with the asterisk superscript. Within the classical rep resentation on the strength of materials (see, for exam ple, [START_REF] Yu | Strength of Materials[END_REF]), it is given by the elementary formula (1) where ϕ = S/F is the porosity and F = πR 2 is the total rod cross section area including the pore area. It is easy to understand that depends only on the value of the matrix Young's modulus E and the porosity ϕ and is independent of the pore number n, it always being valid that < E for ϕ ≠ 0. For nanomaterials, the size effect is characteristic, and it is possible to expect the dependence of the effective Young's modulus also on the pore radius or their number. Further, assuming that the pore area S is set, we consider how the effective Young's modulus depends on the number n of pores if we take into account the surface effects. For example, we can determine for which cross sections shown in Fig. 2 the effective Young's modulus is higher.

SURFACE STRESSES

Using the relations of the theory of elasticity with taking into account the surface stresses [1][2][3][START_REF] Ya | Introduction into Mechanics of Surface Phenomena in Deformable Solids[END_REF][START_REF] Duan | [END_REF][6], we con sider the problem of the porous rod tension if the sur face stresses act on the boundaries of pores. The equi librium equations and the boundary conditions on the rod lateral surface have the form

(2)
Here σ is the stress tensor, ∇ is the three dimensional gradient operator, n is the vector of the normal to the body surface, ∂V = Ω ∪ Ω 1 ∪ … ∪ Ω n , Ω is the lateral surface, while Ω k are the pore surfaces on which the surface stresses τ act, ∇ S is the surface gradient opera tor related with ∇ by the formula ∇ S = ∇ -n , and r is the coordinate counted along the normal to Ω and Ω k . On the lateral surface Ω, there are no loads and

E 0 * E 1 ϕ - ( ), = E 0 * E 0 * ∇ σ ⋅ 0 in V, n σ Ω ⋅ 0, = = n σ ⋅ ∇ S τ ⋅ - ( ) Ω k 0, k 1 2 … n. , , , = = ∂ ∂r
surface stresses, and the boundary conditions are accepted on the end faces in the sense of the Saint Venant conditions and consist in fulfilling the integral equations

(3)
where Γ k are the contours of apertures of pores.

The single axis stress state for the cylinder with pores is determined by the formulas The remaining components of stress tensors are zero. Restricting ourselves to the case of an isotropic mate rial, we can show that Hook's law and its surface ana logue [1] result in the equalities where E S is the surface analogue of the Young's mod ulus having the dimension of N/m, ε zz and ⑀ zz are the longitudinal components of strain and surface strain. For this problem, they are identical:

= ⑀ zz = ε. Assuming the strain ε to be constant, we write the rela tion from Eq. ( 3)

(4)
For a homogeneous rod with the effective modulus , the elementary formula is fulfilled

Comparing it with Eq. ( 4), we obtain the value of Because the value of S is fixed, the pore radius r is related to their number n as

(5)
Hence, the relation is fulfilled

(6)
The mathematically correct formulation of the prob lem of the theory of elasticity with the surface stresses requires that E S > 0. Thus, is an increasing func tion of n and > . In other words, the smaller the pore radius, the more stiff the rod with surface stresses becomes.

It is necessary to note that the surface stresses can result in the fact that the stiffness can prove to be even higher for a nanoporous rod than that for the solid one with the same radius R. In fact, it follows from Eq. ( 6) that

σ zz Ω d F\S ∫ ∫ τ zz s d Γ k ∫ k 1 = n ∑ + P, = σ σ zz e z e z , τ ⊗ τ zz e z e z . ⊗ = = σ zz Eε zz , τ zz E S ⑀ zz , = = ε zz Ω k P E F S - ( ) 2πnrE S + [ ] ε . = E S * P E S * Fε, = E S * E S * E 1 ϕ - ( ) E S 2πrn F + E 0 * E S 2πrn F . + = = r S πn . = E S * E 1 ϕ - ( ) E S 2 S πF n + E 0 * E S 2 S πF n. + = = E S * E S * E 0 *
The last condition can be transformed also to the form r < 2E S /E. With taking into account the data for the surface elastic constants [1,[START_REF] Duan | [END_REF], the inequality > E can be fulfilled for such materials as, for example, nanoporous anodic aluminum.

SURFACE LAYER

The variety of materials requires taking into account various factors affecting their mechanical properties. We consider another model of the surface phenomena, which enables us to take into account more precisely the surface effects for porous solids. The comparison carried out in [START_REF] Altenbach | [END_REF] with the case of three layer plates showed that taking into account sur face stresses is equivalent to the presence of surface layers of a certain thickness, the surface elastic moduli being expressed through the Lamé constants of the surface layer material multiplied by its thickness with the thickness tending to zero. At the same time, there are also differences-an elastic body with surface stresses is similar to an elastic body on the surface of which the elastic membrane [2,3] is glued. Thus, the presence of surface stresses in the model always ren ders a reinforcing action. We assume now that there is a thin surface layer of thickness δ in a vicinity of each pore, whose elastic properties differ from those of the matrix. As an example of such a layer, the oxide film arising on the surface of the material can serve. We note that the elastic moduli of the surface layer, for example, the Young's modulus can be both higher (for example, in the Al-Al 2 O 3 system) and lower (Si-SiO 2 ) than that of matrix. For a softer surface layer, it

E S * E for n π 4 S E E S ⎝ ⎠ ⎛ ⎞ 2 . > > E S *
is necessary to expect a decrease in the rod effective stiffness.

For this problem, it is possible to use the formulas of the theory of composites [START_REF] Christensen | Mechanics of Composite Materials[END_REF][START_REF] Jones | Mechanics of Composite Materials[END_REF][START_REF]Encyclopedia of Smart Materials[END_REF] representing the matrix reinforced with fibers. Each fiber represents a hollow cylinder of thickness δ and internal radius r. We designate the Young's modulus of the surface layer as E f . For the effective longitudinal Young's modulus of the rod, the rule of mixtures [START_REF] Christensen | Mechanics of Composite Materials[END_REF][START_REF] Jones | Mechanics of Composite Materials[END_REF][START_REF]Encyclopedia of Smart Materials[END_REF] is fulfilled, which gives (7) where S δ = πn[(r + δ) 2 -r 2 ] is the total cross section area of surface layers if they are not intersected. From Eq. ( 7), it can be seen that an increase in stiffness occurs if the Young's modulus of the surface layer exceeds the matrix modulus (E f -E > 0). Otherwise, a decrease in takes place. Expressing r through n with the help of Eq. ( 5) and considering that ␦ Ӷ r, we obtain

It should be noted that, contrary to Eq. ( 7), Eq. ( 8) is not applicable for all n because S δ ≤ F -S. If n increases, the surface layer area increases as until these layers begin to intersect; for n → ∞, the entire cross section proves to be formed from the surface layer material. Thus,

→ E f (1 -ϕ) at n → ∞.

COMBINED MODEL

The results of the two previous paragraphs enable us to propose a model including both the surface stresses acting on the boundaries of pores and the pres ence of a thin surface layer around the pores. In this case, the effective Young's modulus of the rod is formed by the terms included in Eqs. ( 1), (6), and ( 7):
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From Eqs. ( 8) and ( 9), it follows that E* increases with n if the following relation is fulfilled

If this inequality is violated, which is possible if the surface layer is softer in comparison with that of the matrix, the dependence of E* is nonmonotonic: E* first decreases but again increases for certain n. The qualitative dependences of E* on n are shown Fig. 3 (solid lines). The dashed lines in Fig. 3 also show the dependences for , , and .

Thus, in our work, we analyzed how the surface effects affected the effective longitudinal Young's modulus of a porous rod with the pores located in par allel to the rod axis. The combined formula [START_REF] Jones | Mechanics of Composite Materials[END_REF], which coincides in special cases with the formulas proposed previously, enables us to take into account certain fac tors-the presence of surface stresses and the surface layer on the boundaries of pores. It makes it possible to take into account more exactly the presence of surface effects including those for nanoporous materials. It is shown that, depending on the problem parameters, the rod stiffness can decrease with an increasing num ber of pores with a subsequent increase, or a mono tonic increase. 

Fig. 2 .

 2 Fig. 2. Two cross sections of the rod with an identical pore area S.

Fig. 3 .

 3 Fig. 3. Dependences of E*, , , and on for E f > E (on the left) and for E f < E (on the right). E 0 * E S * E f * n
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