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Abstract

The Helmholtz equation governing wave propagation and scattering phenomena
is difficult to solve numerically. Its discretization with piecewise linear finite
elements results in typically large linear systems of equations. The inherently
parallel domain decomposition methods constitute hence a promising class of
preconditioners. An essential element of these methods is a good coarse space.
Here, the Helmholtz equation presents a particular challenge, as even slight
deviations from the optimal choice can be devastating.

In this paper, we present a coarse space that is based on local eigenproblems
involving the Dirichlet-to-Neumann operator. Our construction is completely
automatic, ensuring good convergence rates without the need for parameter tun-
ing. Moreover, it naturally respects local variations in the wave number and is
hence suited also for heterogeneous Helmholtz problems. The resulting method
is parallel by design and its efficiency is demonstrated on 2D homogeneous and
heterogeneous numerical examples.

Keywords: Helmholtz equation, domain decomposition, coarse space,
Dirichlet-to-Neumann operator

1. Introduction

The Helmholtz equation

−∆u− k2u = f (1)

with suitable boundary conditions and wave number k > 0 governs wave prop-
agation and scattering phenomena arising in a wide range of engineering ap-
plications, such as aeronautics, underwater acoustics, and geophysical seismic
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imaging. Its discretization with piecewise linear finite elements results for large
wave number k in an indefinite, ill-conditioned linear system of equations. In-
definiteness could be avoided using a non-standard variational formulation [1].
The number of grid points grows rapidly with k in order to maintain accuracy
and to avoid the pollution effect [2]. As the linear system of equations is hard
to solve for iterative methods [3, 4], carefully designed methods are necessary.

There has been a vast amount of research on this topic, including incomplete
factorization methods [5–8] and the “sweeping preconditioner” [9]. Precondi-
tioning with a shifted, easier problem has been considered e.g. in [10, 11]. The
problems encountered when multigrid methods are applied to the Helmholtz
equation have been analyzed in detail [12, 13]. Particularly interesting is the
wave-ray multigrid [12], where special levels based on plane waves that lie in
the kernel of the homogeneous, continuous Helmholtz operator are introduced,
designed to represent the oscillatory part of the solution.

In this work, we concentrate on domain decomposition methods (DDMs), see
e.g. [14]. As the systems of linear equations resulting from the discretization of
Problem (1) are typically large, these methods constitute due to their inherent
parallelism an interesting class of preconditioners. DDMs have two main ingredi-
ents: the transmission conditions, specifying the information exchange between
neighboring subdomains and the coarse space, allowing for global transfer of in-
formation. Unfortunately, classical choices for either of these two parts are not
effective for the Helmholtz equation. This led to the development of specially
adapted methods, for a numerical comparison see [15].

Early work on transmission conditions for the Helmholtz equation was done
in [16], where a first order approximation to the Sommerfeld radiation condition
is employed. In the sequel, different, more advanced techniques have been used;
including PML at the interfaces [17–19], non-local transmission conditions [20],
optimized Schwarz methods [21], and others, e.g. [22].

Originally used in the multigrid context [12], plane waves have been success-
fully employed also as coarse space basis functions for DDMs. Their evaluation
at the subdomains’ interfaces are used in the FETI(-DP)-H methods [23, 24].
Later, they have also been used in other DDMs [25, 26] and as deflation vectors
[27]. Plane waves, to our knowledge, have been employed mainly for homoge-
neous problems; the extension to heterogeneous ones is not obvious.

In this paper, we concentrate on the development of a coarse space for a
restricted additive Schwarz method. We adapt an idea for elliptic problems
where the coarse space is based on local functions, the solutions of eigenproblems
involving the Dirichlet-to-Neumann operator on the subdomains’ interfaces [28,
29]. Our coarse space is robust with respect to heterogeneous coefficients and
its construction is completely automatic, refraining from the need for parameter
tuning. The latter feature is crucial for indefinite problems as in contrast to the
elliptic case, even slight deviations from the optimal choice can be fatal [30].

The paper is organized as follows. The Helmholtz equation is introduced in
Sec. 2, the two-level DDM in Sec. 3. In Sec. 4, we motivate and define our
coarse space. Emphasis is put on the development of a criterion for choosing
the coarse space size automatically. Sec. 5 elaborates on the effect the second
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level has on spectrum and convergence rates. In Sec. 6, we test the DtN coarse
space numerically and compare it to the standard one based on plane waves.

2. Helmholtz equation and discretization

We are interested in the interior Helmholtz problem of the following form:
Let Ω ⊂ Rd, d = 2, 3, be a polygonal, bounded domain. Find u : Ω→ C s.t.

−∆u− k2u = f in Ω, (2a)

u = 0 on ΓD, (2b)

∂u

∂n
+ ıku = 0 on ΓR, (2c)

where ΓD ∪ ΓR = Γ := ∂Ω is a disjoint partition of ∂Ω. We abbreviate the
boundary conditions in the form C(u) = 0 on Γ. The wave number k is given
by k(~x) = ω/c(~x), where ω is the angular frequency and c is the speed of prop-
agation that might depend on ~x ∈ Ω. Equation (2c) is designed to approximate
an unbounded domain and is a first order approximation of the Sommerfeld
radiation condition, c.f. [31].

For H1(Ω) the usual Sobolev space of order 1 on Ω, the variational formu-
lation of Problem (2) is: Find u ∈ V :=

{
u ∈ H1(Ω) : u = 0 on ΓD

}
s.t.

a(u, v) = F (v) ∀v ∈ V, (3)

where a(., .) : V × V → C and F : V → C are defined by

a(u, v) =

∫
Ω

(
∇u∇v − k2uv

)
dx+

∫
ΓR

ıkuv ds, F (v) =

∫
Ω

fv dx.

It is well-posed if ΓR 6= ∅, c.f. [32, Chapter 2]. We consider a discretization of
the variational problem (3) using piecewise linear finite elements on a uniform
triangular mesh Th of Ω. Denoting by Vh ⊂ V the corresponding finite element
space, it reads: Find uh ∈ Vh such that

a(uh, vh) = F (vh) ∀vh ∈ Vh. (4)

With {φk}nk=1 the nodal linear finite element basis for Vh, n := dim(Vh), we
rewrite (4) in matrix form:

A~u = ~f, (5)

where the coefficients of the stiffness matrix A ∈ Cn×n and the right-hand side
~f ∈ Cn are given by Ak,l = a(φl, φk) and ~fk = F (φk). The resulting matrix
is indefinite and without the Sommerfeld boundary condition possibly singular.
It is complex symmetric when ΓR 6= ∅.
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3. Two-level restricted additive Schwarz method

This section defines the domain decomposition method (DDM) that we use
as a preconditioner for the Helmholtz equation (5). It is a two-level restricted
additive Schwarz (RAS) method [14] with suitable transmission conditions.

We partition the domain Ω into a set of non-overlapping subdomains {Ω′j}Nj=1

resolved by the mesh Th. The overlapping subdomains Ωj are then defined by
adding one or several layers of mesh elements to Ω′j in the following sense:

Definition 3.1. Given a subdomain D′ ⊂ Ω, which is resolved by the finite
element mesh Th, the extension D of D′ by one layer of elements is

D = Int

 ⋃
supp(φk)∩D′ 6=∅

supp(φk)

 ,

where Int(·) denotes the interior of a domain. Extensions by more than one
layer are defined recursively.

This gives an overlapping partition {Ωj} of Ω. Let Vh(Ωj) =
{
v|Ωj : v ∈ Vh

}
,

1 ≤ j ≤ N, denote the space of functions in Vh restricted to the subdomain Ωj .
Let n := |dof(Ω)| and nj := |dof (Ωj)|, 1 ≤ j ≤ N , where for D ⊆ Ω we define
dof(D) :=

{
k : supp (φk) ⊂ D

}
.

For 1 ≤ j ≤ N , we define a restriction operator Rj : Vh → Vh(Ωj) by
injection, i.e. for u ∈ Vh we set (Rju) (~xi) = u(~xi) for all ~xi ∈ Ωj . We denote
the corresponding matrix in Rnj×n that maps coefficient vectors of functions
in Vh to coefficient vectors of functions in Vh(Ωj) by Rj . Let Dj ∈ Rnj×nj
be a diagonal matrix corresponding to a partition of unity in the sense that∑N
i=1 R̃

T
i Ri = I, where R̃j := DjRj . Then the RAS preconditioner reads

M−1 :=

N∑
j=1

R̃Tj A
−1
j Rj . (6)

It remains to define the subdomain matrices Aj . With the classical choice
Aj = RjAR

T
j , frequencies in the error smaller than the wave number k are

not damped [21]. This might cause slow convergence or even stagnation of the
iterative method. Therefore, we define the matrices in Aj in (6) to be the
stiffness matrices of the local Robin problems [16, 33](

−∆− k2
)

(ui) = f in Ωi,

C (ui) = 0 on ∂Ω ∩ ∂Ωi,(
∂

∂ni
+ ık

)
(ui) = 0 on ∂Ωi \ ∂Ω.

More advanced techniques such as optimized boundary conditions [34] are also
possible, but not considered here.

4



DDMs as above do not show convergence rates independent of the number
of subdomains [14]. In order to achieve independence, one possibility is to add a
coarse space to the iteration procedure (6) via the balancing Neumann-Neumann
(BNN) method [35]. For non-symmetric systems, it reads [36]:

PBNN = QM−1P + ZE−1Y †, (7)

where † denotes the conjugate transpose, M−1 is the one-level preconditioner
(6), Z and Y are rectangular matrices with full column rank, E = Y †AZ is
the coarse grid matrix, Ξ = ZE−1Y † is the coarse grid correction matrix, and
P = I − AΞ and Q = I − ΞA are projection matrices. We only consider the
case Z = Y and will define Z in Sec. 4.

Following this notation, Z implicitly defines what is called the coarse space
W , i.e. the columns of Z represent the basis vectors of W . The choice of
Z, and hence of the coarse space W itself, influence the convergence speed
of the resulting two-level method (7) significantly. For indefinite systems, the
correctness of the coarse space is especially important, as, contrarily to the
elliptic case, any deviation from the optimal setting might be fatal, c.f. Sec. 5.1
and [30]. Hence particular emphasis has to be put on the design of W .

4. Dirichlet-to-Neumann coarse space for the Helmholtz equation

Whereas for certain elliptic problems choices of the coarse space W are
known that turn one-level DDMs into optimal solvers with subdomain indepen-
dent convergence rates [14], for the Helmholtz problem the situation is much
more complicated. Various approaches can be found in the literature that aim
at designing efficient two-level methods [12, 23–27], often using plane waves as
basis functions for the coarse space. Although very elegant by design, this con-
struction does not cover the case of varying coefficients and requires an a priori
choice of certain parameters. Here, we therefore aim at constructing a coarse
space with the following properties: On the one hand, for constant coefficients
it behaves similarly as the one based on plane waves. On the other hand, it is
also efficient for heterogeneous coefficients and can be constructed in an auto-
matic, parameter-free fashion. The construction is based on local eigenproblems
involving the Dirichlet-to-Neumann operator (DtN), c.f. [29].

4.1. What should the coarse space look like?

As a first step towards the design of the coarse space W , we investigate
numerically the properties that it should have. While Fourier analysis detects
the flaws of the one-level method (6) in a simplified setting [37], we here aim at
getting a better understanding of how the coarse space should be designed by
looking at the functions that it contains in the optimal case directly.

To compute the optimal coarse space functions, we solve the eigenproblem

Find (vi, λi) ∈ Cn × C, 1 ≤ i ≤ n, such that
(
I −M−1A

)
vi = λivi, (8)

5



(a) Re (v1) (b) Re (v2) (c) Re (v3) (d) Re (v4)

Figure 1: Real part of optimal coarse space function vi associated to eigenvalue λi, |λi| ≥
|λi+1| for all i, of (8) on Ω. 5× 5 subdomains, nloc = 40, k = 29.3.

(a) nloc = 40, k = 29.3 (b) nloc = 80, k = 46.5 (c) nloc = 160, k = 73.8

Figure 2: Real part of optimal coarse space function associated to largest eigenvalue of (8) on
central subdomain in a 5× 5 subdomain decomposition.

and then choose those functions vi for which the modulus of the associated
eigenvalue |λi| is maximal, since for these functions the preconditioner is not
efficient. Even though the vi are global functions, they have a subdomain struc-
ture that is introduced by the preconditioner M−1, see Figure 1. Moreover,
one can check numerically that they solve the local problems in the interior of
each subdomain away from the overlap. In Fig. 2, we show the dependence of
the optimal coarse space functions on the wave number. In accordance with
the results obtained with Fourier analysis [21, 37], for the RAS preconditioner
(6) with Robin transmission conditions, Fourier frequencies close to the wave
number k converge only slowly and hence should be present in the coarse space.

We conclude three guidelines for the design of the coarse space W : 1. Fourier
frequencies close to the wave number k are important. 2. In the interior of each
subdomain, the coarse space functions should lie in the kernel of the discrete
Helmholtz operator. 3. The structure of the optimal functions suggests a sub-
domain based construction, avoiding the need for global functions.

4.2. Definition of the coarse space based on the Dirichlet-to-Neumann operator

In this section, we introduce our coarse space for the Helmholtz equation. It
is based on eigenproblems involving local DtN maps and incorporates naturally
the possible heterogeneity in the wave number. The underlying idea originates
from work on elliptic problems [28, 29, 38]. This construction respects the main
principles outlined in Sec. 4.1: Apart from including all the important modes,
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in the interior of each subdomain the coarse functions lie in the kernel of the
Helmholtz operator and the construction is based on local problems only. The
latter makes it possible to construct the coarse space efficiently in parallel.

The coarse space functions are local functions that are eigenfunctions of the
DtN operator on the boundary of a subdomain. We first consider the continuous
formulation of the DtN eigenproblems. On each interface Γi := ∂Ωi \ ∂Ω we
solve the eigenproblem: Find (uΓi , λ) ∈ V (Γi)× C such that

DtNΩi (uΓi) = λuΓi . (9)

For the definition of the DtN operator, we need to extend a function from the
boundary of a subdomain to its interior:

Definition 4.1 (Helmholtz extension). Let D ⊂ Ω, let ΓD = ∂D \ ∂Ω. Let
vΓD : ΓD → C. The extension u : Ωi → C of v with respect to the Helmholtz
operator is defined by

−∆u− k2u = 0 in D,

C(u) = 0 on ∂Ω ∩ ∂D,
u = vΓD on ΓD.

The DtN operator is then defined as follows:

Definition 4.2 (Dirichlet-to-Neumann operator). Let D ⊂ Ω, let ΓD = ∂D \
∂Ω. Let vΓD : ΓD → C. Then

DtND (vΓD ) =
∂u

∂n

∣∣∣∣
ΓD

,

where u : D → C is the extension of vΓD in the sense of Def. 4.1.

We choose mi ∈ N eigenfunctions for each subdomain Ωi according to the
following criterion:

Criterion 4.3 (Choice of DtN eigenfunctions). On each subdomain Ωi, we
choose all eigenfunctions v of the DtN eigenproblem (9), for which the associated
eigenvalue λ satisfies

Re(λ) < ki.

Here ki := max~x∈Ωi k(~x) is the maximum wave number on Ωi. If no eigenvalue
satisfies this condition, the eigenvalue with smallest real part is chosen.

This criterion provides a way to automatically construct the coarse space W
without the need to tune its dimension, a crucial parameter for the convergence
of the two-level method. Numerical evidence that Criterion 4.3 has the desired
properties is provided in Sec. 4.3.

We proceed with the discrete formulation of the DtN eigenproblem and ex-

plain how to construct the matrix Z ∈ Cn×
∑N
j=1 mi spanning the coarse space.

The columns 1 +
∑i−1
j=1mj , . . . ,

∑i
j=1mj of Z are set to RTi Wi for 1 ≤ i ≤ N .
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Here Wi ∈ Cni×mi is a rectangular matrix associated to subdomain Ωi, which is
given by Algorithm 4.1. Z is a rectangular, block-diagonal matrix with blocks
Wi that may have overlapping rows due to the overlap in the domain decompo-
sition. We now define the single components of Algorithm 4.1.

Algorithm 4.1 Construction of the block Wi of the DtN coarse matrix.

1: Solve the discrete DtN eigenproblem (11) on subdomain Ωi.
2: Choose mi eigenvectors ~gki ∈ CnΓi , 1 ≤ k ≤ mi by the discrete analogue of

Criterion 4.3.
3: for k ← 1 to mi do
4: Compute the extension ~uki ∈ Cni of ~gki according to Def. 4.4.
5: end for
6: Define the matrix Wi ∈ Cni×mi as Wi :=

(
Di~u

1
i , . . . , Di~u

mi
i

)
.

For Line 1 of Algorithm 4.1, we need the discrete formulation of the DtN
eigenproblem (9): Let I and Γi be the sets of indices corresponding to the
interior and boundary degrees of freedom, respectively. Let nI and nΓi be their
cardinalities. We define ai : H1(Ωi)×H1(Ωi)→ R,

ai(v, w) =

∫
Ωi

(
∇v · ∇w − k2vw

)
dx.

Using the finite element basis {φk} for V (Ω), let A(i) be the coefficient matrix

of a Neumann boundary value problem on Ωi, A
(i)
kl = ai (φk, φl), with boundary

conditions defined by C on ∂Ωi ∩ ∂Ω. With the usual block notation, the sub-
scripts I and Γi for the matrices A and A(i) denote the entries of these matrices
associated to the respective degrees of freedom. Let

MΓi =

(∫
Γi

φkφl ds

)
k,l∈Γi

be the mass matrix on the interface of subdomain Ωi. The discrete formulation
of the eigenproblem (9) is [28]: For 1 ≤ i ≤ N find (~u, λ) ∈ CnΓi × C, s.t.(

A
(i)
ΓiΓi
−AΓiIA

−1
II AIΓi

)
~u = λMΓi~u. (11)

Now we define the extension operator required in Line 4 of Algorithm 4.1:

Definition 4.4 (Discrete Helmholtz extension). The extension of a vector ~g ∈
CnΓi defined on the interface Γi to all degrees of freedom on subdomain Ωi is

the vector ~u ∈ Cni given by ~u =
(
−A−1

II AIΓi~g, ~g
)T
.

Remark 4.5 (Singular extension). The extensions in definitions 4.1 and 4.4 might
give a (numerically) singular problem for subdomains that do not touch the
Robin boundary. As those problems are small and are solved directly, strategies
for singular systems such as QR decomposition can be employed.
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(a) v1 (b) v2 (c) v3 (d) v4 (e) v5

(f) v6 (g) v7 (h) v8 (i) v9 (j) v10

(k) v11 (l) v12 (m) v13 (n) v20 (o) v176

Figure 3: Some DtN eigenfunctions. 5× 5 subdomains, nloc = 40, k = 30.

4.3. How to choose the Dirichlet-to-Neumann coarse space functions

For indefinite systems as those arising from the Helmholtz equation, in con-
trast to the symmetric positive definite case, increasing the dimension of the
coarse space might lead to a deterioration of the convergence rates, c.f. Sec.
5.1 and [30]. An incorrect coarse space might hence be fatal, but it is difficult
to decide a priori which and how many modes are needed. Thus an appropri-
ate strategy for the coarse space construction is extremely important. In this
section, we justify and investigate the coarse space based on the DtN operator
introduced in Sec. 4.2 in detail and test Criterion 4.3.

For the tests, we take the setup described in Sec. 6.1 and Problem 1 from
Sec. 6.2. Let the domain Ω be decomposed into 5 × 5 subdomains, nloc = 40,
k = 30. All experiments in this section are based on this example for the ease
of presentation. The conclusions have however also been verified in modified
setups. Moreover, they are supported by the numerical experiments in Sec. 6.

We first examine which eigenfunctions of the DtN eigenproblem (11) are
important. The n = 176 eigenvalues on the central subdomain satisfy Re (λi) ≤
Re (λj) if i ≤ j, Re (λ5) < 0 < Re (λ6), and Re (λ12) < k < Re (λ13). We
show a few of the extensions to the interior of the subdomains of the associated
eigenvectors vi in Fig. 3. From this, our first guess is that eigenfunctions
associated to smaller eigenvalues are more useful. We check this numerically by
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Choice # iterations

mi = 12 mi = 24

no coarse space 115 115
Re(λ) minimal 16 10
|λ| minimal 37 26
|λ− k| minimal 77 35
|λ| maximal 115 115

Table 1: Iteration numbers for different choices
of DtN eigenfunctions.

Robin

Robin

D
ir

ic
h

le
t D

irich
let

1 1 1 1 1

7 11 11 11 7

5 8 8 8 5

6 9 9 9 6

5 8 8 8 5

Figure 4: Number of DtN modes per sub-
domain. Heterogeneous Problem 1, 5 × 5
subdomains, nloc = 40, k = 30.

comparing coarse spaces with 12 modes per subdomain based on the eigenvalues
with the smallest real part, the smallest eigenvalues in modulus, the eigenvalues
closest to the wave number k = 30, and the eigenvalues with the largest modulus.
This yields the results in the central columns of Tab. 1. The first alternative,
which is in accordance with Criterion 4.3, gives the best results.

To ensure that our findings are not distorted by choosing a too small coarse
space, in the last column of Tab. 1 the results for the same experiment with
a twice as large coarse space are reported. The best strategy seems robust in
terms of the number of iterations; it hardly changes compared to the case with
smaller coarse space. Also in this setting, Criterion 4.3 performs best.

In the next step, we examine how many modes should be chosen. The more
important part of this problem is that we should not choose too few modes
as the convergence rates cannot be expected to depend monotonically on the
coarse space size due to the indefiniteness of the system. Nevertheless, choosing
too many modes increases the computational costs and is not desirable either.
The number of modes is controlled by Criterion 4.3. In Fig. 4 we show the
resulting number of modes per subdomain for a heterogeneous example. They
are influenced both by the boundary conditions and the heterogeneity.

In Fig. 5, we examine whether the number of modes resulting from Criterion
4.3 is sensible. It yields convergence rates that are almost independent of grid
width/wave number at the cost of an increasing coarse space size. We investigate
whether we can do significantly better by adding the next two eigenvectors on
each subdomain – where the eigenvalues are ordered by their real parts – to
the coarse space. Fig. 5a shows that this is not the case, it only yields a slight
improvement. Moreover, we test whether we could achieve the same behavior
with a significantly smaller coarse space. Therefore, we choose another “natural”
bound, taking only eigenvectors that are associated to eigenvalues with real part
smaller than 0, denoted by “negative” in the legends. For this choice, the number
of iterations significantly increases with nloc and hence with k.
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Figure 5: Varying the coarse space dimension. k3h2 ≈ 2π
10

, Problem 1, 5× 5 subdomains.

Additionally, we test whether Criterion 4.3 is independent of the diameters
of the subdomains. For that purpose, we take a square Ω = [0, L]2 decomposed
into 5× 5 subdomains with nloc = 40. For L = 1, 5, 10 and k such that kL = 30
is constant, the DtN shows exactly the same behavior: The number of modes
that are chosen (224 in total) and the number of iterations (24) do not change
with L. Criterion 4.3 consequently provides a useful strategy.

5. Sensitivity of the correction to the coarse space

In order to design and test a coarse space for the Helmholtz equation, it
is indispensable to understand how it influences the eigenvalues of the precon-
ditioned operator and hence the convergence behavior of the iterative method.
For symmetric positive definite (spd) matrices, this question has been examined
extensively e.g. in [39, 40]. In particular, the coarse space does not make the ef-
fective condition number of the preconditioned matrix worse for any choice of Z
[40, Theorem 2.1]. In this section, we examine to what extent these results apply
to indefinite systems. We will see that contrarily to the spd case, for indefinite
matrices there seems to be no way to ensure that using a two-level method with
an arbitrarily chosen coarse space always accelerates the convergence. This is
why choosing the right, problem dependent coarse space is important for indef-
inite systems as those arising from the Helmholtz equation.

5.1. Influence of the Dirichlet-to-Neumann coarse space on the spectrum

We compare the convergence rates and the spectrum of the two-level method
(7) with DtN coarse space to those of the corresponding one-level RAS precon-
ditioner (6). Apart from providing a more detailed understanding of our setting,
these experiments can also be seen as a demonstration of the challenges that
arise when designing a coarse space for an indefinite problem: Neither conver-
gence rates nor the spectrum necessarily ameliorate when adding the second
level even if it is carefully designed, c.f. [30].
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Figure 7: 100 largest eigenvalues for M−1A and BNN in
the complex plane. Problem 1, 5×5 subdomains, nloc = 40,
k = 30.

Firstly, in Fig. 6, we compare the convergence rates of the one- and two-
level methods for Problem 2 from Sec. 6.2, using the setup described in Sec.
6.1. Note that in contrast to most of the other experiments, we do not choose
Problem 1 to make the problem simpler to solve with the one-level method (6).
While using too few coarse space modes gives worse convergence rates than
those of the one-level method, employing enough modes resolves the problem.

The next step is to look at the spectrum of the two operators for Problem
1 from Sec. 6.2. We first motivate why it is reasonable to do this in the
case of the GMRES method, which does not depend directly on the condition
number as CG for spd matrices: The clustering of the eigenvalues is important
for the convergence of the GMRES method [41]. As the eigenvalues for RAS
all lie within a circle centered at the origin, we compare the largest eigenvalues
without and with coarse space. If it decreases for the BNN preconditioner, the
clustering is likely to be better. On the other hand, if it increases significantly,
this is probably an indication for deterioration.

In Fig. 7, we compare the eigenvalue distribution of the one- and the two-
level methods; the largest eigenvalues both of M−1A and the BNN precondi-
tioner are plotted in the complex plane. If the coarse space dimension is small,
there is no clear structure in the eigenvalue distribution. While they lie within
a circle of radius less than 1 with center (0, 0) for M−1A, adding the coarse
space with only a few modes has a chaotic effect, scattering the eigenvalues in
the complex plane. This changes when adding more modes; the eigenvalues are
then clustered near the point (1, 0).

Consequently, choosing an incomplete or incorrect coarse space may have a
detrimental effect both on convergence rates and on the spectrum. The coarse
space has hence to be designed with the greatest care.

5.2. Understanding the effect of the coarse space for Hermitian matrices

In Sec. 5.1, we have shown that adding a second level to a preconditioner
for an indefinite matrix may negatively affect both the convergence rates and
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the spectrum of the preconditioned operator. Here we give an explanation of
this behavior and identify its causes. This is an extension of the results in [40]
to indefinite systems. To be able to provide results, we restrict to a simpler
setting: We assume that the matrix A is Hermitian which holds for the matrix
associated to the Helmholtz problem defined in (5) if ΓR = ∅. We examine
deflation instead of the balancing preconditioner:

Definition 5.1 (Deflation operator). Let A ∈ Cn×n and let Z ∈ Cn×r, r < n. If
Z∗AZ, ∗ ∈ {T, †}, where T denotes the transpose and † the conjugate transpose,
is regular, we define the deflation operator

PD = I −AΞ, where Ξ = Z (Z∗AZ)
−1
Z∗.

The deflation operator is closely related to the balancing preconditioner: If
A = A∗, then PBNNA and PDA have the same eigenvalues except for those that
are 0 and 1, respectively [39, Theorem 2.8]. In this section, we use Def. 5.1 with
∗ = † the conjugate transpose.

Let vi, 1 ≤ i ≤ n be an orthonormal basis of eigenvectors of A with cor-
responding eigenvalues λi ∈ R. Let |λi| ≤ |λi+1| for all 1 ≤ i < n. Let
λmin = mini:|λi|6=0 |λi|, λmax = maxi |λi|. We may consider the columns of Z
separately in a recursive procedure, using a variant of [42, Theorem 3.2]:

Theorem 5.2. Let P (k) = I−AZk
(
ZTk AZk

)−1
ZTk with Zk =

[
Z̃1, Z̃2, . . . , Z̃k

]
,

where Z̃j ∈ Rn×lj has full rank lj. Let Z̃Ti Ãi−1Z̃i and ZTi AZi be nonsingu-
lar for all 1 ≤ i ≤ k. Then P (k)A = PkPk−1 . . . P1A, where Pi+1 = I −
ÃiZ̃i+1

(
Z̃Ti+1ÃiZ̃i+1

)−1

Z̃Ti+1, Ãi = PiÃi−1, Ã0 = A.

The proof is literally the same for our situation. Hence we may restrict to
Z ∈ Cn×1 with only one column, Z :=

∑
i∈I αivi, where αi ∈ C are coefficients

and I ⊆ {1, . . . , n} By computing PDAvk for all k, we get the following lemma:

Lemma 5.3 (Structure of PDA). W.l.o.g. assume I = {1, 2, . . . , |I|}. PDA in
the basis of eigenvectors (vi)1≤i≤n is a block diagonal matrix with the two blocks
B and D, where B ∈ C|I|×|I| is the block associated to (vi)i∈I and is defined by

Bii =

∑
k 6=i |αk|

2
λiλk∑

k∈I |αk|
2
λk

, Bij = − αjᾱiλjλi∑
k∈I |αk|

2
λk
, ∀i, j ∈ I, i 6= j,

and D is a diagonal matrix with diagonal entries λ|I|+1, . . . , λn.

The following theorem treats the simple cases in which bounds on the eigen-
values of the deflated operator can be guaranteed.

Theorem 5.4. If all λi, i ∈ I, have the same sign, then

λmax(PDA) ≤ λmax(A) and λmin(PDA) ≥ λmin(A).
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Proof. Let V be the matrix with columns the eigenvectors vi, 1 ≤ i ≤ n.
According to Lemma 5.3, after reordering, V †PDAV has block structure with
a block B associated to {vi}i∈I and a diagonal block D. As the two blocks are
decoupled and all eigenvalues of D are eigenvalues of A, we can consider only
B. As by assumption, all λi, i ∈ I, have the same sign and eigenvalues are
invariant under change of basis, either B or −B is Hermitian positive definite
and we can use the result for the real, spd case [40, Theorem 2.1], whose proof
is literally the same for complex matrices, to prove the claim.

Theorem 5.4 shows that if all eigenvalues associated to the eigenvectors that
contribute to the vector Z have the same sign, the spectrum of the deflated
operator can be bounded by the one of the original operator. Deterioration of
the spectrum could thus be avoided if an orthonormal basis of eigenvectors of
the global operator was known. This is not feasible in practice.

The remaining question is what happens to the eigenvalues if the λi, i ∈ I,
have different signs. For simplicity, we restrict to the case |I| = 2 and show that
different signs of the eigenvalues do cause problems.

Theorem 5.5. Let |I| = 2, i.e. Z = αivi + αjvj for some 1 ≤ i, j ≤ n. Then
we have λmax(PDA) > λmax(A) if and only if i and j are chosen such that λi
and λj have different signs and(

|αi|2 + |αj |2
)
|λi| |λj |∣∣∣|αi|2 λi + |αj |2 λj

∣∣∣ > |λk| ∀ 1 ≤ k ≤ n. (12)

Proof. This follows directly from Theorem 5.4 and Lemma 5.3, observing that

the matrix B has the eigenvalues 0 and
(|αi|2+|αj |2)λiλj
|αi|2λi+|αj |2λj

.

Theorem 5.5 provides an explanation for the scattering of the eigenvalues
observed in Fig. 7: If eigenvectors associated to eigenvalues with different signs
enter the coarse space, the eigenvectors of the deflated matrix might grow arbi-
trarily large. However, the results are not able to explain the clustering of the
eigenvalues that occurs when the coarse space dimension gets larger.

5.3. A modified deflation operator

In this section, we examine a variant of the deflation operator used e.g. in
[23, 27], where ∗ = T in Def. 5.1. Even though the transpose T seems to be
more suitable for complex symmetric matrices than the conjugate transpose †,
as it is closely related to the structure of the matrix, we show that the situation
with this choice is even worse.

We consider a complex symmetric, possibly non-Hermitian matrix A as it
arises from the discretization of the Helmholtz equation (2). We assume that
A is diagonalizable. It hence has an eigenvector matrix V such that V TAV
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is diagonal and V TV = I [43, Theorem 4.4.13]. Under these assumptions, a
modified version of Theorem 5.5 holds, where Condition (12) is substituted by∣∣∣∣∣

(
α2
i + α2

j

)
λiλj

α2
iλi + α2

jλj

∣∣∣∣∣ > |λk| ∀1 ≤ k ≤ n.
Since the coefficients αi are complex numbers, the denominator

∣∣α2
iλi + α2

jλj
∣∣

might become arbitrarily large independently of the signs of the eigenvalues.
Hence, in contrast to the Hermitian case, no sign restriction on λi and λj can
prevent the eigenvalues from becoming huge:

Example 5.6. Let A =

1 ı 0
ı 1 2ı
0 2ı 1

 with (orthogonal) eigenvectors v1 =

(
1
√

5 2
)T

, v2 =
(
2 0 −1

)T
, v3 =

(
1 −

√
5 2

)T
and eigenvalues λ1 =

1 + ı
√

5, λ2 = 1, λ3 = 1 − ı
√

5. Choosing Z = α 1
‖v1‖v1 + 1

‖v2‖v2, α =
√

ε−λ2

λ1

for some real number 0 < ε < 1, we get

λmax(PDA) =
∣∣∣1 + ıε−1

√
5
∣∣∣ > λmax(A) =

∣∣∣1 + ı
√

5
∣∣∣ .

The theoretical results are clearly in favor of using the conjugate transpose.
As the setting has been simplified in order to allow an easy investigation, we
compare the matrices Ξ defined in Def. 5.1 for ∗ ∈ {T, †} used in the BNN
method (7) with the DtN coarse space for the setting in Tab. 2 with 5 × 5
subdomains. While the results for ∗ = † are shown in this table, the number
of iterations for ∗ = T are not reported because they are almost exactly the
same and differ at most by 1. There hence seems to be almost no difference
between the two operators. This result is different from [27, Sec. 4.1.2], where
the authors conclude that the conjugate transpose outperforms the transpose,
using however a different framework and example. We here choose the method
using the conjugate transpose as it seems to be more robust. However, in
contrast to the spd case, for none of the approaches an arbitrary choice of the
coarse space W guarantees a gain compared to the one-level method, neither in
terms of convergence rates nor in terms of bounds on the eigenvalues.

6. Numerical results

In this section, we examine the DtN coarse space numerically and compare
it to the standard coarse space based on plane waves, c.f. Sec. 1.

6.1. Framework and implementational details

We describe framework in which the preconditioner (7) is used and give
implementational details for the numerical experiments.

As a solver we use a generalized minimal residual (GMRES) method without
restart with the BNN method (7) as a preconditioner. The termination criterion
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is based on the error ‖uh − ui‖∞, where uh is the exact finite element solution
and ui is the iterative solution in step k. The system is considered to be solved in

step i if
‖uh−ui‖∞
‖uh‖∞

< 10−7. A bar “−” is used in the tables, when the maximum

number of iterations, here 400, is reached. The initial iterate has pseudorandom
values drawn from the standard uniform distribution on the interval (0, 1). The
finite element part is implemented in FreeFem++ version 3.21 [44], the algebraic
part in Matlab version 7.10.0.499 (R2010a).

Due to the wave character of the solution, in all numerical experiments the
grid has to be sufficiently fine in order for the discrete solution to be a good
approximation of the continuous one. Additionally to the requirement of having
a minimum number of points per wavelength, in order to avoid the pollution
effect [2], not only kh, but also k3h2 needs to be bounded from above. Various
modifications, see e.g. [2] and references therein, of the finite element method
are known to reduce this effect, but not considered here.

We choose an overlap L of two mesh elements as defined in Definition 3.1.
If nothing else is specified a decomposition into N = nS ×nS squares is chosen,
let ni be the number of grid points on one side of one square subdomain. If
ni = nj for all 1 ≤ i, j ≤ N , we define nloc := ni. In this case, the mesh is
always of the type shown in Fig. 8. For decompositions using Metis [45], an
arbitrary triangulation is chosen. We denote the number of grid points on one
side of a square domain Ω by nglob.

6.2. Model problems

Here we define the model problems that are used in the numerical experi-
ments in sections 4, 5, and 6. They are all based on the Helmholtz equation
(2). The first example [37] is the one that we investigate in most detail.

Problem 1 (Open cavity problem). In Equation (2), let Ω := [0, 1]2, ΓD :=
{0, 1} × [0, 1], and ΓR := [0, 1]× {0, 1}. The right-hand side f is a point source
at (0.5, 0.5). The wave number k(~x) = ω/c(~x) is either constant, or the wave
speed c is piecewise constant according to Fig. 9, where ρ ∈ R, ρ > 1.

Problem 2 (Free space problem). In Equation (2), let Ω := [0, 1]2, ΓR := ∂Ω,
i.e. we simulate an unbounded region. The right-hand side f is a point source
in the center (0.5, 0.5) of the domain Ω. The wave number k is constant.
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Problem 3 (Wedge problem). This example mimics three layers with a simple
heterogeneity. Let Ω = (0, 600) × (0, 1000) m2 and ΓR = ∂Ω in Equation (2).
The right hand-side f is a point source located at (300, 1000). The wave number
is given by k(~x) = ω/c(~x), where c is defined in Fig. 10.

6.3. Plane waves

We here introduce and shortly examine the coarse space based on plane
waves. As there is no consensus in the literature on how to incorporate the
plane wave based coarse space into a DDM, we choose one possibly non-optimal
way. A plane wave pθ : D ⊂ Rd → C in direction ~θ is a function of the form

pθ(~x) = eık̄θ·~x, ~x ∈ D, ~θ ∈ Rd, ‖θ‖2 = 1. (13)

Here k̄ is the mean value of the (possibly heterogeneous) wave number k on D.
We decide to proceed as in the case of the DtN operator, and modify Algorithm
4.1. We ignore Lines 1 and 2 and specify the functions ~uki in Line 4 directly.
Note that in contrast to DtN, mi is chosen a priori. If nothing else is specified,
we use mi = 25 modes per subdomain.

Definition 6.1 (Plane wave coarse space). Let 1 ≤ i ≤ N . For each 1 ≤ k ≤ mi

choose a direction θk ∈ Rd, ‖θk‖2 = 1 and let ~gki ∈ CnΓi be the coefficient
vector of the finite element approximation of pθk defined in Equation (13) on
the interface Γi. Let ~uki be the extension of ~gki in the sense of Def. 4.4.

It remains to be specified how the directions θk are chosen. As in [24], we
define them via a uniform discretization of the unit circle into circular sectors:

θk :=

(
cos(tk)
sin(tk)

)
, where tk =

2π(k − 1)

mi
, 1 ≤ k ≤ mi.

The matrix Z based on plane waves can become rank deficient for a couple
of reasons [24]. The rank deficiency of Z causes in the worst case divergence of
the whole iterative scheme. To avoid this problem, we adapt the filtering of the
coarse space described in [24], but apply filtering to functions defined on the
entire subdomains instead of only the edges. We choose a filtering tolerance ε
and do the following: Let Z have the blocks Wi. For each 1 ≤ i ≤ N , perform
the QR factorization of Wi, and then construct W ∗i as the union of the columns
qj of Wi for which |Rjj | > ε. This is a local procedure that is performed on
each subdomain separately. We substitute Z by the matrix constructed from
the W ∗i . A too small value of ε can cause the matrix Z to be still rank deficient.
The authors of [24] propose to choose ε rather too large than too small, setting
ε = 10−2. We denote the method where the plane wave coarse space with
filtering tolerance ε is employed by PW(ε).

As an adaptive strategy for choosing the coarse space size is crucial, we here
examine to what extent it is provided by the filtering procedure. Therefore,
we consider Problem 1 with nloc = 40, k = 29.3 and a decomposition into
5 × 5 subdomains. The dimension of the coarse space depends strongly on
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Figure 11: Condition number of coarse matrix E. Problem 1, 5× 5 subdomains.

the number of modes per subdomain mi that are initially chosen, even if the
additional modes hardly influence the convergence rate: If we choose mi = 16,
the coarse space dimension is 384; with mi = 32 it is 459. However, the number
of iterations is 13 versus 11 and hence did hardly change despite the larger, more
expensive coarse space. Consequently, even though filtering provides some sort
of adaptivity, it is sensitive to the number of modes that are initially chosen.

6.4. Conditioning of coarse matrix

The condition number of the coarse matrix E = Z†AZ plays an important
role. If it is too large, the iterative method might stagnate. Here we investigate
to what extent the DtN coarse space suffers from conditioning problems.

The matrix Z is constructed from an orthonormal basis of eigenvectors de-
fined on the interfaces of the subdomains. Their extensions to the interior of
the subdomains are in general not orthogonal as the extension matrix A−1

II AIΓ
is not unitary and hence does not conserve orthogonality. Nevertheless, in the
numerical experiments for Problem 1 the condition number for DtN behaves
well: In Fig. 11a, we examine the dependence of the condition number on the
coarse space size and compare it to the one for plane waves, with and without
filtering. For the DtN, the condition number of E is only mildly affected by
the coarse space dimension. The same is true for plane waves with filtering, but
here the upper bound is significantly larger. In Fig. 11b, we investigate whether
this behavior carries over to a broader range of wave numbers k. We choose a
fixed number mi = 16 of modes per subdomain. If k and h are varied such that
k3h2 is constant, the condition number for DtN remains almost constant. So
filtering of the coarse modes is not necessary here. Furthermore, the condition
number is significantly lower than for the plane waves.

6.5. Performance for homogeneous open cavity problem

We study the performance of the DtN coarse space for Problem 1 with
homogeneous wave number. In Tab. 2, the number of iterations for different k
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5× 5 subdomains 10× 10 subdomains

nglob k 1-lev DtN PW(10−2) 1-lev DtN PW(10−2)

100 18.5 80 15 (144) 8 (352) 144 18 (344) 7 (1152)
200 29.3 116 18 (224) 11 (467) 241 26 (460) 9 (1286)
400 46.5 156 29 (299) − (577) 327 51 (624) 13 (1708)
800 73.8 217 39 (508) 24 (609) − 65 (936) − (2346)

Table 2: Number of iterations (dimension of coarse space) for Problem 1. Comparison of RAS
method (6) without coarse space (1-lev), and with DtN and PW

(
10−2

)
coarse spaces.

nloc k mi DtN PW

10 11.6 4 14 17
20 18.5 6 21 23
40 29.3 9 23 22
80 46.5 12 35 35

160 73.8 21 38 29

(a) Number of modes mi computed from
the DtN coarse space dimension

nloc k mi DtN PW

10 11.6 12 8 7
20 18.5 15 9 9
40 29.3 17 13 12
80 46.5 24 18 16

160 73.8 25 36 24

(b) Number of modes mi computed from
the PW coarse space dimension

Table 3: Comparison of number of iterations with identical coarse space size for DtN and
PW

(
10−2

)
. 5× 5 subdomains, Problem 1.

is shown. It increases slightly with k if k3h2 is constant. This could be due to the
decreasing physical size Lh of the overlap, c.f. Tab. 5. Moreover, the dimension
of the DtN coarse space depends linearly on the wave number k. The number
of iterations for the one-level method doubles if the number of subdomains is
doubled in both directions. With the DtN coarse space, the influence of the
number of subdomains is not that strong, but still present.

In Tab. 2 we have seen that the number of iterations is smaller with the
PW than with the DtN coarse space. However, it is not fair to compare these
numbers as the dimensions of the coarse spaces differ significantly. Therefore, in
Tab. 3 we compare the two methods enforcing the dimension to be the same by
prescribing a fixed number of modes mi on each subdomain also for DtN. These
numbers mi are the same on all subdomains and are computed by dividing the
sizes in Tab. 2 by the number of subdomains. With this setting, DtN and PW
then yield approximately the same convergence rates.

In Fig. 12, we examine whether the convergence rates depend on the value of
the constant k3h2. There is no clear indication which value might be optimal,
but a rather fine grid gives the highest number of iterations absolutely. The
coarse space dimension depends on k but is independent of the grid width.

In Tab. 4, the mesh width is kept fixed and the wave number is varied. We
see how the coarse space dimensions increases with k. The number of iterations
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Figure 12: Testing different values of k3h2. Problem 1,
5× 5 subdomains.

k 1-level DtN

5 106 88 (25)
10 115 68 (70)
15 117 61 (90)
30 133 31 (224)
45 169 36 (299)

Table 4: Dependence of num-
ber of iterations (coarse space
dimension) on wave number for
fixed mesh width. Problem 1,
5× 5 subdomains, nloc = 120.

nloc = 20, L = 2 nloc = 80, L = 2 nloc = 80, L = 8

k 1-level DtN 1-level DtN 1-level DtN

1 73 56 (25) 94 81 (25) 66 39 (25)
5 64 43 (25) 96 78 (25) 55 37 (25)

10 68 21 (74) 106 49 (74) 66 22 (74)
20 84 32 (139) 107 32 (144) 86 33 (139)

Table 5: Dependence of number of iterations (coarse space dimension) on overlap/mesh width.
Problem 1, 5× 5 subdomains.

remains only constant if k is large enough. For k small, the coarse space built
with Criterion 4.3 is so small that the number of iterations remains rather large.

In Tab. 5, two properties of the DtN coarse space and of Criterion 4.3 become
visible: On the one hand, for small k, only one mode per subdomain is chosen
and the number of iterations is hardly influenced by the coarse space. This is
not a flaw of the coarse space itself, but due to Criterion 4.3; choosing more
modes results in a stronger impact on convergence rates. For the homogeneous
case this is not a problem as cases with very small wave number k can be solved
by standard methods.

On the other hand, we study the influence of mesh refinement. If the mesh
is refined twice and the overlap stays constant in terms of number of elements
L, see the central columns of Tab. 5, the convergence rates deteriorate a lot;
in the worst cases we get more than a factor 2 more iterations with about the
same coarse space size. If however Lh, i.e. the physical size of the overlap,
is constant, see the last three columns of Tab. 5, the number of iterations
even decreases if the mesh is refined. This behavior is probably due to the
transmission conditions that make the convergence rates depend on the size of
the overlap [37]. Within this context, it might be worth to investigate more
advanced transmission conditions, e.g. optimized ones [34].

20



Number of subdomains

nloc k 5× 5 5× 10 5× 15 5× 20

10 11.6 15 (80) 18 (160) 20 (240) 22 (320)
20 18.5 15 (144) 15 (314) 16 (484) 16 (654)
40 29.3 18 (224) 18 (484) 19 (744) 20 (1004)
80 46.5 29 (299) 37 (624) 43 (949) 48 (1274)

Table 6: Dependence of number of iterations (coarse space dimension) on number of subdo-
mains. DtN coarse space, Problem 1.

ρ = 5 ρ = 10

nloc ω DtN PW(10−2) DtN PW(10−2)

10 11.6 18 (69) 8 (229) 19 (69) 8 (214)
20 18.5 23 (111) 10 (274) 23 (111) 11 (263)
40 29.3 31 (159) 13 (339) 35 (159) 16 (326)
80 46.5 33 (242) − (442) 40 (236) − (414)

160 73.8 47 (388) − (519) 57 (378) 42 (494)

Table 7: Number of iterations (coarse space dimension). Heterogeneous Problem 1, 5 × 5
subdomains.

Finally, we vary the number of subdomains in the y direction. For n ×m
square subdomains with n < m, we let Ω = [0, 1] × [0, mn ]. Results are given
in Tab. 6. When the number of subdomains in one direction increases, the
coarse space size grows approximately proportionally to it. This makes sense
as our mode selection criterion is purely local. The slight differences stem from
subdomains touching the boundary. Moreover, the number of iterations remains
almost constant when the number of subdomains is increased.

6.6. Performance for heterogeneous open cavity problem

In this section, we study some small heterogeneous test cases for Problem
1. In Tab. 7, the iteration numbers for constant k3h2 are shown. For PW,
for some cases convergence stagnated due to ill-conditioning despite the rather
large filtering tolerance. Moreover, the adaptively chosen coarse space size for
DtN is significantly smaller than that for PW. This also has a small effect on the
convergence rates, with PW performing better. As in the homogeneous case,
the coarse space size increases with the wave number.

In Tab. 8, we vary the contrast ρ := kmax/kmin. With increasing con-
trast, the convergence rates for the one-level method deteriorate. For DtN,
even though the coarse space size decreases, the number of iterations grows
only slightly. Only for larger contrast, the situation deteriorates. In the parts
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ρ 1-level DtN PW(10−2) PW(10−1)

100 156 29 (299) 43 (577) 16 (505)
101 154 40 (236) − (414) 26 (346)
102 173 52 (236) − (388) 33 (320)
103 177 53 (236) − (379) 35 (315)

Table 8: Varying contrast. Number of iterations (coarse space dimension) for heterogeneous
Problem 1, 5× 5 subdomains, nloc = 80, ω = 46.5.

nloc ω mi DtN PW(10−2)

10 11.6 3 18 20 (75)
20 18.5 5 20 24 (123)
40 29.3 7 31 40 (171)
80 46.5 10 38 55 (237)

160 73.8 16 57 89 (356)

Table 9: Fixed coarse space size. Number of
iterations (coarse space dimension) for hetero-
geneous Problem 1, ρ = 10, 5× 5 subdomains.

nglob k 1-level DtN

50 11.6 64 14 (116)
100 18.5 92 15 (168)
200 29.3 130 20 (257)
400 46.5 173 29 (381)
800 73.8 256 36 (645)

Table 10: Number of iterations (coarse space
dimension) for homogeneous Problem 1. 25
subdomains with Metis [45].

of the domain where ρ is large, the problem is very close to the Laplacian and
hence almost positive definite. As we have seen in Tab. 5, DtN does not work
well for such situations since the coarse space is too small to enhance conver-
gence. PW does not suffer from this problem, because the coarse space size is
not chosen adaptively. Here, the filtering tolerance for PW has to be larger than
10−2 to avoid stagnation of convergence due to ill-conditioning of the matrix
E. The convergence only stagnates at a certain error; consequently visibility of
this effect depends on the desired accuracy of the iterative solution.

We now choose the same coarse space dimension for both DtN and PW,
see Tab. 9, to verify that the better convergence rates for PW are due to the
size of the coarse space. In contrast to the homogeneous case in Tab. 3, for the
heterogeneous one DtN performs significantly better than PW when the number
of modes chosen is the same, in particular for larger wave numbers.

6.7. Extension to other problems

In this section, we consider also the other examples defined in Sec. 6.2 to
confirm that our results are valid for a broader range of examples.

Irregular decomposition. In all the previous experiments, we have used a de-
composition into square subdomains to ensure reproducibility. Here we show
that this is restriction is not necessary for the method to work. In Tab. 10 we
consider Problem 1, where both the decomposition done with Metis [45] and the
triangulation are now irregular. Compared to the regular case in Tab. 2, the
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5× 5 subdomains 10× 10 subdomains

k nglob 1-level DtN 1-level DtN

18.5 100 43 15 (144) 80 16 (364)
29.3 200 49 18 (224) 102 22 (460)
46.5 400 55 26 (315) 106 43 (660)
73.8 800 60 30 (514) 120 47 (956)

Table 11: Number of iterations (coarse space dimension) for Problem 2.

15 subdomains 60 subdomains

ω n 1-level DtN 1-level DtN

90 150× 250 44 14 (267) 82 22 (541)
180 300× 500 48 16 (514) 94 23 (1074)
360 600× 1000 106 20 (968) 99 25 (2113)

Table 12: Number of iterations (coarse space dimension). Problem 3 decomposed with Metis

method behaves similarly. While the dimension of the coarse space increases
slightly, the number of iteration is almost the same.

Free space problem. Here we examine Problem 2, where non-reflecting bound-
ary conditions are imposed on the entire boundary. The iteration numbers for
different partitions are reported in Tab. 11. The qualitative behavior is simi-
lar to the one observed for Problem 1 in Tab. 2, but the absolute number of
iterations is lower, in particular for the one-level method.

Wedge problem. As a last example, we consider the wedge problem, Problem
3. The results are reported in Tab. 12. Also for this case, the 2-level method
with the coarse space based on the DtN operator shows a good behavior. To
be able to compare with the results for the unit square, note that the number
of wave-lengths in the y-direction for the smallest angular frequency ω = 90
corresponds to a wave number k varying between 30 and 60 for the unit square.

7. Conclusions

We have introduced and tested a two-level domain decomposition method for
the efficient solution of the heterogeneous Helmholtz equation discretized with
piecewise linear finite elements. The important new ingredient is the coarse
space. Its construction is based on local eigenproblems involving the Dirichlet-
to-Neumann operator and can be performed efficiently in parallel. The resulting
method has been tested successfully on 2D model problems and compared to
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the standard approach with a coarse space based on plane waves. The extension
to 3D problems is straightforward.

The construction of the DtN coarse space inherently respects variations in
the wave number, making it possible to treat heterogeneous Helmholtz problems.
Moreover, it does not suffer from ill-conditioning as the standard approach based
on plane waves, even if many coarse modes are chosen. This is an important
property as ill-conditioning can cause the iterative method to stagnate.

Our construction is based on local eigenvalue problems which are more costly
than an explicit plane wave coarse space. However, these eigenvalue solves can
be performed in parallel and should not affect the scalability of the algorithm. In
contrast to the plane wave based coarse space, where several parameters need
to be adapted carefully to the problem under consideration, our completely
automatic construction refrains from the need of parameter tuning.

Our analysis has shown that linear combinations of eigenvectors associated
to eigenvalues with different signs that enter the coarse space cause problems if
the coarse space is incomplete, possibly making convergence rates worse than
those of the one-level method. Our mode selection criterion ensures that all
important modes are present, hence guaranteeing good convergence rates.
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