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the linearized equilibrium equations of a three dimensional plate like
body with the initial stresses depending on the thickness coordinate.
In Section 3 we give the statement of the two dimensional boundary
value problems for the linear plate theory.

1. Basic equations of 3D non-linear elasticity

Following [13,29 32] in this section we present the general
equations governing small (incremental) deformations super
imposed on a finite homogeneous deformation in an compressible
elastic material. The Eulerian equilibrium equations of the non
linear body are given by the relations

div sþrf ¼ 0, s¼ J�1F � S, S¼
@W

@F
, ð1Þ

where div is the divergence operator in the actual configuration w,
s the Cauchy stress tensor, S the first Piola Kirchhoff stress tensor,
r the material density in the actual configuration, f the body force
vector per unit mass, W the strain energy function (per unit
volume), J¼det F, and F is the deformation gradient defined as in
[13]. Note that here we use the notation A � a and A � B for
the second order tensors A and B, and a vector a instead of the
alternative way Aa, and AB, respectively. Further we assume the
isotropic behavior of the material, so we use the constitutive
equation in the following form:

W ¼WðI1,I2,I3Þ, ð2Þ

where I1, I2, I3 are the principal invariants of the left Cauchy
Green deformation tensor b¼ F � FT or the right Cauchy Green
deformation tensor c¼ FT

� F, defined by

I1 ¼ tr b¼ tr c¼ l2
1þl

2
2þl

2
3,

I2 ¼
1

2
½tr 2b tr b2

�
1

2
½tr 2c tr c2� ¼ l2

1l
2
2þl

2
2l

2
3þl

2
1l

2
3,

I3 ¼ det b¼ det c¼ l2
1l

2
2l

2
3:

Here l1, l2, l3 are the principal stretches, tr denotes the trace of a
second order tensor, and (y)T denotes transposed. l1, l2, l3 may
be also considered as the arguments of the strain function W:

W ¼Wðl1,l2,l3Þ:

For the isotropic material S and s are given by the relations

S¼ 2
@W

@c
� FT
¼ ðf0c�1þ f1Iþ f2cÞ � FT,

s¼ J�1F � S¼ f0Iþ f1bþ f2b2, ð3Þ

where I is the unit second order tensor, f0, f1, f2 are functions
which may be expressed as combinations of the partial
derivatives of W with respect to Ii or li, see [13,29,30] for
details.

For the description of the non linear behavior of polymeric
foams the following constitutive equation is widely used [4]

W ¼
XN

i 1

2mi

a2
i

tr bai=2 3þ
1

bi

ðdet F�aibi 1Þ

� �

¼
XN

i 1

2mi

a2
i

lai

1 þl
ai

2 þl
ai

3 3þ
1

bi

ðJ�aibi 1Þ

� �
, ð4Þ

where mi, ai, bi are the elastic moduli (i¼1,y,N). Here

m¼
XN

i 1

mi:

m denotes the initial shear modulus, while the initial bulk
modulus k is given by

k¼
XN

i 1

2mi biþ
1

3

� �
:

The model (4) was originally proposed by Ogden [11,12], see also
[4,16,10,17,15] among others, where Ogden’s model is used. For
some special choice of the values mi, ai, bi and N, Ogden’s strain
function W reduces to various others models applied in the non
linear elasticity (neo Hookean, Varga, Mooney Rivlin, Blatz Ko
constitutive equations, etc.).

Using the identity Div (J 1F)¼0 we transform Eqs. (1) to the
Lagrangian form

Div Sþr0f ¼ 0, ð5Þ

where Div is the divergence operator in the reference configura
tion and r0 the density in this configuration.

Let us consider the equilibrium equations of a prestressed
body. In other words, we introduce the small deformations
superposed on the finite deformation. Let x be the known position
vector in the actual configuration w while xþw is the position
vector in another actual configuration w% which differs from w by
the infinitesimal vector w.

The linearization of Eq. (5) results in [13,29 32]

Div S%

þr0f %

¼ 0, ð6Þ

where

S%

¼
@2W

@F@F
� �F%T, F%

¼Grad w,

and Grad is the gradient operators in the reference configuration,
f % is the small additional body force acting in the actual
configuration w%, and �� is the double dot (inner) product.

The Lagrangian linearized equilibrium equation (6) may be
transform to the Eulerian form

div Hþrf %

¼ 0, ð7Þ

where H is the linearized stress tensor given by formulas [29,31]

H¼ J�1F � S%:

For example, let us consider the derivation procedure of S% and H
for the special case of (4) with N¼1, a1 ¼ 2, m1 ¼ m, b1 ¼ b. Here
we have the constitutive relations

W ¼
m
2

tr c 3þ
1

b
ðJ�2b 1Þ

� �
,

S¼ mFT mJ�2bF�1, s¼ mJ�1b mJ�2b�1I: ð8Þ

Using the latter relations and the formula J% ¼ J div w we
established the following relations for S% and H

S%

¼ mF%T
þmJ�2bF�1

� F%

� F�1
þ2mbJ�2bðdiv wÞF�1,

H¼ mJ�1F � LT
� FT
þmJ�2b�1Lþ2mbJ�2b�1ðdiv wÞI,

L¼ F%

� F�1
� grad w: ð9Þ

Here grad is the gradient operators in the actual ðwÞ configuration.
Note that for the case F¼ I Eqs. (9) reduce to Hooke’s law

S%

¼H¼ 2meþ2bmI tr e, e¼
1

2
ðLþLT

Þ:

The equilibrium Eqs. (7) or (6) describe the prestressed solid
deformable body as a result of infinitesimal deformations. From
this point of view one may consider the relations H¼HðLÞ or
S%

¼ S%

ðF%

Þ as the constitutive relations of the prestressed body. Of
course, H and S% depend also on the initial deformation gradient
F. Let us note that in the general case the tensors H and S% are
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non symmetric. That means that these ‘‘constitutive equations’’
differ from Hooke’s law of the linear elasticity. On the other hand
such symmetry may be established for the special cases of initial
strain or stress, see [29]. This model of prestressed body includes
also the induced anisotropy effects because the tensor of
instantaneous elastic moduli may corresponded to an anisotropic
body.

2. Equilibrium equations for prestressed plate-like body

Let us consider the prestressed plate like body which occupies
the volume V ¼ fðx,y,zÞ : ðx,yÞAM�R2,zA ½ h=2,h=2�g, where h is
the plate like body thickness, Fig. 1. We assume that the body is
non homogeneous in z direction, i.e. W depends on z

W ¼WðI1,I2,I3,zÞ

and the initial stretches depend only on z:

l1 ¼ l2 ¼ lðzÞ, l3 ¼ l3ðzÞ:

The principal Cauchy stresses t1, t2, t3 can be calculated
according to the formula [13,31]

ti ¼ J�1li
@W

@li
ði¼ 1,2,3Þ,

which also depend only on z. If the body forces and the surface
loads are consistent with these assumptions then the initial state
describes the axial symmetric deformations of the non
homogeneous plate like body.

Let us consider the constitutive equation H¼HðLÞ or
S%

¼ S%

ðF%

Þ for such initial state of a plate like body. The tensors
b and c are given by

b¼ c¼ l2
ðzÞðe1e1þe2e2Þþl

2
3ðzÞe3e3,

where e1, e2, e3 are the Cartesian basis vectors. For the isotropic
material behavior from Eq. (3) it follows that s is reduced to the
relation

s¼ tðzÞðe1e1þe2e2Þþt3ðzÞe3e3,

where t¼ t1 ¼ t2.
Using the relation c% ¼ 2FT

� e � F with 2e¼ LþLT we obtain

S%

¼ 2
@2W

@c2
� �c%T

� �
� FT
þ2

@W

@c
� F%T

¼ 4
@2W

@c2
� �ðFT

� e � FÞ

� �
� FT
þS � L,

H¼A � �eþs � L, ð10Þ

where A is the fourth order tensor of instantaneous elastic
moduli defined in Cartesian base as

A �Aimsteiemeset ¼ FiaFsdFtcFmb
@2W

@cab@ccd
eiemeset :

It is easy to see that A has pair wise symmetry properties such as

Aimst ¼Astim ¼Amist :

As an example let us consider the homogeneous initial hydro
statically stressed state. Here we have the relations

F¼ lI, b¼ c¼ l2I, s¼ pI, p¼ f0þ f1l
2
þ f2l

4,

I1 ¼ 3l2, I2 ¼ 3l4, J¼ l3: ð11Þ

For the general constitutive equations it may be proved that the
expression of H reduces to Hooke’s law with the L�ame constant
depending on p, see [29]. For the special case (8) the pressure p is
given by the relation

p¼ m 1

l6bþ3

1

l

� �
:

Substituting (11) into (9) we obtain

H¼ m 1

l
þ

1

l6bþ3

� �
eþ

2mb
l6bþ3

I tr e pL: ð12Þ

Let us assume that the initial stresses s are small. Then we may
neglect the last term in Eq. (10)3. Thus, we obtain that

H¼A � �e: ð13Þ

From the symmetry consideration one can conclude that A has
the structure of the elasticity tensor of the transversally isotropic
solid with elastic constants depending on l,l3 or t,t3 and that
H¼HT. Note that A depends on the initial stressed state, i.e. A
differs from the elastic tensor used in the linear elasticity, in
general. In the special case of (12) the assumption (13) means that
we neglected by the member pJLJ and keep the dependence on l
in other terms. Further we assume that (13) is invertible, i.e.
e¼S � �H with S¼A�1. Thus, we establish that under the used
assumptions the constitutive equations of the prestressed plate
like body are coincide with Hooke’s law for the transversally
isotropic solids with elastic moduli depending on the initial
stresses or the initial stretches.

Eq. (13) allows to deduce the theory of plates made of prestressed
material using the approach presented in [18 20,23,24]. Indeed,
considering (13) as an analog of Hooke’s law one may obtain the
effective stiffness tensors constructed for the plates made of linear
orthotropic and transversally isotropic materials.

3. 2D plates equations

Let us assume the geometrically and physically linear plate
theory based on the so called direct approach. In this case one
states a two dimensional deformable surface. On each part of this
deformable surface forces and moments are acting they are
the primary variables. The next step is the introduction of the
deformation measures. Finally, it is necessary to interlink
the forces and the moments with the deformation variables
(constitutive equations). Such a plate theory is formulated by a
more natural way in comparison with the other approaches
because it is so strong and so exact as the three dimensional
continuum mechanics formulation. But the identification of the
stiffness and other parameters is a non trivial problem and must
be realized for each class of plates individually.

In the considered theory of plates we make two basic
assumptions: (1) the plate (homogeneous or inhomogeneous in
transverse direction) can be represented by a deformable surface
M, Fig. 2 and (2) each material point is an infinitesimal rigid body
with 5 degrees of freedom (3 translations and 2 rotations).

In addition, the theory presented here is limited by small
displacements and rotations and the quadratic strain energy
density assumptions. The equilibrium equations and the kine
matic equations are given by the relations [18,21 24]

r � Tþq¼ 0, r �MþT�þm¼ 0,Fig. 1. Three-dimensional plate-like body.
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e¼
1

2
½rvþðrvÞT�, c¼rw n�u, j¼ru: ð14Þ

Here T and M are the tensors of forces and moments, q, m are the
surface loads (forces and moments), T� is the vector invariant of
the force tensor, r is the nabla operator, v¼ u � a, w¼ u � n, u, u
are the vectors of displacements and rotations. a is the first metric
tensor, n is the unit normal vector, e, c and j are the tensor of in
plane strains, the vector of transverse shear strains and the tensor
of the out of plane strains, respectively.

The presented above plate kinematics is consistent with the
following approximation of the vector of displacements of a
three dimensional elastic plate like body

wðx,y,zÞ ¼ uðx,yÞ zuðx,yÞ, ð15Þ

with kinematically independent fields of u and u. The surface
strain energy density of a prestressed plate may be calculated
from the relation

U ¼
1

2
/H � �eS, ð16Þ

where / . . .S is the integral over the plate thickness h. The
analogous approximation is used to construct the Reissner
Mindlin type plate theory, see [37 39]. The transition to the
Kirchhoff Love type plate and shell theories may be performed
using the dependence u on u, see [30,33] for details.

Within the direct approach in the case of an orthotropic
material behavior and a plane mid surface we assume the
following surface strain energy and constitutive equations:

Uðe,c,jÞ ¼
1

2
e � �A � �eþe � �B � �jþ

1

2
j � �C � �jþ

1

2
c � C � c, ð17Þ

N� T � a¼
@U

@e
, Q � T � n¼

@U

@c
, MT

¼
@U

@j
: ð18Þ

A, B, C are fourth order tensors, C is a second order tensor
expressing the effective stiffness properties. They depend on the
material properties and the cross section geometry and are given
by the relations [23]

A¼ A11a1a1þA12ða1a2þa2a1ÞþA22a2a2þA44a4a4,

B¼ B13a1a3þB14a1a4þB23a2a3þB24a2a4þB42a4a2,

C¼ C22a2a2þC33a3a3þC34ða3a4þa4a3ÞþC44a4a4,

C¼G1a1þG2a2,

where

a1 ¼ a¼ e1e1þe2e2, a2 ¼ e1e1 e2e2, a3 ¼ e1e2 e2e1,a4

¼ e1e2þe2e1

and e1, e2 are unit basis vectors of an orthonormal coordinate
system. In addition, one obtains the orthogonality condition for ai

(i¼1, 2, 3, 4)

1

2
ai � �aj ¼ dij:

The structure of U in (17) may be deduced from the consideration
of (16) with the approximation (15).

The identification of the effective stiffness tensors A, B, C and C
should be performed on the base of the properties of the real
material. Let us assume Hooke’s law with material properties
which depend on the normal coordinate z. The identification of
the effective properties can be performed with the help of static
boundary value problems (two dimensional, three dimensional)
and the comparison of the forces and moments (in the sense of
averaged stresses or stress resultants). Finally, we get the
following expressions for the classical stiffness tensor compo
nents [19,20,24]

ðA11; B13;C33Þ ¼
1

4

E1þE2þ2E1n21

1 n12n21
ð1; z; z2Þ

� �
,

ðA22;B24;C44Þ ¼
1

4

E1þE2 2E1n21

1 n12n21
ð1; z; z2Þ

� �
,

ðA12; B23 ¼ B14; C34Þ ¼
1

4

E1 E2

1 n12n21
zð1; z; z2Þ

� �
,

ðA44; B42;C22Þ ¼/G12ð1; z; z
2ÞS, ð19Þ

where E1, E2, n12, n21, G12 are the elastic moduli of the orthotropic
bulk material. In addition, two non classical stiffness terms are
obtained

G1 ¼
1

2
ðl2
þZ2Þ

A44C22 B2
42

A44
, G2 ¼

1

2
ðZ2 l2

Þ
A44C22 B2

42

A44
: ð20Þ

Here Z2 and l2 are the smallest non zero eigen values of Sturm
Liouville problems

d

dz
G1n

dZ

dz

� �
þZ2G12Z ¼ 0,

d

dz
G2n

dZ

dz

� �
þl2G12Z ¼ 0,

with the boundary conditions

dZ

dz

����
jzj h=2

¼ 0:

Let us remind that here the role of Hooke’s law plays Eq. (13) with
the tensor elasticity A. If the bulk material is transversally
isotropic then the stiffness tensors reduce to [18]

A¼ A11a1a1þA22ða2a2þa4a4Þ,

B¼ B13a1a3þB24ða2a4 a4a2Þ,

C¼ C22ða2a2þa4a4ÞþC33a3a3,

C¼G1a:

Here the A11, A22, B13, B24, C22, C33 and G1 are given by the
relations (19) and (20) together with relations E1¼E2, n12 ¼ n21,
n23 ¼ n32, G1n ¼ G2n, etc. Note that here these engineering
constants are the components of the elasticity tensor A and
depend on the initial stresses, in general.

The boundary conditions are given by

m � T¼ f , m �M¼ l ðl � n¼ 0Þ along Sf ð21Þ

and

u¼ u0, u¼u0 along Su: ð22Þ

Here f and l are external force and couple vectors acting along the
part Sf of the boundary of the plate S ¼ Sf [ Su � @M, while u0 and
u0 are given functions describing the displacements and rotation

Fig. 2. Plate.
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of the plate boundary Su, respectively. m is the unit normal vector
to S ðm � n¼ 0Þ. The relations (21) and (22) are the static and
kinematic boundary conditions, respectively. Other mixed types
of boundary conditions are possible. For example, the simple
support boundary conditions corresponding to a hinge are given
by

m �M � t ¼ 0, u¼ 0, u � t ¼ 0:

Here t is the unit tangent vector to S ðt � n¼ t � m ¼ 0Þ.

4. Conclusions

Here we discussed the identification procedure of the
components of the effective stiffness tensors in the linear theory
of prestressed plates. The identification procedure bases on
the comparison of solutions of few test problems for
three dimensional elastic solids and two dimensional elastic
plates. For the linear elastic behavior it was developed in
[19,20,24]. Here we extend this approach to the case of an elastic
material with initial stresses. Using some assumptions on the
initial stress distribution we reduced the linearized equilibrium
equations for the prestressed plate like body to equations of a
non homogeneous transversally isotropic solid with elastic
moduli depending on the initial stresses or stretches. Further
we applied this approach and obtained the expressions for the
components of the effective stiffness tensors. Within the de
scribed above approach the in plane stiffness components, the
bending stiffness components and the shear stiffness depend on
the initial stresses.

Let us note there is at least one alternative way of deducing the
theory of plates made of prestressed material which is free on the
assumption of smallness of s. One may use the linear in
z approximation wðx,y,zÞ ¼ uðx,yÞ zuðx,yÞ to obtain the two
dimensional governing equations of a plate taking into account
the initial stresses as well as the transverse shear deformations.
Within this approach one obtains the presented here constitutive
equations but for the determination of the shear stiffness some
additional considerations may be needed.

The effective stiffness tensors are given in the general form
for orthotropic material. All stiffness values are the result of
averaging over the thickness of the plate like body h. Only
the last two transverse shear stiffness values should be esti
mated by solving a Sturm Liouville problem. Assuming special
three dimensional material laws the values can be computed for
any usual elastic or a prestressed body. In addition, since the
material properties are assumed to be a function of the coordinate
z in the thickness direction the introduced formulaes can be
applied even in the case of inhomogeneous in the thickness
direction materials. Examples of such materials are laminated
structures, sandwiches, but also foams and functionally graded
materials.
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