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Abstract

We formalize the randomization procedure undertaken to discriminate players in real option
games with Stackelberg leadership advantage. This is done by introducing a random arbitrator
with specific parameterizations, and allows to propose a unified treatment of both Cournot and
Stackelberg competition in real option games. We extend the study to a partial arbitrator,
which leads to competitive advantages in various asymmetrical situations. We fully characterize
strategic interactions. We then apply the procedure to risk-neutral and risk-averse firms in a
stochastic preemptive real option game in complete market under regulation. The risk-averse
case gives us the opportunity to study a new phenomenon we call aversion for confrontation, and
its impact on the asymmetrical game.

Key words : real option game, timing game, regulator, asymmetry, Stackelberg competition,
Cournot competition

1 Introduction

Real option games are commonly known as a collection of games with payoffs provided by the value
function of some optimal control problems. This corresponds to an extensively studied situation,
where two or more economical agents face with time a common project to invest into, and where
there might be an advantage of being a leader (pre-preemptive game) or a follower (attrition game).
On these problems and the related literature, [1, 3] provide comprehensive broad scopes.
From Azavedo and Paxson [1] emerges a standard real option game: a symmetric duopoly preemption
situation depending on a continuous Markov state variable with risk-neutral agents. However, two
approaches stand out on the final outcome of the game (the mechanism of settlement) depending
on the economical situation. It shall be pointed out if simultaneous action of the two agents results
in a fair division of the total demand, a Cournot competition as in the recent [5], or the election
of one agent as the leader, as the Stackelberg competition of [8]. If the project can be shared, e.g.,
an open market for a technological product, there is a certain configuration when players do play a
coordination game (when players want to be leader but prefer being follower rather than share the
project incomes). Otherwise, and [6] gives the example of a real estate project, there is a trigger
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state at which both players invest simultaneously, but the role of leader is decided via the flipping
of an even coin. This procedure turns out to be perfectly consistent for risk-neutral and risk-averse
players, i.e., when independence axiom is valid. But this procedure also seems to come out of nowhere,
simplifying the calculus and terminating the litigate between players in a rather direct and eluded
way. The procedure is used for example in [12, 9, 7] who refer to Grenadier [6] for the justification,
which appears in a footnote:

A potential rationale for this assumption is that development requires approval from
the local government. Approval may depend on who is first in line or arbitrary consider-
ations.

This justification opens the door to many alterations of the assumption inspired from other similar
economical situations.
We concern ourselves in this paper with properly formalizing this ambiguity, using the formal math-
ematical background of [11]. We do that by simply introducing a random arbitrator who decides
what is happening in the case where both players act simultaneously, i.e., who is the leader and who
is the follower. Starting from this minor idea, we actually reach several interesting key points of
the real option game framework. Allowing the arbitrator to allow simultaneous investment also, we
provide a unification of both endogenous attribution of roles with and without Stackelberg advan-
tage. And then, allowing any weights on the arbitrator’s decision, we make appearing new economical
interactions.
Let us take a brief moment to describe one of those we have in mind. Assume that two economical
agents are running for the investment in a project in time with possibility of simultaneous investment,
as in [5]. In practice, even if they are accurately described as symmetrical, they would never act at
the exact same time, providing that instantaneous action in a continuous time model is just an
idealized situation. Instead, they show their intention to invest to a third party (a regulator, a public
institution) at approximatively the same time. An answer to a call for tenders is a typical example
of such interactions. Assume now that this arbitrator decides at last on how to proceed and has
some flexibility in his judgment. For example, he can evaluate whose agent is the most suitable to
be granted the project as a leader regarding qualitative criteria. This situation might be illustrated
in particular where numerous environmental or health exigences are in line. When simultaneous
investment is impossible, the real estate market example of [6] can also be cited again with in mind
that safety constraints, but also aesthetic or confidence dimension, can intervene in the decision of a
market regulator. We emphasize here that the arbitrator is not explicitly unfair, but that exogenous
criteria might be taken into account in his decision. In those cases, there is an asymmetry in the
chance to be elected as a leader and perfectly informed players should take into account this fact into
their decision to invest or to differ. Those are some of the situations the introduction of a partial
arbitrator can shed some light on.
Let us present how the remaining of the paper proceeds. In the next section, we introduce the theoret-
ical framework of real option games with an arbitrator. This abstract setting allows to introduce very
easily the arbitrator as a specific asymmetry and already provides Nash equilibriums in the different
possible situations we encounter hereafter. Moreover, it gives a road-map for alternative models, such
as incomplete market and war of attrition games.
In Section 3, we apply the above result to the real option framework. Therefore, we will speak of
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firms to designate players, and the arbitrator of the game will be referred as the regulator on the
project market. This is not an intention to create confusion, but to suit the economical situation it
is supposed to describe. We rely on the ideal situation where the project cash flows are perfectly
correlated to an asset price. We could then deduce that we fall in the setting of a complete market,
but provided that firms cannot hedge or predict the decision of the regulator, this situation falls
actually in the incomplete market framework. We then assume that firms are risk-neutral, as in the
standard real option model, see [1]. This section is the opportunity to make case studies of different
parameterizations of the regulator in order to see the effect of the market advantage provided by the
latter. Singular parameterizations allow to retrieve standard cases or purely asymmetrical situations
in the regulator preferences. We even provide a real option price for the advantage of being completely
preferred by the regulator, in the manner and spirit of the priority option of [5]. We end the section
discussing pertinent choices over multiple Nash equilibriums.
We continue and end the study in Section 4 by assuming that firms are risk-averse, and have a
constant absolute risk aversion. This allows us to focus on the effect of the additional randomness
induced by the regulator decision and the coordination game on firms decision to invest: since payoffs
are already computed in a complete market setting, the risk aversion is reduced to an aversion for
confrontation. We prove that in the complete market setting, the risk-averse case is a continuous
extension of the risk-neutral case. We also emphasize the effect of aversion for confrontation in the
asymmetrical case. We conclude by a discussion in Section 5.
One last thing shall be said before getting to the heart of the matter. The real option framework
implies the derivation of value functions corresponding to expected project values. For this matter,
we follow and rely heavily on the recent [5], where the complete market model is fully explored. We
thus avoid technical well-known mathematical developments and focus on the interactions between
firms. We prefer to ease reading fluidity by developing as little as possible mathematics along the
text, which are actually straightforward computations. We acknowledge [5] as a starting point for
our study, and refer the reader to this article for many details, as also a very good first incursion in
the real option game treated with formality. We apologize for such a subjective suggestion and the
omission of the impressive amount of literature on the topic since the seminal paper of Fudenberg and
Tirole [4] or the PhD thesis of Smets [8]. Again, we refer to [1, 3] for a fairer and more exhaustive
homage to the many contributions to real option games.

2 The continuous Markov preemption game

2.1 Framework

Time is represented by the positive half-line {t ≥ 0}. We consider a stochastic basis (Ω,F ,F,P) where
F := (Ft)t≥0 is a filtration satisfying usual nice properties. We consider a continuous and Markov
state process Y , F-adapted, which takes values in R. The real option game with a random arbitrator
is the following. Two symmetrical players (endowed with a utility function U) start at time 0 with
an option to exercise at an arbitrary time t ≥ 0, provided the information given by the σ-algebra Ft.
The first one to exercise the option at time t receives the payoff L(t, Yt) (as leader). The other player
then receives the payoff F (t, Yt) (as follower). If both players act at the same time, an arbitrator
intervenes instantaneously. In our setting, he can choose one alternative among three: he can give
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L(t, Yt) to first player and F (t, Yt) to second player, or the converse, or give an equal payoff S(t, Yt) to
both players. More explicitly L, F and S are the expected utility of some future cash-flows depending
on the evolution of the state process. In full generality, they are measurable functions of t and Yt.
The latter being Markov, the dependence is reduced to the actual value Yt at time t, as we will see in
application. If nothing happens at some time t, the system evolves and is infinitely repeated as time
goes by, see Fudenberg & Tirole [4] for the seminal formalization of the continuous-time game.
We assume that agents cannot predict the decision of the arbitrator, but the arbitrator decision
can depend on F. We introduce a probability space (Λ,P(Λ),A) where Λ = {α1, α2, αS}. We then
introduce the product space (Ω × Λ,F × P(Λ),P × A) and the augmented filtration F+ := (F+

t )t≥0

with F+
t := σ{Ft,P(Λ)}. The arbitrator is represented by stochastic processes (A1, A2) which is

F+-adapted. For t ≥ 0 and (ω, α) ∈ Ω× Λ,

(A1, A2)(t, (ω, α)) :=


(L,F )(t, Yt(ω)) if α = α1

(F,L)(t, Yt(ω)) if α = α2

(S, S)(t, Yt(ω)) if α = αS

.

The probability A is given by the triplet {q1, q2, qS}. We will assume without loss of generality that
q1 ≥ q2 in all the paper. The model can be easily extended by refining the arbitrator’s representation:
one can introduce time dependence, additional outcomes or asymmetrical payoffs, for example as in
[10]. We omit these complications and let them to practitioners, bearing in mind that there is no
additional difficulty.

2.2 Condition for the coordination game

Let us fix t and Yt and denote L := L(t, Yt), F := F (t, Yt) and S := (t, Yt). Payoffs L, F and S

cannot take arbitrary values for the preemptive game and the taxonomy of situations produces three
standard cases. We will illustrate this reduction in the next section. We now consider two among
them, which are the non ambiguous cases for the regular framework:

(d) When F > L > S, both players desire to acquire the payoff F . Neither player wants to act first,
so that the situation is standard: players differ action.

(e) When L = F = S, each firm is indifferent to receiving F or S, which is also equal to L. Both
players act, whatever the decision of the arbitrator. We then retrieve the standard case: players
exercise their option together.

The attentive reader might wonder what happens at end-points of the above cases, when F = L > S

for example. This is postponed to the specific cases of Sections 3. One can easily extend the above
procedure to the attrition game also to obtain another taxonomy of cases.

The coordination game The third case, when L > F > S, presents the situation where both
players want to act, but might prefer to receive F rather than S. It is the occasion to introduce
a coordination game. Players are in a coordination situation. To overcome the specificity of the
latter in the continuous time setting, Fudenberg and Tirole [4] developed a timing game equilibrium
framework. A recent contribution of Thijssen & al. [11] extended the approach to the stochastic
setting. It consists in extending the time domain to index pairs (t, k) ∈ R+ × N∗, with the lexical
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order. That means that being at time t, with the payoffs defined above, we extend the time line by
freezing real time t and indefinitely repeating the following game on natural time k:

Exercise Differ
Exercise (S1, S2) (L,F )

Differ (F,L) Repeat

Table 1: Coordination game at a fixed time t.

The game has three different outcomes and the exit of the repeated game without the action of at
least one player is not permitted. For the continuous time game, this implies that in the present
situation of confrontation there must be instantaneous emergence of at least one player, and the
game ends here. The situation when players exercise simultaneously and the arbitrator is called upon
is actually a particular example of asymmetric game. Indeed in that situation, the outcome of the
game is random for both players. Each player then has its own expected utility Si for an outcome,
given by the expectation of Ai according to its law A.

(S1, S2) := (q1L+ q2S + qSS, q2L+ q1F + qSS) . (2.1)

2.3 Sub-game perfect Nash equilibria of the coordination game

Following [11] and [5], we introduce the formal framework of strategies for the coordination game. We
raise the reader’s awareness on the assumption that t does not intervene in any payoff function due to
the Markov structure of Y . This is why we focus on Markov sub-game perfect equilibrium strategies.
To obtain the latter, we proceed to the time extension (t, k) ∈ R+ × N∗ of the model. The filtration
is defined via Ft,i = Ft,j ⊆ Ft′,i for any t < t′ and any i 6= j, and the state process is extended
to Y(t,k) := Yt. A simple strategy for player i ∈ {1, 2} is defined as a pair of F-adapted processes
(Gi(t,k), p

i
(t,k)) taking values in [0, 1]2. The process Gi(t,k) must be a non-decreasing càdlàg process,

and refers to the cumulative probability of firm i exercising before (t, k), whereas pi(t,k) denotes the
probability of exercising in the coordinate game we introduced with Table 1. As we noticed, Y
is a continuous Markov process and that allows us to focus without loss of generality on Markov
hitting-time strategies of the type Gi(t,k)(ŷ) ≡ Git(ŷ) ≡ 1{t≥τ(Ŷ )} with τ(Ŷ ) := inf{t ≥ 0 : Yt ≥ Ŷ }.
Explicitly, pi(t,k) is a strategy for the discretely repeated game at time t, so that it should be stationary
and not depend on the previous rounds of the game: pi(t,k) ≡ pit ≡ pi(Yt) for i = 1, 2. We openly
address the conclusion of [5] on the use of strategies: the repeated discrete game is played only with
(pi(t,k))i=1,2 if L(t, Yt) ≥ F (t, Yt) > S(t, Yt). The processes (Gi(t,k))i=1,2 are kept when players do not
exercise immediately the option, and when exercise depends on a specific stopping time of the form
τ(Ŷ ). Details can be found in [11] and application is reported to further section. Let us now assume
that

max(p1, p2) > 0, (2.2)

to remind us that L ≥ F > S and that we are in situation where players want to act. In this infinite
2-by-2 game, there are three possible outcomes:

• Player one receives payoff L if he exercises alone at any round k > 0, provided that nobody
exercised before. The probability is given by
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a1 := p1(1− p2) + (1− p1)p1(1− p2)2 + . . .

= p1
∑
k∈N∗

(1− p1)k−1(1− p2)k

= p1(1− p2)
p1 + p2 − p1p2

.

Player two receives payoff F .

• Symmetrically, Player two receives payoff L (and Player one, F ) with probability

a2 := p2(1− p1)
p1 + p2 − p1p2

.

• Players play simultaneously with probability

aS := p1p2

p1 + p2 − p1p2

and the arbitrator is invoked.

Nash equilibria Each player regards the expected utility provided by each possible decision, and
then chooses a mixed strategy in consequence. The confrontation being instantaneous, players know
that just after it they will receive a specific expected utility of the form L,F or Si. Therefore, they
are taking into account the uncertainty of their own strategy and the uncertainty of the arbitrator’s
decision. Focus on that particular phenomenon is the purpose of Section 4. Players will to maximize
the quantity

E1 := a1L+ a2F + aSS1 (2.3)

for player one, E2 := a2L + a1F + aSS2 for player two. As explained in Appendix C of [5], we look
for Nash equilibriums by first fixing p2 and differentiate E1 with respect to p1 to obtain a first order
condition for the optimal value of p1 for player one:

∂E1

∂p1
(p1, p2) = p2(L− F ) + p2

2(S1 − L)
(p1(1− p2) + p2)2 (2.4)

Paying attention to this expression, one can then see that by denoting

P2 := L− F
L− S1

= L− F
q2(L− F ) + qS(L− S) , (2.5)

the sign of (2.4) is the sign of p2−P2. We have a similar discrimination for second player by symmetry
of expressions, necessitating to introduces the value P1 := (L− F )/(L− S2). We then look for naive
equilibriums in the following manner:

(i) If p2 > P2, the optimal p1 is 0. Then by (2.4) E2 should not depend on p2, and the situation is
stable for any pair (0, p2) with p2 in (P2, 1].

(ii) If p2 = P2, E1 is constant and p1 can take any value. If p1 < P1, then by symmetry p2 should
take value 1, leading to case (i). If p1 = P1, E2 is constant and either p2 = P2, or we fall in
case (i) or (iii). The only possible equilibrium is thus (P1, P2).
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(iii) If p2 < P2, E1 is increasing with p1 and player one shall play with probability p1 = 1 > P1.
Therefore p2 optimizes E2 when being 0, and E1 becomes independent of p1. Altogether,
situation stays unchanged if p1 ∈ (P1, 1] or if p1 = 0. Otherwise, if p1 ≤ P1, we fall back into
cases (i) or (ii). The equilibria here are (p1, 0) with p1 ∈ (P1, 1], and the trivial case (0, 0).

Recalling constraint (2.2), we get rid of case (0, 0). Coming back to the issue of the game when
k goes to infinity in (t, k), three situations emerge from the above calculation. Two of them are
pure coordinated equilibriums, of the type (a1, a2) = (1, 0) or (0, 1), which can be produced by
pure coordinated strategies (p1, p2) = (a1, a2), settling the game in only one round. The third one
is a mixed equilibrium given by (p1, p2) := (P1, P2), for which (a1, a2, aS) follows according to its
definition,

(a1, a2, aS) =
(

1− p0

2− p0
,

1− p0

2− p0
,

p0

2− p0

)
, (2.6)

with p0 := (L−F )/(L−S). If we plug (2.6) into (2.3), we obtain that the payoff of respective players
do not depend on (q1, q2, qS):

E1 = E2 = 1− p0

2− p0
(L+ F ) + a0

2− p0
S . (2.7)

In the case qS > 0, they are equal to F . This recalls the rent equalization principle of [4]: players
are indifferent between playing the game and being the follower. More than that, the asymmetry
does not affect the payoffs and the final outcome of the game after decision of the arbitrator has the
same probability as in [5]. Comparing the payoffs for pure and mixed strategies, we find no unique
Pareto-optimal strategy.

Remark 2.1. Take qS = 1. Note that by assuming that the symmetry of firms imposes p1 = p2 =: p0

and a1 = a2 in (2.5), we retrieve the case of [5], where we actually obtain a1 = a2. Conversely,
optimal probabilities Pi in the general case can be computed from p0 defined for (2.6):

Pi = p0

qip0 + qS
, i ∈ {1, 2}. (2.8)

Influence of arbitrator’s preferences Prior to the selection among multiple Nash equilibria, one
shall ask whether value Pi is greater or equal to 1 for i = 1, 2, so that the previous equilibriums may
not be reachable. If we recall that q1 ≥ q2, we directly obtain from (2.1) that

S1 ≥ S2 .

According to that, we have L > F ≥ S1 ≥ S2 so that P2 ≥ P1 ≥ 0. Therefore, using the same
procedure to find Nash equilibria as above, we find the following possibilities, which we detail in the
next section:

(a) P1 < P2 < 1: the three equilibria from above calculation are (0, 1), (P1, P2) and (1, 0).

(b) P1 < 1 ≤ P2: we find only one Nash equilibrium which is (1, 0).

(c) 1 ≤ P1 < P2: we find only one Nash equilibrium which is (1, 1).

7



Recall that (P1, P2) is the only mixed strategy in case (a), and thus the only trembling-hand sub-game
perfect equilibrium. It will correspond to the more natural strategy in the sequel, not only because of
the robustness of this additional criterion and its pertinence in real world situations, but also because
it is also the natural extension of the symmetrical case where both players have the same strategy.
We will however fall in a special situation in the next section where one of the three others is more
relevant. In case (b), we observe the asymmetry between players. On this frame, there is a strategic
advantage of player one, and expected payoffs follow: (E1, E2) = (L,F ). In case (c), both players
exercise the option as in the case (e): the arbitrator decides and the advantage of player one resides
in q1 ≥ q2: (E1, E2) = (S1, S2).

Formalization of the coin toss procedure Assume a Stackelberg competition where simulta-
neous investment is impossible, i.e., qS = 0. Following definitions (2.1) and (2.5), and assuming
qi ∈ (0, 1), we have Pi = 1/qi > 1 for i = 1, 2. Therefore, only case (c) from above is possible, which
is the situation commonly found in the framework using a coin toss procedure. Here (p1, p2) = (1, 1),
giving the instantaneous situation (a1, a2, aS) = (1/2, 1/2, 0). To our knowledge, papers invoking a
coin toss, i.e., an arbitrator, assume that both players have the same chance to be elected as a leader.
There is however no need for the regulator to be fair. This is a foreseeable phenomenon, since for
L > F , it is always more interesting to obtain qiL + (1 − qi)F rather than F . Note that if players
behave symmetrically here, the expected payoff is not the same for each one and depends on q1. This
will also be true for any convex combination instead of a linear one, meaning that the behavior is
expected to be the same with risk-averse players. However, for risk-affine players, this does not hold
any more. We do not investigate this peculiar setting reserved to particular economical situations,
although it might suit the real option framework, and leave this for further research. The case where
q1 = 1 is left to next section.

3 Risk neutral agents in a semi-complete market

We now apply this framework to the investment decision when the project value is driven by a
Brownian motion and is perfectly correlated with a traded asset in a complete market. This is the
most common studied economical situation, see [8, 6, 7, 1, 5]. We focus on the different laws A to
study the effect of a regulator on firms decision. The introduction of the regulator however makes
the payoffs Si not duplicable, so that we need a pricing criterion for firms. We assume here they are
risk-neutral, i.e., their utility function is given by U(x) = x.

3.1 The model and value functions

We consider two firms that can invest in a similar project with random cash flows and a fixed initial
sunk cost K. The cash-flows are the product of a demand variable process Y and an inverse demand
curve (DQ(t))t≥0, where Q(t) is the number of firms which have invested in the project by time t. The
process DQ can only take the following three values D0 = 0 < D2 < D1 and the stochastic process Y
is precisely denoted Y t,y if it verifies

Y t,yt = y and dYs = Ys(νds+ ηdWs), s ≥ t,
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with (Wt)t≥0 a standard Brownian motion under the historical measure P. We assume that Y is
perfectly correlated with a liquid traded asset P with dynamics

dPt = Pt(µdt+ σdWt) = Pt(rdt+ σdWQ
t )

where r is the constant interest rate of a risk-less bank account at the disposal of each firm, and
WQ
t = Wt + λt is a Brownian motion under the unique risk-neutral measure Q of the arbitrage-free

market. The variable λ in its expression is the Sharpe ratio equal to (µ− r)/σ.

The follower’s problem Assume that one of the two firms, say firm one, desires to invest at time
t. If Q(t) = 1, then the available market for firm one is D2. Having a complete financial market
at her disposal to replicate the uncertain incomes of the project, the value of the latter at time t if
Y t,yt = y is given by the risk-neutral expectation of the project’s discounted cash flows

V F (t, y) = EQ
[∫ ∞

t

e−r(s−t)D2Y
t,y
s ds

]
= D2y

ηλ− (ν − r) = D2y

δ

with δ := ηλ − (ν − r). We assume from now on δ > 0. But firm one can wait to invest, and we
suppose she can wait as long as she wants. She has to pay the cost K at time τ she invests. In the
financial literature, this is interpreted as a Russian call option of payoff (D2Yτ/δ −K)+. The value
function of this option is given by

F (t, y) := sup
τ∈Tt

EQ

[
e−r(τ−t)

(
D2Y

t,y
τ

δ
−K

)+

1{τ<+∞}|Ft

]
(3.1)

where Tt denotes the collection of all F-stopping times with values in [t,∞]. We now recall Proposition
1 of [5] which gives the explicit solution to (3.1).

Proposition 3.1. The solution to (3.1) is given by

F (t, y) =
{

K
β−1

(
y
YF

β
)

if y ≤ YF ,
D2y
δ −K if y > YF ,

(3.2)

with a threshold YF given by
YF := δKβ

D2(β − 1) (3.3)

and

β :=
(

1
2 −

r − δ
η2

)
+

√(
1
2 −

r − δ
η2

)2
+ 2r
η2 > 1. (3.4)

The behavior of the follower firm is thus quite explicit. She will differ investment until the demand
reaches at least the level YF = β/(β − 1)K > K which depends on the profitability of the project.

The leader’s problem Assume now that instead of having Q(t) = 1, Q(t) = 0. Firm one investing
at time t will receive cash-flows associated to the level D1 for some time, but she expects firm two to
enter the market when the threshold YF is triggered. After the moment τ(YF ), both firms share the
market and firm one receives cash flows determined by level D2. The project value is thus
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V L(t, y) := EQ
[∫ ∞

t

e−r(s−t)(D11{s<τs} +D21{s≥τs})Y
t,y
s ds

]
= D1y

δ
− (D1 −D2)YF

δ

(
y

YF

)β
where detailed computation can be found in [5]. This allows to characterize the leader’s value function
L(t, y), i.e., the option to invest at time t for a demand y, as well as the value of the project S(t, y)
in the situation of simultaneous investment (Proposition 2 in [5]). Note that here no exercise time is
involved as we consider the interest of exercising immediately, Y being non-negative.

Proposition 3.2. The value of a leader’s option is given by

L(t, y) =

 D1y
δ −

(D1−D2)
D2

Kβ
β−1

(
y
YF

)β
if y < YF ,

D2y
δ −K if y ≥ YF ,

(3.5)

If both firms invest simultaneously, we have

S(t, y) := D2y

δ
−K . (3.6)

The last case applies if the follower invests immediately after the leader or if the regulator picks up
the third outcome: (A1, A2) = (S, S).

3.2 Equilibrium study with a partial regulator

It is now appropriate to recall the preemptive game we stated in Section 2. To this end, we need in
this setting the following proposition, again formally proved in [5].

Proposition 3.3. There exists a unique point YL ∈ (0, YF ) such that
S(t, y) < L(t, y) < F (t, y) for y < YL,

S(t, y) < L(t, y) = F (t, y) for y = YL,

S(t, y) < F (t, y) < L(t, y) for YL < y < YF ,

S(t, y) = F (t, y) = L(t, y) for y ≥ YF .

(3.7)

We retrieve two explicit cases: when y < YL, where the two firms wait to obtain a better return of
the project, and when y ≥ YF , leading to immediate commitment of firms, whatever the decision of
the regulator. These correspond respectively to cases (d) and (e) of previous section. We now look
more deeply into the case YL ≤ y ≤ YF .

Risk-neutral agents and semi-complete market According to the Markovian framework we
will fix t = 0 and consider the process Y 0,y without loss of generality. Henceforth, we omit the t
dependency in value functions and strategies. Coming back to the situation where y ∈ (YL, YF ),
firms are facing a coordination game similar to the one of subsection 2.3. Notice that the regulator
intervenes in the coordination game only once and if both firms want to invest at the same time.
Since we assumed that the regulator decision is not F-adapted but F+-adapted, firms face a market
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incompleteness. We thus introduce now the fact that firms are risk-neutral, i.e., they will estimate
the value of the outcome Ai defined above by taking their expectations under A:{

S1(y) = q1L(y) + q2F (Y ) + qSS(y) for firm 1,
S2(y) = q2L(y) + q1F (Y ) + qSS(y) for firm 2.

(3.8)

Values L(y), F (y) and S(y) are still computed under the risk-neutral measure Q on Ω. That means
that expectations of (3.8) are made under the minimal entropy martingale measure Q × A for this
problem, and that uncertainty of the model follows a semi-complete market hypothesis: if we reduce
uncertainty to the market information, i.e., the filtration F, then the market is considered as complete.
It is a very convenient assumption when central limit theorem can be invoked for the orthogonal
random variable, as in diversification for insurance purpose. See [2] for the formal definition and
corresponding situations. Here it is not the case, and we include the risk-neutral assumption to
obtain simple solutions. Firms value the arbitrator’s intervention by just weighting each arbitrage-
free price by its historical probability. The risk-averse case is postponed to the next section.

The case study Since the cases qS = 1 and qS = 0 were studied in section 2, we now study the
general case 0 < q2 ≤ q1 < 1− q2 of subsection 2.3 with respect to the value of y. In reference to [5],
we provide a proposition allowing to define the regions (a), (b) and (c).

Proposition 3.4. The functions P2 and P1 are increasing on [YL, YF ].

Proof By taking d1(y) := L(y)− F (y) and d2(y) := S(y)− F (y), we get

Pi(y) = 1
qi

[
d1(y)

d1(y) + γi(d1(y)− d2(y))

]
and

P ′i (y) = 1
qi

[
γi(d1(y)d′2(y)− d2(y)d′1(y))
(d1(y) + γi(d1(y)− d2(y)))2

]
where γi := qS/qi ≤ 1 with i ∈ {1, 2}. We are thus interested in the sign of the quantity g(y) :=
d1(y)d′2(y)− d2(y)d′1(y) which quickly leads to

g(y)δ
yD2

=
(
y

YF

)β−1 [
(D1 −D2)(β + 1

β
− 2− δK

D2
)
]

+ δK

D2
(D1 −D2) .

Since β > 1, (y/YF )β−1 is an increasing function. Since 0 < y ≤ YF , it suffices to verify that
(δK)/D2 ≥ (β + 1/β − 2 − (δK)/D2), which is naturally the case for any β, to obtain that g is
non-negative on the interval.
As a by-product, this proves that p0 := p1 = p2 in the case qS = 1 is increasing with y. This fact was
already observed in [5].

Subregions Note that the quantities q1 and q2 do not affect the monotonicity of P2 and P1. We
already know that P2(y) ≥ P1(y). Looking back at (2.5), we also have that P2(YL) = P1(YL) = 0 and
Pi(YF ) = 1/(qi + qS) > 1 for i = 1, 2. This implies that we retrieve the three subregions (a), (b) and
(c) of previous section:

11



(a) the interval (YL, Y1) for some Y1 ∈ (YL, YF ) on which P1(y) ≤ P2(y) < 1 and such that
P2(Y1) = 1. The point Y1 verifies

F (Y1) = q1L(Y1) + q2F (Y1) + qSS(Y1) = S1(Y1) . (3.9)

For this interval, we are in the situation described in subsection 2.3 where three Nash equilibria
are possible, and only (p1(y), p2(y)) = (P1(y), P2(y)) is kept, as it is the only trembling-hand
perfect equilibrium. We also keep that one because it is the one involved in the fair situation
of [5]. For this strategy, the probabilities of outcomes of the game are given by the triplet (2.6)
and the payoffs by (2.7).

(b) The next case is given by interval (Y1, Y2) for some Y2 ∈ (Y1, YF ), on which P1(y) < 1 ≤ P2(y).
The reader will guess that Y2 is chosen such that P1(Y2) = 1, and verifies

F (Y2) = q2L(Y2) + q1F (Y2) + qSS(Y2) = S2(Y2) . (3.10)

We just said that S1(Y1) = F (Y1). Being risk-neutral, the first firm prefers being a leader
after τ(Y1) and is indifferent between being follower or letting the regulator chose. For the
other firm, differing means receiving F (Y1) and exercising means letting the regulator give an
expected payoff q1F (Y1) + q2L(Y1) + qSS(Y1) < F . Differing is her best option. That means
that on (Y1, Y2), the equilibrium strategies are (p1, p2) = (1, 0).

(c) On the interval (Y2, YF ), the second firm can finally bear the regulator preference for first firm
and be indifferent between followership and a decision of the regulator. Here, 1 ≤ P1(y) ≤ P2(y)
and firms has a greater expected payoff by letting the regulator choose rather than being follower.
According to the facts stated in subsection 2.3, equilibrium exists when both firms exercise.

Endpoints We separate the study of junctures of areas (d),(a),(b),(c) and (e). The technical issue
has been settled in [11] and we recall the strategy G when needed.

(a) The juncture of [0, YL) with [YL, Y1] is a delicate point. At the left of point YL, no firm wants
to invest. We thus shall use the strategy Gi(YL) for both players. By right-continuity of this
process, both players shall exercise with probability 1 at point YL. At the right side of point
YL however, Pi converges to 0 when y converges to YL, for i = 1, 2. Therefore, so do (p1, p2)
toward (0, 0). We cannot reconcile Giτ(YL)(YL) with (p1(YL), p2(YL)) = (0, 0) and shall compare
the payoffs. It is clear at point YL that the second option is better for both firms. There is
also a continuity of behavior between (d) and (a) from the fact that simultaneous investment is
improbable at point YL, and probability aS(y) is continuous at this point: a short calculation
provides

lim
y↓YL

a1(y)
a2(y) = 1 and lim

y↓YL

as(y) = 0 . (3.11)

Therefore at point YL,

(a1(YL), a2(YL), aS(YL)) = (1/2, 1/2, 0) .
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(b) On the left of Y1, we find that P2(y) goes to 1 and (a1, a2, aS) tends toward (0, 1−P1(Y1), P1(Y1)).
As long as y < Y1 the equilibrium is given by (p1(y), p2(y)) = (P1(y), P2(y)). However, following
(3.9), S1(y) goes to F (Y1) and at point Y1, firm one has interest to exercise the option with
probability one. Nevertheless, she does not make use of strategy G1(Y1) since the coordination
game implies the settlement of the game on [YL, Y1). There is still a discontinuity, and behavior
at Y1 is the same as on (Y1, Y2), given by (p1, p2) = (1, 0).

(c) It is clear that for y < Y2, F (y) > S2(y), and since first firm has a definite advantage not to
hesitate exercising her option, the second firm will differ exercise until τ(Y2). For point Y2, we
shall then introduce the strategy G2(Y2) for firm two. By right-continuity of this process, the
strategy at point Y2 is given by (p1, p2) = (1, 1). There is no conflict in doing such, but another
discontinuity.

(e) The continuity of strategies at point YF spares us from detailing.

Few comments are in order. On the right of point YL, the asymptotic probabilities of outcomes given
by equation (3.11) tend to the fair distribution of [5]. This is a direct consequence of aS vanishing
to 0, and thus less intervention from the regulator. At point Y1, there is a strong discontinuity in
the optimal behavior of the second firm. For y < Y1, the mixed strategy used by the latter tends
toward a pure strategy with systematic investment. However at the point itself, the second firm
differs investment and becomes the follower. We propose the following interpretation. As y tends to
Y1 from left, firm one is less refrained from investing, although her probability to act is still lower
than the one of firm two. For firm two, this is the signal that she should invest and try to preempt
firm one, otherwise she will clearly lose interest in the preemption situation when Y1 is reach. For
firm one, being a follower is better than letting the regulator decide before Y1. At the point however,
she is indifferent between these two positions so that she will suddenly seek for the leader’s position,
creating another discontinuity in her behavior.

3.3 Extreme cases and the value of being preferred

Continuous unification of classical frameworks Starting from the framework where sharing the
market is the only outcome of a simultaneous investment, we can see that the progressive introduction
of alternatives in the regulator’s range of decisions reduces the synchronization game to [YL, Y1], and
intervention of the regulator comes at point Y2, lower than YF . In the case where q1 = q2 =: q, and
Y1 = Y2 =: YS , the intermediate advantage given to the first firm reduces to nothing. Assuming this
is the case, we obtain two limits

lim
q↑1/2

YS = YL and lim
q↓0

YS = YF .

Therefore, our setting encompasses in a continuous manner the two usual types of games described
in the previous section.

The value of being preferred We continue the case study with q1 = 1 − q2 = 1. Firm one
is completely preferred to firm two. We intend to draw the reader’s attention on the fact that the
leader’s role is not decided exogenously. The advantage of firm one is conditioned to the simultaneity
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Figure 1: Values of equilibrium mixed strategies p1(y) (blue) and p2(y) (red) in the asymmetrical case (q1, q2, qS) =
(0.5, 0.2, 0.3). Areas (a), (b) and (c) are separated by vertical lines at Y1 = 0.53 and Y2 = 0.72 on [YL, YF ] = [0.37, 1.83].
Area (d) is then at the left of the graph and (e) at the right of it. Note that p1 and p2 are right-continuous. Parameters
set at (K, ν, η, µ, σ, r,D1, D2) = (10, 0.01, 0.2, 0.04, 0.3, 0.03, 1, 0.35).

of investment decision of firms. If firm two preempts firm one, this advantage is useless. For firm two
also, this is a privilege in the case of simultaneous investment since it gives her the choice to postpone
investment. In that case P1 = 1, and firm one has always interest to exercise the option for y ≥ YL.
Knowing that, firm two shall wait the trigger YF to exercise her option. To sum up, the equilibrium
behavior of firms is (p1, p2) = (1, 0) on [YL, YF ), which corresponds to case (b) exclusively.
For curiosity, we compare here this situation to the case qS = 1. We do that because [5] already
compared the situation qS = 1 to the ex-ante attribution of roles, where firm two is the follower and
must wait for firm one to exercise her option. The difference of value for the leader is designed to be a
priority option, i.e., the value of being designated leader. Here, we introduce a weaker option, which
only gives the value of being preferred by the regulator. The option allows to shift (q1, qS) from (0, 1)
to (1, 0), and is more straightforward to compute. We compare in Figure 2 the two option values.
Following definition (2.3), we denote E(q1,qS)

1 (y) the expected payoff of firm one when Q = 0, with q1

and qS explicitly given. Let us define now the value of being preferred by π0(y) := E
(1,0)
1 (y)−E(0,1)

1 (y).
For y ≥ YL, E(1,0)

1 (y) = L(y). By equation (2.7), we retrieve the rent equalization principle which
says that E(0,1)

1 (y) = F (y). If y < YL, by continuity of the demand process, firm one should exercise
at time τ(YL) where L(YL) = F (YL) to avoid preemption of her opponent. Her expected additional
value is thus 0. Altogether, π0 is given by

π0(y) = (L(y)− F (y))+ for all y ≥ 0.

Remark 3.1. This option has three interesting properties.

• Firstly, it gives an advantage to its owner without penalizing the other firm, who can still expect
the payoff F .

• Consider the incomplete information assumption where firm one knows that (q1, qS) = (1, 0)
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and firm two assumes wrongly that (q1, qS) = (0, 1). Then the behavior of firm two will change
to a mixed strategy P2(y) on [YL, Y1), differs on [Y1, Y2) ad exercises on [Y2,∞). Firm one’s
best behavior is thus to invest with probability one on interval [YL, YF ], which is exactly what is
already recommended with the option in hand in the perfect information setting. Therefore, no
advantage is given by hiding the regulator’s decision to the penalized firm.

• There is no advantage of being preferred if the follower’s option value is greater or equal to the
leader’s value function, even with the consideration of evolution of the latter, see Figure 2. This
is due to the continuity of the state variable Y . A question that naturally arises is whether the
introduction of jumps in the state variable dynamics has a pertinent effect on the value of being
preferred.
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0 0.5 1 1.5 2 2.5 3

priority option
preference option

Figure 2: Priority option value (red) and Preference option value (blue) in function of y. Vertical lines at YL = 0.37,
Y1 = 0.64, Y2 = 1.37 and YF = 1.83. Option values are equal on [Y1, Y2]. Same parameters as in Figure 1.

Pure strategy as the best strategy One mathematical situation is left to explore, i.e. q2 = 0
and q1 ∈ (0, 1), but reminding the introduction of the present subsection, we think that it is also
economically relevant to study the exclusion by the regulator of second firm. Imagine for example
that firm one has a definitive advantage, like safety and health standards in the case of a new drug
product, but that simultaneous investment is not literally forbidden and the regulator shall publicly
prove his fairness if simultaneity is acknowledged. We simply observe from equations (3.9) and (3.10)
that if q2 = 0, then Y2 = YF and Y1 verifies F (Y1) = q1L(Y1) + (1 − q1)S(Y1). The consequence
is straightforward: the interval [Y1, Y2) expands to [Y1, YF ). The fact that Y1 > YL for q1 < 1
implies also a specific situation. We intuit the equilibrium (p1, p2) = (1, 0) to be more relevant than
(p1, p2) = (P1, P2) on [YL, Y1). Indeed, if firm one invests systematically on that interval then firm two
has no chance of being the leader (by drastic choice of the regulator), and therefore finds satisfying
the follower’s position. In opposition of the trembling-hand equilibrium, this pure strategy can be
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well figured by being called steady-hand. In that case

(E1(y), E2(y)) = (L(y), F (y)) for y ∈ [YL, Y1) . (3.12)

Comparing (2.7) to (3.12), it appears more interesting for firm one to push firm two to this strategy
with indifference from the latter. There is thus a definitive advantage to play this strategy rather than
the former. Notice also the connexion with the preference option we described in the last paragraph:
E1(y) = E

(1,0)
1 (y).

4 Aversion for confrontation

This section can be considered as an addendum because most ideas regarding asymmetry in front of a
regulator’s decision has been presented in the previous section. We will essentially focus on the effect
of the random decision of the regulator and the mixed strategy by means of risk-aversion of the firms.
We study the combination of both effects in what we call aversion for confrontation. We emphasize
the intricate relation between asymmetry and risk-aversion.

Risk profile in complete market In this section, we do not change the setting of the market,
nor the project’s value: the market is complete. However, we now endow each firm with the same
utility function U designed to be strictly concave. To avoid initial wealth dependency, we focus on
the CARA utility function given by

U(x) = − exp(−γx)

where γ > 0 is the risk-aversion of firms. We then assume that firms start with a null initial wealth.
Since the market is complete and free of arbitrage, both firms still price the leader, the follower and
sharing positions with the unique risk-neutral probability Q. For each of them, a firm receives the
corresponding utility. We denote l(y) := U(L(y)), f(y) := U(F (y)) and s(y) := U(S(y)), and index
variables with γ to make the dependence explicit. In the case where both firms simultaneously declare
their desire to exercise the option, the regulator comes into play. In that case, he randomly attributes
a payoff to each player, which receives a utility from it. The regulator is then defined via

(A1, A2)(y) :=


(l, f)(y) with probability q1

(f, l)(y) with probability q2

(s, s)(y) with probability qS
.

As the reader is now aware of, the regulator only intervenes in one outcome of the coordination game
of Table 1. Prior to that, each firm uses a mixed strategy pγi , in order to maximize the expected
utility (2.3):

Eγ1 (y) = (aγ1 + aγs q1)l(y) + (aγ2 + aγSq2)f(y) + aγs qSs(y) (4.1)

We then understand that all the calculus of Section 3 hold in this setting by just changing (L,F, S)
for (l, f, s). It follows that in that case

Pi,γ(y) = l(y)− f(y)
qi(l(y)− f(y))− qS(l(y)− s(y)) with i ∈ {1, 2}, (4.2)

and that, as in section 3, the behavior of firms can be characterized by four strategic interaction types
depending on the value of y on four intervals (d), (a), (b) and (c)+(e).
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Influence of aversion on regions (a),(b) and (c) The question we address in this section is
how risk-aversion influences the different intervals. Notice that the definition of regions (d) and
(e) do not change since they are independent from risk-profile of players: prices are sufficiently
explicit under the complete market hypothesis. Let’s come to the analysis of regions (a), (b) and
(c), and focus on (a) where (4.2) is used. To that purpose, we first consider the case qS = 1 where
P1,γ(y) = P2,γ(y) =: pγ(y), and (b) and (c) reduce to nothing. Consider a fixed value y ∈ (YL, YF ) to
avoid putting it in the notations. From (4.2) we get

pγ = l − f
l − s

= −e
γL + eγF

−eγL + eγS
= eγ(L−F ) − 1
eγ(L−S) − 1

.

Since u(x) := −1 − U(−x) = eγx − 1 is a positive strictly convex function on [0,∞) with u(0) = 0,
we have that

pγ = u(L− F )
u(L− S) <

L− F
L− S

=: p0 (4.3)

Aversion for confrontation is expressed through diminishing probability of intervention with γ. For
γ going to zero, we apply l’Hôpital’s rule to obtain that limγ↓0 pγ = p0. By augmenting the risk
aversion γ, the probability to act in the infinite game of section 2 reduces to an asymptotic limit:

lim
γ↑∞

pγ = lim
γ↑∞

e−γ(F−S) = 0 .

Note that there is no uniform convergence since p0 is continuous and p0(YF ) = 1. But the above
convergence holds for all y ∈ [YL, YF ). It is clear from (4.3) that pγ is monotonous for γ ∈ (0,∞),
and then according to the above limit, it is convex decreasing with γ.
We now take q2 ≤ q1 < 1− q2. Following Remark 2.1 and relation (2.8), we get that Pi,γ is a concave
non-decreasing functions of pγ . It is then a decreasing function of γ, but we cannot easily state
convexity or concavity of the function. Now recalling that the regions are separated via conditions
P2,γ = 1 and P1,γ = 1, we can state the following:

(a) Since P2,γ(y) is decreasing with γ, Y1 is an increasing function of γ: the region (a) spreads on
the right with γ. Adapting (3.9) to the present values, Y1 shall verify:

q1(1− eγ(L(Y1)−F (Y1))) + qS(1− eγ(S(Y1)−F (Y1))) = 0

and when γ goes to ∞, we need L(Y1)− F (Y1) to go to 0, so that Y1 tends toward YF .

(b) The width of region (b) is not monotonous in γ. From numerical simulation, we observe that
the region is increasing and then decreasing, converging to zero according to (a).

(c) Since P1,γ(y) is decreasing with γ, Y2 is an increasing function of γ: the regions (c) reduces
from the left with γ, until disappearance.

With risk aversion, the region (a) takes more importance and the competitive advantage of firm one
decreases with γ. Figure 3 resumes the evolution.
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Figure 3: Values of Y1 (blue) and Y2 (red) as a function of risk aversion γ. Y-axis limited to [YL, YF ] = [0.37, 1.83].
Limit values of (Y1, Y2) for γ going to 0 corresponds to (0.53, 0.72) of Figure 1. Same parameters as previous figures.

Highlight on region (a) Let us denote (aγ1 , a
γ
2 , a

γ
S) the probabilities of outcomes with risk averse

firms who uses the mixed strategy pγi := Pi,γ , and (a1, a2, aS) the probabilities of outcomes by using
probability pi of Section 3. From above pγi < pi and since aγS is increasing in both variables (pγ1 , p

γ
2),

aγS < aS . (4.4)

Putting (2.8) into aγi , we get
aγi = 1− pγ

2− pγ
− qi
qS

pγ
2− pγ

(4.5)

and differentiating in pγ , we obtain that aγi is increasing in γ. Then we can see that

aγ1
aγ2

= pγ1 − p
γ
1p
γ
2

pγ2 − p
γ
1p
γ
2

= qS − (1− q2)pγ
qS − (1− q1)pγ

(4.6)

and at the limit or using (2.6),

a1

a2
= p1 − p1p2

p2 − p1p2
= qS − (1− q2)p0

qS − (1− q1)p0
= F − S1

F − S2
.

Notice that this last term is lower than 1 on region (a). Differentiating equation (4.6) in pγ and
recalling that q1 ≥ q2 we obtain that aγ1/a

γ
2 is decreasing in pγ , and therefore increasing in γ. As a

corollary,
a1

a2
<
aγ1
aγ2

< lim
γ↑∞

aγ1
aγ2

= 1 . (4.7)

From inequality (4.4) we shall conclude the following. Aversion for confrontation instinctively leads
to a lower probability of simultaneity. This is due to the case that both firms increase their utility
by reducing the risk of their decision. Consider the two reasonable directions : both firms act more
steadily by increasing pγ1 and pγ2 , or on the contrary are more hesitant and reduce these quantities.
By augmenting their probability to act, aγS grows up. However, the intervention of the regulator
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makes leader and follower positions remaining alternatives. Therefore the risk keeps high. If both
firms reduce their instantaneous probability to exercise, aγS reduces and the risk reduces to the two
positions of leader and follower by preemption. When the risk aversion augments, this is the most
desirable alternative. Equation (4.7) confirms that conclusion. The lower the probability of a reg-
ulator intervention, the lower is the impact of the asymmetry. When the regulator is fair, only the
simultaneous exercise probability aγS is affected.

Indifference prices How does γ impact the real outcome of the game? To compare homogeneously
the expected values of options L,F and S to the expected utility provided by (4.1), we inverse the
utility and compute indifference prices ei:

e1,γ(y) := U−1(Eγ1 (y)) = − 1
γ

log (−aγ1 l(y)− aγ2f(y)− aγSsi(y)) .

It is clear that this computation is relevant only in the region (a). Applying Jensen’s inequality to
U−1 and using (4.5),

e1,γ(y) ≤ (aγ1 + aγs q1)L(y) + (aγ2 + aγSq2)F (y) + aγs qSS(y)

≤ 1− pγ
2− pγ

(L(y) + F (y)) + pγ
2− pγ

S(y).

Since pγ is decreasing with γ, comparing e1,γ(y) with E1(y) is not straightforward. We can however
recall that aS goes to 0 when γ increases, and using the above inequality, we get that

lim
γ↑∞

e1,γ(y) < 1
2(L(y) + F (y)) for y ∈ (YL, YF ).

where right-hand term is precisely the expected payoff in the real option game with qS = 0. The
same calculus apply for firm two.

5 Discussion

If real option games model are to be applied, the role of a regulator shall be introduced for many
applications. Indeed regulators often intervene for important projects in energy, territorial acquisition
and highly sensitive products such as drugs. The model we proposed is a first attempt, and could
be improved on several grounds. A realistic but involved complication is the influence of explicit
parameters on the law A, parameters on which agents have some control. The value of being preferred,
introduced as a financial option, would then provide a price to a competitive advantage and to side
efforts to satisfy non-financial criteria. The abstract approach undertaken in Section 2 could be used
with little modifications
Despite its simplicity and its idealization, the real option game with the three outcomes regulator
has still something to say. One can see it as an archetype model, unifying mathematically the
Stackelberg and the Cournot competition frameworks and leading to simple formulae. Beside the
original motivation to rigorously formulate the Stackelberg competition problem, we obtain a complex
and intriguing form of asymmetrical competition, which can settle the ground for more complex
situations. One can see that a partial regulator influences outcomes of the game only partially. If the
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expected value of the project is sufficiently high (when y ≥ Y2), payoffs and strategies are impacted,
and if it is low (when y ≤ Y1), only strategies are. In between lies the real advantage for the preferred
agent. Altogether, it is a complex strategic behavior that emerges from the simplest model.
Finally, the introduction of an additional source of uncertainty has been the opportunity to propose
another dimension of analysis. By focusing risk-aversion only on the uncertainty of the game, we can
extend the model in a completely different direction, where agents are averse to the confrontation
itself. The short analysis provides analytical and numerical foundations to many economical intuitions.
The most relevant here is that aversion for confrontation leads to an implicit fair agreement among
participants to avoid confrontation and the regulator’s intervention. The simplicity and abstraction
of the model forbid us to develop more precisely. However, this method to analyse risk-aversion
implication appears, to our knowledge, a new treatment of real-option games. If it suits particularly
well to our initial setting, we are confident that many symmetrical or asymmetrical situations can be
studied and benefit from such an approach.
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