ∈ {2, ..., n} (11c)

where dx(i−1),i and dy(i−1),i denote the desired distances

between any two points on each mobile robot frame; for

simplicity but without loss of generality these points are

taken to be the origins of the local coordinate frames attached

to each robot. Note that any formation topology may be

defined by determining the values of dixy . In addition, one

may define differences in the heading angles that is diθ
however, for simplicity we assume here that all robots are

to be aligned with the same heading diθ = 0 for all

i ∈ {2, ..., n}.

Using the same transformation given in (4) we obtain

ėix = wieiy − vi + v(i−1) cos eiθ (12a)

ėiy = −wieix + v(i−1) sin eiθ (12b)

ėiθ = w(i−1) − wi (12c)

hence, following the previous discussion we define the local

control inputs

vi = v(i−1) + c2ieix (13a)

wi = w(i−1) + c1ieiθ (13b)

which replaced in (12), lead to

ėix =
[

w(i−1)eiy − c2eix
]

+
[

c1eiθeiy+v(i−1) (cos eiθ − 1)
]

(14a)

ėiy =
[

−w(i−1)eix
]

+
[

−c1eiθeix + v(i−1) sin eiθ
]

(14b)

ėiθ =− c1eiθ (14c)

for each i ∈ {1, ..., n}. That is, each set of equations

corresponds to the tracking error dynamics between a leader

and a follower robot. For the sake of analysis we remark that

these equations may be written in compact form

Σ1 :

[

ėx
ėy

]

=

[

−C2 W (t, eθ)
−W (t, eθ) 0

] [

ex
ey

]

+Ψ(t, ex, ey, eθ) (15)

Σ2 : ėθ = −C1eθ (16)

where W (t, eθ) := diag{w0(t), w0(t) + c11e1θ, ..., w0(t) +
Σn

i=1c1ieiθ}, C1 := diag {c1i} , C2 := diag {c2i} and the

interconnection term

Ψ =





















c1e1θe1y + v0(cos e1θ − 1)
...

c1enθeny + v(n−1)(cos enθ − 1)
−c1e1θe1x + v0 sin e1θ

...

−c1enθenx + v(n−1) sin enθ





















(17)

is such that Ψ(t, ex, ey, 0) ≡ 0.

Stability theorems for cascaded time-varying systems may

be invoked to establish uniform global exponential stability

of the origin. This constitutes our main result, which is

presented in the following section.

III. MAIN RESULT

Our main result implies that consensus tracking is achived

by virtue of the local controllers (13) hence,

lim
t→∞

eix(t) = 0 lim
t→∞

eiy(t) = 0 lim
t→∞

eiθ(t) = 0. (18)

Proposition 1 Consider the kinematic systems (1) in

closed loop with the controllers (13) with i ∈ {1, ...n}. Then,

the origin of the closed loop system is uniformly globally

exponentially stable if v0 is bounded, c1i, c2i > 0 and

there exist bµ, µ1, µ2 and T such that

max

{

sup
t≥0

|w0(t)| , sup
t≥0

|ẇ0(t)|
}

≤ bµ (19)

and (10) holds.

Proof: The closed loop dynamics is given by (15), (16).

Therefore, the proof boils down to showing that the origin

of the latter is uniformly globally exponentially stable. To

that end we invoke Theorem 2 in the Appendix with the

following definitions: x1 := [ex, ey]
T , x2 := eθ

f1(t, x) :=

[

−C2 W (t, 0)
−W (t, 0) 0

] [

ex
ey

]

, (20)
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Fig. 3. Motion and relative positioning of the robots in triangular formation
on the plane.

and

g(t, x1, x2) = Ψ(t, ex, ey, eθ) +
[

0 W (t, eθ)−W (t, 0)
−W (t, eθ) +W (t, 0) 0

] [

ex
ey

]

and f2(t, x2) := −C1eθ. Then the closed-loop dynamics

(15), (16) may be written in compact form as in (22), (23)

–see the Appendix. The regularity assumtions on f1 and f2
hold in view of (19). Then, the system (24) corresponds to

[

ėx
ėy

]

=

[

−C2 W (t, 0)
−W (t, 0) 0

] [

ex
ey

]

where W (t, 0) := w0(t)I. Uniform global exponential

stability of the origin of the system follows from standard

results on linear time-varying systems, provided that C2 > 0,

W (·, 0) is globally Lipschiz, locally integrable and persis-

tently exciting. All the latter are implied by (19) and (10).

On the other hand, uniform global exponential stability of

the origin of (16) is evident since C1 is diagonal positive

definite.

It remains to show that Assumptions A1 and A2 in

Theorem 2 of the Appendix, hold. Assumption A1 holds

with

V (t, x1) =
1

2

[

|ex|2 + |ey|2
]

. (21)

Its time derivative along the trajectories of (20) yields

V̇(20)(t, x1) = −eTxC2ex ≤ 0

and the conditions (26) and (27) hold with c2 = η = 1 and

c1 = 2.
Finally, Assumption A2 holds simply by observig that

x2 = 0 implies that g = 0 for any t ≥ 0 and x1 ∈ R
2n

and both Ψ and W (t, eθ) − W (t, 0) are both linear in
[

ex ey
]T

and uniformly bounded in t, the latter comes

from (19). �
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Fig. 4. Motion and relative positioning of the robots in alined formation
on the plane.
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IV. SIMULATION RESULTS

To illustrate the feasibility of the proposed control method

we performed simulations using SIMULINKTM of MATLABTM.

We consider a team of 3 mobile robots where one of

them is the leader which knows the reference trajectory

and the other two as followers. In the first stage of the

simulation, the desired formation shape is in triangular form

and after 60s, the topology switches to line formation.

The initial states of the robots are [x1(0), y1(0), θ1(0)]
T
=

[0,−4, 3π/8], [x2(0), y2(0), θ2 (0)]
T
= [−3.5,−7, π/2] and

[x3 (0) , y3(0), θ3(0)]
T = [−5,−1, π/3]. The desired dis-

tance between the robots are [dx1,2, dy1,2] =
[√

3, 1
]

and

[dx2,3, dy2,3] = [0,−2]. In order to obtain the reference

trajectory of the leader robot, we set the linear and angular

velocities as [v0(t), w0(t)] = [15[m/s], 3[rad/s]].

In Fig 3. we show the motion and relative positioning of

the robots in triangular formation. It is easy to see that after

a few seconds the formation shape is established and each
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robot tracks its neighbor with its desired off-set, while the

leader tracking the reference trajectory with a satisfactory

performance.

In Fig 4 we show the formation change from triangular to

line at t = 60 s. Because the leader’s motion is independent

of the formation shape it keeps its tajectory as expected and

the followers achieve new formation after a short transient.

In Figs 5-7 the trajectory errors of the robots are depicted.

It is clear that with the proposed control method the desired

formation tracking is successfully ensured.

To illustrate the robustness of the controller we add a

time-varying random signal δv as an unknown disturbance

to the leader robot R1; the formation tracking performance

is still satisfactory as it is showed in Figs. 9-10, demonstrate

that position under disturbance effect converge to a small

neighborhood of the origin; the heading is unaffected by the

disturbance hence it is not showed.

V. CONCLUSIONS

We have presented a simple linear consensus algorithm

for formation tracking control of a swarm of nonholonomic

robots based on a one-to-one communication. The formation

topology is arbitrary and the main assumption is that the
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angular velocity is persistently exciting. Present research

is carried out to consider interconnections and even state-

dependent. These extensions are not presented here due to

space constraints; indeed, although intuitive, they rely on

sharper technical tools which include nonlinear variants of

persistency of excitation and corresponding stability results

for nonlinear time-varying adaptive control systems.
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VI. APPENDIX

Consider the system

ẋ1 = f1 (t, x1) + g (t, x1, x2) (22)

ẋ2 = f2 (t, x2) (23)

where x1 ∈ R
n, x2 ∈ R

m, x ,
[

x1 x2

]T
. The function

f1 is locally Lipschitz in x1 uniformly in t and f (·, x1)
is continuous, f2 is continuous and locally Lipschitz in x2

uniformly in t, g is continuous in t and once differentiable

in x. The theorem given below which is reminiscent of

the results originally presented in [13] establishes unifom

global exponential stability of the cascaded non-autonomous

systems.

Theorem 1 Let the respective origins of

Σ1 : ẋ1 = f1 (t, x1) (24)

Σ2 : ẋ2 = f2 (t, x2) (25)

be uniformly globally exponentially stable and the following

assumptions hold.

(A1) There exist a Lyapunov function V : R≥0 × R
n →

R≥0 for (24) which is positive definite, radially unbounded,

V̇(24)(t, x1) :=
∂V

∂t
+

∂V

∂x1
f1(t, x1) ≤ 0

and constants c1, c2, η > 0 such that
∣

∣

∣

∣

∂V

∂x1

∣

∣

∣

∣

|x1| ≤ c1V (t, x1) ∀ |x1| ≥ η (26)

∣

∣

∣

∣

∂V

∂x1

∣

∣

∣

∣

≤ c2 ∀ |x1| ≤ η (27)

(A2) There exist two continuous functions θ1, θ2 : R≥0 →
R≥0 such that g(t, x1, x2) satisfies

|g(t, x1, x2)| ≤ θ1 (|x2|) + θ2 (|x2|) |x1| (28)

Then, the origin of the cascaded system (22), (23) is

uniformly globally exponentially stable.
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