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A first step toward combinatorial pyramids in nD spaces

Combinatorial maps define a general framework which allows to encode any subdivision of an nD orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of the objects (either shapes or partitions). Combinatorial pyramids have first been defined in 2D. This first work has later been extended to pyramids of nD generalized combinatorial maps. Such pyramids allow to encode stacks of non orientable partitions but at the price of a twice bigger pyramid. These pyramids are also not designed to capture efficiently the properties connected with orientation. The present work presents our first results on the design of a pyramid of nD combinatorial maps.

Introduction

Pyramids of combinatorial maps have first been defined in 2D [START_REF] Brun | Combinatorial pyramids[END_REF], and later extended to pyramids of n-dimensional generalized maps by Grasset et al. [START_REF] Grasset-Simon | nD generalized map pyramids: Definition, representations and basic operations[END_REF]. Generalized maps model subdivisions of orientable but also non-orientable quasimanifolds [START_REF] Lienhardt | Topological models for boundary representation: a comparison with n-dimensional generalized maps[END_REF] at the expense of twice the data size of the one required for combinatorial maps. For practical use (for example in image segmentation), this may have an impact on the efficiency of the associated algorithms or may even prevent their use. Furthermore, properties and constrains linked to the notion of orientation may be expressed in a more natural way with the formalism of combinatorial maps. For these reasons, we are interested here in the definition of pyramids of n-dimensional combinatorial maps. This paper is a first step toward the definition of such pyramids, and the link between our definitions and the ones that consider G-maps is maintained throughout the paper. In fact, the link between n-G-maps and n-maps was first established by Lienhardt [START_REF] Lienhardt | Topological models for boundary representation: a comparison with n-dimensional generalized maps[END_REF] so that it was claimed in [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF], but not explicitly stated, that pyramids of n-maps could be defined.

The key notion for the definition of pyramids of maps is the operation of simultaneous removal or contraction of cells. Thus, we define the operation of simultaneous removal and the one of simultaneous contraction of cells in an n-map, the latter being introduced here as a removal operation in the dual map.

We first raise in Section 3 a minor problem with the definition of "cells with local degree 2 in a G-map" used in [START_REF] Grasset-Simon | Définition et étude des pyramides généralisées nD : application pour la segmentation multi-echelle d'images 3[END_REF][START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF] and more precisely with the criterion for determining if a cell is a valid candidate for removal. We provide a formal definition of the local degree, which is consistent with the results established in previous papers [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF][START_REF] Grasset-Simon | nD generalized map pyramids: Definition, representations and basic operations[END_REF], using the notion of a regular cell that we introduce.

An essential result of this paper, presented in Section 4, is that the removal operation we introduce here is well defined since it indeed transforms a map into another map. Instead of checking that the resulting map satisfies from its very definition the properties of a map, we use an indirect proof by using the removal operation in G-maps defined by Damiand in [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF][START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF]. If needed, this way again illustrates the link between the two structures.

Eventually, in Section 5 we will state a definition of simultaneous contraction of cells in a G-map in terms of removals in the dual map, definition which we prove to be equivalent to the one given by Damiand and Lienhardt in [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF]. We finally define in the same way the simultaneous contraction operation in maps.

Note that the proofs of the results stated in this paper may be found in [START_REF] Fourey | A first step toward combinatorial pyramids in nD spaces[END_REF].

Maps and generalized maps in dimension n

An n-G-map is defined by a set of basic abstract elements called darts connected by (n + 1) involutions. More formally:

Definition 1 (n-G-map [7]) Let n ≥ 0, an n-G-map is defined as an (n + 2)- tuple G = (D, α 0 , . . . , α n ) where:
-D is a finite non-empty set of darts; -α 0 , . . . , α n are involutions on D (i.e. ∀i ∈ {0, . . . , n}, α 2 i (b) = b) such that: • ∀i ∈ {0, . . . , n -1}, α i is an involution without fixed point (i.e. ∀b ∈ D,

α i (b) = b); • ∀i ∈ {0, . . . , n -2}, ∀j ∈ {i + 2, . . . , n}, α i α j is an involution 1 .
The dual of G, denoted by G, is the n-G-map G = (D, α n , . . . , α 0 ). If α n is an involution without fixed point, G is said to be without boundaries or closed.

In the following we only consider closed n-G-maps with n ≥ 2.

Figure 1

(a) shows a 2-G-map G = (D, α 0 , α 1 , α 2 ) whose set of darts D is {1, 2, 3, 4, -1, -2, -3, -4}, with the involutions α 0 = (1, -1)(2, -2)(3, -3) (4, -4), α 1 = (1, 2)(-1, 3)(-2, -3)(4, -4), and α 2 = (1, 2)(-1, -2)(3, 4)(-3, -4).
Let Φ = {φ 1 , . . . , φ k } be a set of permutations on a set D. We denote by <Φ> the permutation group generated by Φ, i.e. the set of permutations obtained by any composition and inversion of permutations contained in Φ. The orbit of d ∈ D relatively to Φ is defined by < Φ>(d) = φ(d) φ ∈< Φ> . Furthermore, we extend this notation to the empty set by defining <∅> as the identity map.

If Ψ = {ψ 1 , . . . , ψ h } ⊂ Φ we denote < ψ 1 , . . . , ψj , . . . , ψ h >(d) =< Ψ \ {ψ j }>(d).
Moreover, when there will be no ambiguity about the reference set Φ we will denote by < ψ1 , ψ2 , . . . , ψh >(d) the orbit <Φ \ Ψ>(d). Thus, the 2-G-map of Fig. 1(a) counts 2 vertices (v

1 =<α 1 , α 2 >(1) = {1, 2} and v 2 = {-1, 3, 4, -4, -3, -2}), 2 edges (e 1 =< α 0 , α 2 > (1) = {1, -1, 2, -2}
and e 2 = {3, 4, -3, -4}), and 2 faces (the one bounded by e 2 and the outer one).

Definition 3 (n-map [START_REF] Lienhardt | Topological models for boundary representation: a comparison with n-dimensional generalized maps[END_REF]) An n-map (n ≥ 1) is defined as an (n + 1)-tuple M = (D, γ 0 , . . . , γ n-1 ) such that:

-D is a finite non-empty set of darts; -γ 0 , . . . γ n-2 are involutions on D and γ n-1 is a permutation on D such that ∀i ∈ {0, . . . , n -2}, ∀j ∈ {i + 2, . . . , n}, γ i γ j is an involution.

The dual of M , denoted by M , is the n-map M = (D, γ 0 , γ 0 γ n-1 , . . . , γ 0 γ 1 ). The inverse of M , denoted by M -1 is defined by M -1 = (D, γ 0 , . . . , γ n-2 , γ -1 n-1 ). Note that Damiand and Lienhardt introduced a definition of n-map as an (n+1)tuple (D, β n , . . . , β 1 ) defined as the inverse of the dual of our map M . If we forget the inverse relationships (which only reverses the orientation), we have γ 0 = β n and β i = γ 0 γ i for i ∈ {1, . . . , n -1}. The application β 1 is the permutation of the map while (β i ) i∈{2,...,n} defines its involutions.

Definition 4 (Cells in n-maps [START_REF] Lienhardt | Topological models for boundary representation: a comparison with n-dimensional generalized maps[END_REF]) Let M = (D, γ 0 , . . . , γ n-1 ) be an n-map, n ≥ 1. The i-cell (or cell of dimension i) of M that owns a given dart d ∈ D is denoted by C i (d) and defined by the orbits:

∀i ∈ {0, . . . , n -1} C i (d) = < γ 0 , . . . , γi , . . . , γ n-1 > (d) For i = n C n (d) = < γ 0 γ 1 , . . . , γ 0 γ n-1 > (d)
In both an n-map and an n-G-map, two cells C and C ′ with different dimensions will be called incident if C ∩ C ′ = ∅. Moreover, the degree of an i-cell C is the number of (i + 1)-cells incident to C, whereas the dual degree of C is the number of (i -1)-cells incident to C. An n-cell (resp. a 0-cell) has a degree (resp. dual degree) equal to 0.

From n-G-maps to maps and vice versa

An n-map may be associated to an n-G-map, as stated by the next definition. In this paper, we use this direct link between the two structures to show that the removal operation we introduce for maps is properly defined (Section 4). For that purpose, we notably use the fact that a removal operation (as defined by Damiand and Lienhardt [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF]) in a G-map has a counterpart (according to our definition) in its associated map and vice versa.

Definition 5 (Map of the hypervolumes) Let G = (D, α 0 , . . . , α n ) be an n- G-map, n ≥ 1. The n-map HV = (D, δ 0 = α n α 0 , . . . , δ n-1 = α n α n-1 ) is called the map of the hypervolumes of G.
A connected component of a map (D, γ 0 , . . . , γ n-1 ) is a set <γ 0 , . . . , γ n-1 >(d) for some d ∈ D. Lienhardt [START_REF] Lienhardt | N-dimensional generalized combinatorial maps and cellular quasimanifolds[END_REF] proved that if an n-G-map G is orientable, HV (G) has two connected components. In the following we only consider orientable n-G-maps.

Conversely, given an n-map, we may construct an orientable n-G-map that represents the same partition of a quasi-manifold. Thus, we define below the notion of an n-G-map associated to a given n-map (Definition 6). Lienhard [START_REF] Lienhardt | Topological models for boundary representation: a comparison with n-dimensional generalized maps[END_REF]Theorem 4] only stated the existence of such a G-map; we provide here an explicit construction scheme that will be used in Section 4.

Definition 6 Let M = (D, γ 0 , . . . , γ n-1 ) be an n-map. We denote by AG(M ) the (n + 1)-tuple ( D = D ∪ D ′ , α 0 , α 1 , . . . , α n ) where D ′ is a finite set with the same cardinal as D such that D ∩ D ′ = ∅, and the involutions α i , 0 ≤ i ≤ n, are defined by:

dα i d ∈ D d ∈ D ′ i < n -1 dγ i σ dσ -1 γ i i = n -1 dγ -1 n-1 σ dσ -1 γ n-1 i = n dσ dσ -1
where σ is a one-to-one correspondence between D and D ′ .

As stated by [4, Proposition 7] the (n + 1)-tuple AG(M ) is actually an n-Gmap. Furthermore, given an

n-map M = (D, γ 0 , . . . , γ n-1 ), if D ′ is a connected components of M , the (n + 1)-tuple (D ′ , γ 0|D ′ , . . . , γ n-1 |D ′ ) is an n-map [4, Re- mark 3], which is called the sub-map of M induced by D ′ , denoted by M |D ′ .
Finally, the following proposition establishes the link between the HV and AG operations.

Proposition 1 If M is an n-map, we have M = HV (AG(M )) |D where D is the set of darts of M .

Cells removal in n-G-maps

As the number of (i + 1)-cells that are incident to it, the degree of an i-cell C in an n-G-map G = (D, α 0 , . . . , α n ) is the number of sets in the set ∆ = < αi+1 > (d) d ∈ C . As part of a criterion for cells that may be removed from a G-map, we need a notion of degree that better reflects the local configuration of a cell: the local degree. A more precise justification for the following definition may be found in [START_REF] Fourey | A first step toward combinatorial pyramids in nD spaces[END_REF].

Definition 7 (Local degree in G-maps) Let C be an i-cell in an n-G-map.
-For i ∈ {0, . . . , n -1}, the local degree of C is the number

< αi , αi+1 >(b) b ∈ C -For i ∈ {1, . . . , n}, the dual local degree of C is the number < αi-1 , αi >(b) b ∈ C
The local degree (resp. the dual local degree) of an n-cell (resp. a 0-cell) is 0.

Intuitively, the local degree of an i-cell C is the number of (i + 1)-cells that locally appear be incident to C. It is called local because it may be different from the degree since an (i + 1)-cell may be incident more than once to an i-cell, as illustrated in Fig. 1 where the 1-cell e 2 is multi-incident to the 0-cell v 2 , hence the cell v 2 has a degree 2 and a local degree 3.

On the other hand, the dual local degree of an i-cell C is the number of (i -1)-cells that appear to be incident to C. As in the example given in Fig. 1 where the edge e 2 locally appears to be bounded by two vertices2 , whereas the darts defining this edge all belong to a unique vertex (v 2 ). Hence, e 2 has a dual degree 1 and a dual local degree 2. and a dual local degree 2.

In [START_REF] Grasset-Simon | Définition et étude des pyramides généralisées nD : application pour la segmentation multi-echelle d'images 3[END_REF][START_REF] Grasset-Simon | nD generalized map pyramids: Definition, representations and basic operations[END_REF], Grasset defines an i-cell with local degree 2 (0 ≤ i ≤ n -2) as a cell C such that for all b ∈ C, bα i+1 α i+2 = bα i+2 α i+1 , and an i-cell with dual local degree 2 (2

≤ i ≤ n) as a cell C such that for all b ∈ C, bα i-1 α i-2 = bα i-2 α i-1 .
In fact, Grasset's definition does not actually distinguish cells with local degree 1 from cells with local degree 2, so that the vertex v 1 in the 2-G-map of Fig. 1 is considered as removable, yielding the loop (-1, -2) after removal. On the other hand, it is also more restrictive then our definition for a cell with local degree 2 (Definition 7). As an example, the vertex depicted in Fig. 1(b) has local degree 2 but does not satisfy the above mentioned criterion.

However, Grasset's definition was merely intended to characterize cells that could be removed from a G-map, producing a valid new G-map, following the works of Damiand and Lienhardt [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF] where the term "degree equal to 2" is actually used with quotes. To that extend, it is a good criterion [3, Theorem 2] but again not a proper definition for cells with local degree 2.

Grasset's criterion is in fact a necessary but not sufficient condition to prevent the production of a degenerated G-map after a removal operation, like in the case of the removal of a vertex with local degree 1 (v 1 in Fig. 1). We introduce here our own criterion based on the proper notion of local degree and a notion of regularity introduced below. This criterion is proved to be equivalent to a corrected version of Grasset's condition (Theorem 1). We first introduce the notion of a regular cell.

Definition 8 (Regular cell) An i-cell (i ≤ n -2) in an n-G-map is said to be regular if it satisfies the two following conditions:

a) ∀d ∈ C, dα i+1 α i+2 = dα i+2 α i+1 or dα i+1 α i+2 ∈< αi , αi+1 > (dα i+2 α i+1 ), and b) ∀b ∈ C, bα i+1 / ∈< αi , αi+1 >(b)
Cells of dimension n -1 are defined as regular cells too.

Thus, the vertex depicted in Fig. 1(b) is a 0-cell (with local degree 2) in a 3-G-map which is not regular. Grasset et al.'s criterion prevents this configuration from being considered as a removable vertex, although it is indeed a vertex with local degree 2 according to our definition. Eventually, the link between the criterion used in [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF][START_REF] Grasset-Simon | Définition et étude des pyramides généralisées nD : application pour la segmentation multi-echelle d'images 3[END_REF] and our definitions is summarized by the following theorem where condition i) excludes cells with local degree 1.

Theorem 1 For any i ∈ {0, . . . , n -2}, an i-cell C is a regular cell with local degree 2 if and only if i) ∃b ∈ C, bα i+1 / ∈< αi , αi+1 > (b), and ii) ∀b ∈ C, bα i+1 α i+2 = bα i+2 α i+1 Note that, under a local degree 2 assumption, both conditions (a) and (b) of Definition 8 are used to show condition ii). We thus do not have i) ⇔ b) and ii) ⇔ a).

In order to define simultaneous removal of cells in a G-map G (resp. in a map M ), we will consider families of sets of the form S r = {R i } 0≤i≤n , where R i is a set of i-cells and R n = ∅. The family S r is called a removal set in G (resp. in M ). We will denote R = ∪ n i=0 R i , the set of all cells of S r , and R * = ∪ C∈R C, the set of all darts in S r . If D ′ is a connected component of G (resp. M ), we denote by S r |D the removal set that contains all the cells of S r included in D ′ . The following definition characterizes particular removal sets that actually may be removed from an n-G-map, resulting in a valid map.

Definition 9 (Removal kernel) Let G be an n-G-map. A removal kernel K r = {R i } 0≤i≤n in G is a removal set such that all cells of R are disjoint and all of them are regular cells with local degree 2 (Definitions 8 and 7).

We provide the following definition which is slightly simpler and proved to be equivalent [START_REF] Fourey | A first step toward combinatorial pyramids in nD spaces[END_REF]Proposition 12] to the one used in [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF][START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF][START_REF] Grasset-Simon | nD generalized map pyramids: Definition, representations and basic operations[END_REF].

Definition 10 (Cells removal in n-G-maps) Let G = (D, α 0 , . . . , α n ) be an n-G-map and K r = {R i } 0≤i≤n-1 be a removal kernel in G. The n-G-map resulting of the removal of the cells of R is

G ′ = (D ′ , α ′ 0 , . . . , α ′ n ) where: 1. D ′ = D \ R * ; 2. ∀d ∈ D ′ , dα ′ n = dα n ; 3. ∀i, 0 ≤ i < n, ∀d ∈ D ′ , dα ′ i = d ′ = d(α i α i+1 ) k α i where k is the smallest integer such that d ′ ∈ D ′ . We denote G ′ = G \ K r or G ′ = G \ R * .

Cells removal in n-maps

In this section we define an operation of simultaneous removal of cells in an n-map derived from the one given for n-G-maps in the previous section. The link between the two operations is established by first showing that a removal operation in an n-G-map G has its counterpart in the map of the hypervolumes of G (Eq. ( 1)). Furthermore, we also prove indirectly that the map resulting from a removal operation is a valid map (Theorem 2).

As for G-maps, we need a notion of local degree in a map.

Definition 11 (Local degree in maps) Let C be an i-cell in an n-map.

-The local degree of C is the number

|{< γi , γi+1 > (b) | b ∈ C}| if i ∈ {0, . . . , n -2} |{< γ 0 γ 1 , . . . , γ 0 γ n-2 > (b) | b ∈ C}| if i = n -1 -The dual local degree of C is the number |{< γi , γi-1 > (b) | b ∈ C}| for i ∈ {1, . . . , n -1} |{< γ 0 γ 1 , . . . , γ 0 γ n-2 > (b) | b ∈ C}| for i = n
The local degree (resp. the dual local degree) of an n-cell (resp. a 0-cell) is 0.

We also define ([4, Definition 16]) a notion of regular cell in an n-map from the same notion in G-maps (Definition 8). Now, we may introduce a key definition of this paper: the simultaneous removal of a set of cells in an n-map.

Definition 12 (Cells removal in n-maps) Let M = (D, γ 0 , . . . , γ n-1 ) be an n-map and S r = {R i } 0≤i≤n-1 a removal set in M . We define the (n -1)-tuple

M \ S r = (D ′ , γ ′ 0 , . . . , γ ′ n-1
) obtained after removal of the cells of S r by:

-D ′ = D \ R * ; -∀i ∈ {0, . . . , n -2}, ∀d ∈ D ′ , dγ ′ i = d(γ i γ -1 i+1 ) k γ i , where k is the smallest integer such that d(γ i γ -1 i+1 ) k γ i ∈ D ′ . -For i = n -1, ∀d ∈ D ′ , dγ ′ n-1 = dγ k+1 n-1
where k is the smallest integer such that dγ k+1 n-1 ∈ D ′ .

Note that an equivalent definition in terms of (β i ) i∈{1,...,n} (Section 2) is provided in [START_REF] Fourey | A first step toward combinatorial pyramids in nD spaces[END_REF]Proposition 13].

We will prove in the sequel (Theorem 2) that the such defined (n -1)-tuple M \ S r is an n-map if S r is a removal kernel (Definition 14), this by establishing the link between removal in n-maps and removal in n-G-maps.

Definition 13 Let G be an n-G-map, S r = {R i } 0≤i≤n be a removal set in G, and M = HV (G). We define the set HV (S r ) = {R ′ i } 0≤i≤n as follows:

-∀i ∈ {0, . . . , n -1}, R ′ i = <α n α 0 , . . . , αn α i , . . . , α n α n-1 >(d) d ∈ R * i -R ′ n = <α 0 α 1 , . . . , α 0 α n-1 >(d) d ∈ R * n
The set HV (S r ) is a removal set in M ([4, Lemma 17]).

We proved ([4, Proposition 14]) that the removal operation introduced here for n-maps produces a valid n-map when applied to the map of the hypervolumes of a G-map. Formally, if G is an n-G-map and K r is a removal kernel in G:

HV (G) \ HV (K r ) = HV (G \ K r ) (1) 
so that the left term is a valid map. It remains to be proved that the removal operation, when applied to any n-map, produces a valid n-map. This is proved to be true (Theorem 2) as soon as the cells to be removed constitute a removal kernel according to Definition 14. We may now state the main result of this section.

Theorem 2 If M is an n-map and K r is a removal kernel in M , the (n + 1)tuple M \ K r (Definition 12) is a valid n-map.

Sketch of proof:

With G = AG(M ), we have the following diagram: In this paper, we choose to define the contraction operation in G-maps as a removal operation in the dual map (Definition 16) when Damiand and Lienhardt [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF] provided a definition close to the one they gave for the removal operation (see Section 3).

M ----→ M removal of Kr ---------→ M \ K r   |D   |D   AG   HV ( G) removal of HV ( Kr) ------------→ HV ( G) \ HV ( Kr )   HV   HV   G ----→ G removal of Kr ---------→ G \ Kr
M AG -→ G \ Kr -→ G \ Kr HV -→ HV ( G \ Kr ) |D -→ M \ K r we deduce that M \ K r is a valid n-map since G = AG(M ) is an n-G-map [4, Proposition 7 
Definition 16 (Cells contraction) Let G = (D, α 0 , . . . , α n ) be an n-G-map (resp. M = (D, γ 0 , . . . , γ n-1 ) be an n-map) and K c = {C i } 1≤i≤n be a contraction kernel. The n-G-map (resp. n-map) resulting of the contraction of the cells of K c , which we denote G/K c (resp. M/K c ) is the n-G-map G \ K c (resp. the n-map M \ K c ).

We proved [START_REF] Fourey | A first step toward combinatorial pyramids in nD spaces[END_REF]Proposition 22] that this definition is equivalent to the one given by Damiand and Lienhardt about simultaneous removals and contractions [START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF]. Not surprisingly, this definition also leads to a constructive description of the G-map obtained after contraction of cells [START_REF] Fourey | A first step toward combinatorial pyramids in nD spaces[END_REF]Proposition 21] which is similar to the definition given for the removal operation in an n-G-map (Definition 10). Moreover, if M is a map the tuple M/K c is indeed a map as the dual of the map M \K c . Using the same approach as Proposition 2 we obtain an explicit construction scheme for the contracted map [4, Proposition 24] (see Proposition 25 for the same result in terms of (β i ) i∈{1,...,n} ).

Proposition 3 Let M = (D, γ 0 , . . . , γ n-1 ) be an n-map. Let K c = {C i } 1≤i≤n be a contraction kernel. The n-map obtained after contraction of the cells of K c , is the map M ′ = (D ′ = D \ C, γ ′ 0 , . . . , γ ′ n-1 ) where: -∀d ∈ D ′ , dγ ′ 0 = dγ k n-1 γ 0 where k is the smallest integer such that dγ k n-1 γ 0 ∈ D ′ ; -∀i ∈ {1, . . . , n -1}, ∀d ∈ D ′ , dγ ′ i = dγ k n-1 (γ i γ -1 i-1 ) k ′ γ i , where k is the smallest integer such that dγ k n-1 ∈ D ′ and k ′ is the smallest integer such that dγ k n-1 (γ i γ -1 i-1 ) k ′ γ i ∈ D ′ .

Conclusion

Based on the previous work by Damiand and Lienhardt for generalized maps, we have defined cells removal and contraction in n-dimensional combinatorial maps, and proved the validity of such operations. A logical sequel of this paper will be the definition of n-dimensional combinatorial pyramids and the related notions, the way Brun and Kropatsch did in the two-dimensional case and following the works of Grasset about pyramids of generalized maps.
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 1 Fig. 1. (a) A 2-G-map. (b) A solid representation of a part of a 3-G-map where a vertex has a local degree 2 but is not regular. (The vertex is made of all the depicted darts.)
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  ], therefore G \ Kr is an n-G-map[START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF][START_REF] Damiand | Removal and contraction for n-dimensional generalized maps[END_REF], hence HV ( G \ Kr ) is an n-map[START_REF] Lienhardt | N-dimensional generalized combinatorial maps and cellular quasimanifolds[END_REF], and finally HV ( G \ Kr ) |D , i.e. M \ K r , is an n-map [4, Remark 3].5 Cells contraction in n-G-maps and n-mapsDefinition 15 (Contraction kernel) Let G = (D, α 0 , . . . , α n ) be an n-G-map and K c = {C i } 0≤i≤n be sets of i-cells with C 0 = ∅, such that all cells of C = ∪ n i=0 C i are disjoint and regular cells with dual local degree 2. The family K c is called a contraction kernel in G. A contraction kernel is defined in a similar way for an n-map M . (Recall that C * i = c∈Ci c and C * = i∈{0,...,n} C * i .)

Proposition 2

 2 Let G = (D, α 0 , . . . , α n ) be an n-G-map and K c = {C i } 1≤i≤n be a contraction kernel. The n-G-map resulting of the contraction of the cells of C according to Definition 16 is G ′ = (D ′ , α ′ 0 , . . . , α ′ n ) defined by:1. D ′ = D \ C; 2. ∀d ∈ D ′ , dα ′ 0 = dα 0 ; 3. ∀i, 0 < i ≤ n, ∀d ∈ D ′ , dα ′ i = d ′ = d(α i α i-1 ) k α iwhere k is the smallest integer such that d ′ ∈ D ′ .

Given two involutions αi, αj and one dart d, the expression dαiαj denotes αj •αi(d).

It is always the case for an (n -1)-cell.

If σ : E -→ F and S ⊂ E, Sσ is the image of S by σ, namely Sσ = ˘σ(d) ˛d ∈ S ¯.