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Abstract. Combinatorial maps define a general framework which al-
lows to encode any subdivision of an nD orientable quasi-manifold with
or without boundaries. Combinatorial pyramids are defined as stacks of
successively reduced combinatorial maps. Such pyramids provide a rich
framework which allows to encode fine properties of the objects (either
shapes or partitions). Combinatorial pyramids have first been defined in
2D. This first work has later been extended to pyramids of nD general-
ized combinatorial maps. Such pyramids allow to encode stacks of non
orientable partitions but at the price of a twice bigger pyramid. These
pyramids are also not designed to capture efficiently the properties con-
nected with orientation. The present work presents our first results on
the design of a pyramid of nD combinatorial maps.

1 Introduction

Pyramids of combinatorial maps have first been defined in 2D [1], and later
extended to pyramids of n-dimensional generalized maps by Grasset et al. [6].
Generalized maps model subdivisions of orientable but also non-orientable quasi-
manifolds [7] at the expense of twice the data size of the one required for com-
binatorial maps. For practical use (for example in image segmentation), this
may have an impact on the efficiency of the associated algorithms or may even
prevent their use. Furthermore, properties and constrains linked to the notion
of orientation may be expressed in a more natural way with the formalism of
combinatorial maps. For these reasons, we are interested here in the definition of
pyramids of n-dimensional combinatorial maps. This paper is a first step toward
the definition of such pyramids, and the link between our definitions and the
ones that consider G-maps is maintained throughout the paper. In fact, the link
between n-G-maps and n-maps was first established by Lienhardt [7] so that it
was claimed in [2], but not explicitly stated, that pyramids of n-maps could be
defined.

The key notion for the definition of pyramids of maps is the operation of
simultaneous removal or contraction of cells. Thus, we define the operation of
simultaneous removal and the one of simultaneous contraction of cells in an
n-map, the latter being introduced here as a removal operation in the dual map.

We first raise in Section 3 a minor problem with the definition of ”cells with
local degree 2 in a G-map” used in [5, 2] and more precisely with the criterion



for determining if a cell is a valid candidate for removal. We provide a formal
definition of the local degree, which is consistent with the results established in
previous papers [2, 6], using the notion of a regular cell that we introduce.

An essential result of this paper, presented in Section 4, is that the removal
operation we introduce here is well defined since it indeed transforms a map
into another map. Instead of checking that the resulting map satisfies from its
very definition the properties of a map, we use an indirect proof by using the
removal operation in G-maps defined by Damiand in [2, 3]. If needed, this way
again illustrates the link between the two structures.

Eventually, in Section 5 we will state a definition of simultaneous contraction
of cells in a G-map in terms of removals in the dual map, definition which we
prove to be equivalent to the one given by Damiand and Lienhardt in [2]. We
finally define in the same way the simultaneous contraction operation in maps.

Note that the proofs of the results stated in this paper may be found in [4].

2 Maps and generalized maps in dimension n

An n-G-map is defined by a set of basic abstract elements called darts connected
by (n + 1) involutions. More formally:

Definition 1 (n-G-map [7]) Let n ≥ 0, an n-G-map is defined as an (n + 2)-
tuple G = (D, α0, . . . , αn) where:

– D is a finite non-empty set of darts;
– α0, . . . , αn are involutions on D (i.e. ∀i ∈ {0, . . . , n}, α2

i (b) = b) such that:

• ∀i ∈ {0, . . . , n − 1}, αi is an involution without fixed point (i.e. ∀b ∈ D,
αi(b) 6= b);

• ∀i ∈ {0, . . . , n − 2}, ∀j ∈ {i + 2, . . . , n}, αiαj is an involution1.

The dual of G, denoted by G, is the n-G-map G = (D, αn, . . . , α0). If αn is
an involution without fixed point, G is said to be without boundaries or closed.
In the following we only consider closed n-G-maps with n ≥ 2.

Figure 1(a) shows a 2-G-map G = (D, α0, α1, α2) whose set of darts D
is {1, 2, 3, 4, −1,−2,−3,−4}, with the involutions α0 = (1,−1)(2,−2)(3,−3)
(4,−4), α1 = (1, 2)(−1, 3)(−2,−3)(4,−4), and α2 = (1, 2)(−1,−2)(3, 4)(−3,−4).

Let Φ = {φ1, . . . , φk} be a set of permutations on a set D. We denote by <Φ>
the permutation group generated by Φ, i.e. the set of permutations obtained by
any composition and inversion of permutations contained in Φ. The orbit of
d ∈ D relatively to Φ is defined by <Φ>(d) =

{

φ(d)
∣

∣ φ ∈<Φ>
}

. Furthermore,
we extend this notation to the empty set by defining <∅> as the identity map.
If Ψ = {ψ1, . . . , ψh} ⊂ Φ we denote <ψ1, . . . , ψ̂j , . . . , ψh>(d) =<Ψ \ {ψj}>(d).
Moreover, when there will be no ambiguity about the reference set Φ we will
denote by <ψ̂1, ψ̂2, . . . , ψ̂h>(d) the orbit <Φ \ Ψ>(d).

1 Given two involutions αi, αj and one dart d, the expression dαiαj denotes αj ◦αi(d).
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Fig. 1. (a) A 2-G-map. (b) A solid representation of a part of a 3-G-map where a
vertex has a local degree 2 but is not regular. (The vertex is made of all the depicted
darts.)

Definition 2 (Cells in n-G-maps [7]) Let G = (D, α0, . . . , αn) be an n-G-
map, n ≥ 1. Let us consider d ∈ D. The i-cell (or cell of dimension i) that con-
tains d is denoted by Ci(d) and defined by the orbit: Ci(d) =<α0, . . . , α̂i, . . . , αn>
(d).

Thus, the 2-G-map of Fig. 1(a) counts 2 vertices (v1 =<α1, α2>(1) = {1, 2}
and v2 = {−1, 3, 4,−4,−3,−2}), 2 edges (e1 =< α0, α2 > (1) = {1,−1, 2,−2}
and e2 = {3, 4,−3,−4}), and 2 faces (the one bounded by e2 and the outer one).

Definition 3 (n-map [7]) An n-map (n ≥ 1) is defined as an (n + 1)-tuple
M = (D, γ0, . . . , γn−1) such that:

– D is a finite non-empty set of darts;
– γ0, . . . γn−2 are involutions on D and γn−1 is a permutation on D such that

∀i ∈ {0, . . . , n − 2}, ∀j ∈ {i + 2, . . . , n}, γiγj is an involution.

The dual of M , denoted by M , is the n-map M = (D, γ0, γ0γn−1, . . . , γ0γ1).
The inverse of M , denoted by M−1 is defined by M−1 = (D, γ0, . . . , γn−2, γ

−1
n−1).

Note that Damiand and Lienhardt introduced a definition of n-map as an (n+1)-
tuple (D, βn, . . . , β1) defined as the inverse of the dual of our map M . If we forget
the inverse relationships (which only reverses the orientation), we have γ0 = βn

and βi = γ0γi for i ∈ {1, . . . , n − 1}. The application β1 is the permutation of
the map while (βi)i∈{2,...,n} defines its involutions.

Definition 4 (Cells in n-maps [7]) Let M = (D, γ0, . . . , γn−1) be an n-map,
n ≥ 1. The i-cell (or cell of dimension i) of M that owns a given dart d ∈ D is
denoted by Ci(d) and defined by the orbits:

∀i ∈ {0, . . . , n − 1} Ci(d) = < γ0, . . . , γ̂i, . . . , γn−1 > (d)
For i = n Cn(d) = < γ0γ1, . . . , γ0γn−1 > (d)

In both an n-map and an n-G-map, two cells C and C
′ with different dimen-

sions will be called incident if C ∩ C
′ 6= ∅. Moreover, the degree of an i-cell C
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is the number of (i + 1)-cells incident to C, whereas the dual degree of C is the
number of (i−1)-cells incident to C. An n-cell (resp. a 0-cell) has a degree (resp.
dual degree) equal to 0.

2.1 From n-G-maps to maps and vice versa

An n-map may be associated to an n-G-map, as stated by the next definition.
In this paper, we use this direct link between the two structures to show that
the removal operation we introduce for maps is properly defined (Section 4). For
that purpose, we notably use the fact that a removal operation (as defined by
Damiand and Lienhardt [2]) in a G-map has a counterpart (according to our
definition) in its associated map and vice versa.

Definition 5 (Map of the hypervolumes) Let G = (D, α0, . . . , αn) be an n-
G-map, n ≥ 1. The n-map HV = (D, δ0 = αnα0, . . . , δn−1 = αnαn−1) is called
the map of the hypervolumes of G.

A connected component of a map (D, γ0, . . . , γn−1) is a set <γ0, . . . , γn−1>(d)
for some d ∈ D. Lienhardt [8] proved that if an n-G-map G is orientable, HV (G)
has two connected components. In the following we only consider orientable n-
G-maps.

Conversely, given an n-map, we may construct an orientable n-G-map that
represents the same partition of a quasi-manifold. Thus, we define below the
notion of an n-G-map associated to a given n-map (Definition 6). Lienhard [7,
Theorem 4] only stated the existence of such a G-map; we provide here an explicit
construction scheme that will be used in Section 4.

Definition 6 Let M = (D, γ0, . . . , γn−1) be an n-map. We denote by AG(M)
the (n + 1)-tuple (D̃ = D ∪ D′, α0, α1, . . . , αn) where D′ is a finite set with the
same cardinal as D such that D∩D′ = ∅, and the involutions αi, 0 ≤ i ≤ n, are
defined by:

dαi d ∈ D d ∈ D′

i < n − 1 dγiσ dσ−1γi

i = n − 1 dγ−1
n−1σ dσ−1γn−1

i = n dσ dσ−1

where σ is a one-to-one correspondence between D and D′.

As stated by [4, Proposition 7] the (n + 1)-tuple AG(M) is actually an n-G-
map. Furthermore, given an n-map M = (D, γ0, . . . , γn−1), if D′ is a connected
components of M , the (n + 1)-tuple (D′, γ0|D′ , . . . , γn−1|D′) is an n-map [4, Re-

mark 3], which is called the sub-map of M induced by D′, denoted by M|D′ .
Finally, the following proposition establishes the link between the HV and AG
operations.

Proposition 1 If M is an n-map, we have M = HV (AG(M))|D where D is
the set of darts of M .
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3 Cells removal in n-G-maps

As the number of (i + 1)-cells that are incident to it, the degree of an i-cell C

in an n-G-map G = (D, α0, . . . , αn) is the number of sets in the set ∆ =
{

<

α̂i+1 > (d)
∣

∣ d ∈ C
}

. As part of a criterion for cells that may be removed from a
G-map, we need a notion of degree that better reflects the local configuration of
a cell: the local degree. A more precise justification for the following definition
may be found in [4].

Definition 7 (Local degree in G-maps) Let C be an i-cell in an n-G-map.

– For i ∈ {0, . . . , n − 1}, the local degree of C is the number

∣

∣

{

<α̂i, α̂i+1>(b)
∣

∣ b ∈ C
}
∣

∣

– For i ∈ {1, . . . , n}, the dual local degree of C is the number

∣

∣

{

<α̂i−1, α̂i>(b)
∣

∣ b ∈ C
}
∣

∣

The local degree (resp. the dual local degree) of an n-cell (resp. a 0-cell) is 0.

Intuitively, the local degree of an i-cell C is the number of (i + 1)-cells that
locally appear to be incident to C. It is called local because it may be different
from the degree since an (i+1)-cell may be incident more than once to an i-cell,
as illustrated in Fig. 1 where the 1-cell e2 is multi-incident to the 0-cell v2, hence
the cell v2 has a degree 2 and a local degree 3.

On the other hand, the dual local degree of an i-cell C is the number of
(i − 1)-cells that appear to be incident to C. As in the example given in Fig. 1
where the edge e2 locally appears to be bounded by two vertices2, whereas the
darts defining this edge all belong to a unique vertex (v2). Hence, e2 has a dual
degree 1 and a dual local degree 2. and a dual local degree 2.

In [5, 6], Grasset defines an i-cell with local degree 2 (0 ≤ i ≤ n− 2) as a cell
C such that for all b ∈ C, bαi+1αi+2 = bαi+2αi+1, and an i-cell with dual local
degree 2 (2 ≤ i ≤ n) as a cell C such that for all b ∈ C, bαi−1αi−2 = bαi−2αi−1.
In fact, Grasset’s definition does not actually distinguish cells with local degree
1 from cells with local degree 2, so that the vertex v1 in the 2-G-map of Fig. 1 is
considered as removable, yielding the loop (−1,−2) after removal. On the other
hand, it is also more restrictive then our definition for a cell with local degree 2
(Definition 7). As an example, the vertex depicted in Fig. 1(b) has local degree
2 but does not satisfy the above mentioned criterion.

However, Grasset’s definition was merely intended to characterize cells that
could be removed from a G-map, producing a valid new G-map, following the
works of Damiand and Lienhardt [2] where the term “degree equal to 2” is
actually used with quotes. To that extend, it is a good criterion [3, Theorem 2]
but again not a proper definition for cells with local degree 2.

2 It is always the case for an (n − 1)-cell.
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Grasset’s criterion is in fact a necessary but not sufficient condition to prevent
the production of a degenerated G-map after a removal operation, like in the
case of the removal of a vertex with local degree 1 (v1 in Fig. 1). We introduce
here our own criterion based on the proper notion of local degree and a notion
of regularity introduced below. This criterion is proved to be equivalent to a
corrected version of Grasset’s condition (Theorem 1). We first introduce the
notion of a regular cell.

Definition 8 (Regular cell) An i-cell (i ≤ n − 2) in an n-G-map is said to
be regular if it satisfies the two following conditions:

a) ∀d ∈ C, dαi+1αi+2 = dαi+2αi+1 or dαi+1αi+2 6∈< α̂i, α̂i+1 > (dαi+2αi+1),
and

b) ∀b ∈ C, bαi+1 /∈<α̂i, α̂i+1>(b)

Cells of dimension n − 1 are defined as regular cells too.

Thus, the vertex depicted in Fig. 1(b) is a 0-cell (with local degree 2) in a 3-
G-map which is not regular. Grasset et al.’s criterion prevents this configuration
from being considered as a removable vertex, although it is indeed a vertex
with local degree 2 according to our definition. Eventually, the link between
the criterion used in [2, 5] and our definitions is summarized by the following
theorem where condition i) excludes cells with local degree 1.

Theorem 1 For any i ∈ {0, . . . , n − 2}, an i-cell C is a regular cell with local
degree 2 if and only if

i) ∃b ∈ C, bαi+1 /∈< α̂i, α̂i+1 > (b), and
ii) ∀b ∈ C, bαi+1αi+2 = bαi+2αi+1

Note that, under a local degree 2 assumption, both conditions (a) and (b) of
Definition 8 are used to show condition ii). We thus do not have i) ⇔ b) and
ii) ⇔ a).

In order to define simultaneous removal of cells in a G-map G (resp. in a
map M), we will consider families of sets of the form Sr = {Ri}0≤i≤n, where Ri

is a set of i-cells and Rn = ∅. The family Sr is called a removal set in G (resp.
in M). We will denote R = ∪n

i=0Ri, the set of all cells of Sr, and R∗ = ∪C∈RC,
the set of all darts in Sr. If D′ is a connected component of G (resp. M), we
denote by Sr |D the removal set that contains all the cells of Sr included in D′.
The following definition characterizes particular removal sets that actually may
be removed from an n-G-map, resulting in a valid map.

Definition 9 (Removal kernel) Let G be an n-G-map. A removal kernel Kr =
{Ri}0≤i≤n in G is a removal set such that all cells of R are disjoint and all of
them are regular cells with local degree 2 (Definitions 8 and 7).

We provide the following definition which is slightly simpler and proved to
be equivalent [4, Proposition 12] to the one used in [2, 3, 6].
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Definition 10 (Cells removal in n-G-maps) Let G = (D, α0, . . . , αn) be an
n-G-map and Kr = {Ri}0≤i≤n−1 be a removal kernel in G. The n-G-map re-
sulting of the removal of the cells of R is G′ = (D′, α′

0, . . . , α
′
n) where:

1. D′ = D \ R∗;
2. ∀d ∈ D′, dα′

n = dαn;
3. ∀i, 0 ≤ i < n, ∀d ∈ D′, dα′

i = d′ = d(αiαi+1)
kαi where k is the smallest

integer such that d′ ∈ D′.

We denote G′ = G \ Kr or G′ = G \ R∗.

4 Cells removal in n-maps

In this section we define an operation of simultaneous removal of cells in an
n-map derived from the one given for n-G-maps in the previous section. The
link between the two operations is established by first showing that a removal
operation in an n-G-map G has its counterpart in the map of the hypervolumes
of G (Eq. (1)). Furthermore, we also prove indirectly that the map resulting
from a removal operation is a valid map (Theorem 2).

As for G-maps, we need a notion of local degree in a map.

Definition 11 (Local degree in maps) Let C be an i-cell in an n-map.

– The local degree of C is the number

|{< γ̂i, γ̂i+1 > (b) | b ∈ C}| if i ∈ {0, . . . , n − 2}
|{< γ0γ1, . . . , γ0γn−2 > (b) | b ∈ C}| if i = n − 1

– The dual local degree of C is the number

|{< γ̂i, γ̂i−1 > (b) | b ∈ C}| for i ∈ {1, . . . , n − 1}
|{< γ0γ1, . . . , γ0γn−2 > (b) | b ∈ C}| for i = n

The local degree (resp. the dual local degree) of an n-cell (resp. a 0-cell) is 0.

We also define ([4, Definition 16]) a notion of regular cell in an n-map from the
same notion in G-maps (Definition 8). Now, we may introduce a key definition
of this paper: the simultaneous removal of a set of cells in an n-map.

Definition 12 (Cells removal in n-maps) Let M = (D, γ0, . . . , γn−1) be an
n-map and Sr = {Ri}0≤i≤n−1 a removal set in M . We define the (n − 1)-tuple
M \ Sr = (D′, γ′

0, . . . , γ
′
n−1) obtained after removal of the cells of Sr by:

– D′ = D \ R∗;
– ∀i ∈ {0, . . . , n − 2}, ∀d ∈ D′, dγ′

i = d(γiγ
−1
i+1)

kγi, where k is the smallest

integer such that d(γiγ
−1
i+1)

kγi ∈ D′.

– For i = n − 1, ∀d ∈ D′, dγ′
n−1 = dγk+1

n−1 where k is the smallest integer such

that dγk+1
n−1 ∈ D′.

7



Note that an equivalent definition in terms of (βi)i∈{1,...,n} (Section 2) is
provided in [4, Proposition 13].

We will prove in the sequel (Theorem 2) that the such defined (n − 1)-tuple
M \Sr is an n-map if Sr is a removal kernel (Definition 14), this by establishing
the link between removal in n-maps and removal in n-G-maps.

Definition 13 Let G be an n-G-map, Sr = {Ri}0≤i≤n be a removal set in G,
and M = HV (G). We define the set HV (Sr) = {R′

i}0≤i≤n as follows:

– ∀i ∈ {0, . . . , n − 1}, R′
i =

{

<αnα0, . . . , ˆαnαi, . . . , αnαn−1>(d)
∣

∣ d ∈ R∗
i

}

– R′
n =

{

<α0α1, . . . , α0αn−1>(d)
∣

∣ d ∈ R∗
n

}

The set HV (Sr) is a removal set in M ([4, Lemma 17]).

We proved ([4, Proposition 14]) that the removal operation introduced here
for n-maps produces a valid n-map when applied to the map of the hypervolumes
of a G-map. Formally, if G is an n-G-map and Kr is a removal kernel in G:

HV (G) \ HV (Kr) = HV (G \ Kr) (1)

so that the left term is a valid map.
It remains to be proved that the removal operation, when applied to any

n-map, produces a valid n-map. This is proved to be true (Theorem 2) as soon
as the cells to be removed constitute a removal kernel according to Definition 14.

Definition 14 (Removal kernel) Let M be an n-map. A removal kernel Kr =
{Ri}0≤i≤n in M is a removal set such that all cells of R are disjoint and all of
them are regular cells with local degree 2 ([4, Definition 16] and Definitions 11).

If M is an n-map and G = AG(M) with the notations of Definition 6, for
any i-cell C of M the set3 C ∪ Cσ (if i < n) or C ∪ Cγ0σ (if i = n) is an n-cell
of AG(M) [4, Proposition 7] called the associated cell of C in AG(M), denoted
by C̃. This definition of associated cell allows to directly define in AG(M) the
associated removal set of a removal kernel in M , which is proved to be a removal
kernel [4, Definition 24,Proposition 15].

We may now state the main result of this section.

Theorem 2 If M is an n-map and Kr is a removal kernel in M , the (n + 1)-
tuple M \ Kr (Definition 12) is a valid n-map.

Sketch of proof: With G̃ = AG(M), we have the following diagram:

M −−−−→ M
removal of Kr−−−−−−−−−→ M \ Kr





y

|D

x





|D

x





AG





y
HV (G̃)

removal of HV (K̃r)
−−−−−−−−−−−−→ HV (G̃) \ HV (K̃r)





y
HV

x




HV

x





G̃ −−−−→ G̃
removal of K̃r−−−−−−−−−→ G̃ \ K̃r

3 If σ : E −→ F and S ⊂ E, Sσ is the image of S by σ, namely Sσ =
˘

σ(d)
˛

˛ d ∈ S
¯

.
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Indeed, we have HV (G̃)|D = M by Proposition 1; hence the left part of the

diagram. If Kr is a removal kernel in M , then a removal kernel K̃r in G̃ may be
associated to Kr [4, Definition 24,Proposition 15]. Thus the bottom-right part of
the diagram holds by (1). Eventually, we have Kr = HV (K̃r)|D [4, Lemma 19],

and (HV (G̃)\HV (K̃r))|D = HV (G̃)|D\HV (K̃r)|D = M\Kr [4, Proposition 16],
hence the upper-right part of the diagram. Therefore, if we follow the sequence
of mappings

M
AG
−→ G̃

\K̃r

−→ G̃ \ K̃r
HV
−→ HV (G̃ \ K̃r)

|D
−→ M \ Kr

we deduce that M \ Kr is a valid n-map since G̃ = AG(M) is an n-G-map [4,
Proposition 7], therefore G̃ \ K̃r is an n-G-map [2, 3], hence HV (G̃ \ K̃r) is an
n-map [8], and finally HV (G̃ \ K̃r)|D, i.e. M \Kr, is an n-map [4, Remark 3]. ¤

5 Cells contraction in n-G-maps and n-maps

Definition 15 (Contraction kernel) Let G = (D, α0, . . . , αn) be an n-G-map
and Kc = {Ci}0≤i≤n be sets of i-cells with C0 = ∅, such that all cells of C =
∪n

i=0Ci are disjoint and regular cells with dual local degree 2. The family Kc is
called a contraction kernel in G. A contraction kernel is defined in a similar way
for an n-map M . (Recall that C∗

i =
⋃

c∈Ci
c and C∗ =

⋃

i∈{0,...,n} C∗
i .)

In this paper, we choose to define the contraction operation in G-maps as a
removal operation in the dual map (Definition 16) when Damiand and Lienhardt
[2] provided a definition close to the one they gave for the removal operation (see
Section 3).

Definition 16 (Cells contraction) Let G = (D, α0, . . . , αn) be an n-G-map
(resp. M = (D, γ0, . . . , γn−1) be an n-map) and Kc = {Ci}1≤i≤n be a contraction
kernel. The n-G-map (resp. n-map) resulting of the contraction of the cells of

Kc, which we denote G/Kc (resp. M/Kc) is the n-G-map G \ Kc (resp. the

n-map M \ Kc).

We proved [4, Proposition 22] that this definition is equivalent to the one
given by Damiand and Lienhardt about simultaneous removals and contractions
[2]. Not surprisingly, this definition also leads to a constructive description of
the G-map obtained after contraction of cells [4, Proposition 21] which is similar
to the definition given for the removal operation in an n-G-map (Definition 10).

Proposition 2 Let G = (D, α0, . . . , αn) be an n-G-map and Kc = {Ci}1≤i≤n

be a contraction kernel. The n-G-map resulting of the contraction of the cells of
C according to Definition 16 is G′ = (D′, α′

0, . . . , α
′
n) defined by:

1. D′ = D \ C;
2. ∀d ∈ D′, dα′

0 = dα0;
3. ∀i, 0 < i ≤ n, ∀d ∈ D′, dα′

i = d′ = d(αiαi−1)
kαi where k is the smallest

integer such that d′ ∈ D′.
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Moreover, if M is a map the tuple M/Kc is indeed a map as the dual of the
map M \Kc. Using the same approach as Proposition 2 we obtain an explicit con-
struction scheme for the contracted map [4, Proposition 24] (see Proposition 25
for the same result in terms of (βi)i∈{1,...,n}).

Proposition 3 Let M = (D, γ0, . . . , γn−1) be an n-map. Let Kc = {Ci}1≤i≤n

be a contraction kernel. The n-map obtained after contraction of the cells of Kc,
is the map M ′ = (D′ = D \ C, γ′

0, . . . , γ
′
n−1) where:

– ∀d ∈ D′, dγ′
0 = dγk

n−1γ0 where k is the smallest integer such that dγk
n−1γ0 ∈

D′;
– ∀i ∈ {1, . . . , n− 1}, ∀d ∈ D′, dγ′

i = dγk
n−1(γiγ

−1
i−1)

k′

γi, where k is the small-

est integer such that dγk
n−1 ∈ D′ and k′ is the smallest integer such that

dγk
n−1(γiγ

−1
i−1)

k′

γi ∈ D′.

6 Conclusion

Based on the previous work by Damiand and Lienhardt for generalized maps, we
have defined cells removal and contraction in n-dimensional combinatorial maps,
and proved the validity of such operations. A logical sequel of this paper will be
the definition of n-dimensional combinatorial pyramids and the related notions,
the way Brun and Kropatsch did in the two-dimensional case and following the
works of Grasset about pyramids of generalized maps.
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