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a b s t r a c t

This article is focused on the electrochemical behaviour of U ions in molten LiF–CaF2 (79–21 wt.%) eutec-

tic. On a W electrode, U(III) is reduced in one step to U metal and U(III) can be also oxidised to U(IV). Both

systems were studied by cyclic and square wave voltammetry. Reversibility of both systems for both

techniques was verified and number of exchanged electrons was determined, as well as diffusion coeffi-

cients for U(III) and U(IV). The results are in a good agreement with previous studies. On a Ni electrode,

the depolarisation effect due to intermetallic compounds formation was observed. Electrorefining of U

metal in a melt containing U and Gd ions was carried out using a reactive Ni electrode with promising

results.

1. Introduction

The present management of spent nuclear fuel is based on di-

rect disposal or single recycling of U and Pu, whereas a strategy

known as ‘‘Partitioning and Transmutation’’ (P&T) is being devel-

oped in several countries for recovery and separate processing of

actinides [1]. The apparent advantages of this approach are a de-

crease in the volume and radiotoxicity of the final wastes, enhanc-

ing the safety of a final repository and of an efficient use of

resources.

In this context, pyrochemical processes are one of the routes ex-

plored as a promising alternative/complement to the hydrometal-

lurgical methods for recovery and recycling of actinides.

Pyrochemical techniques rely on dissolution of the fuel in inor-

ganic compounds, which have high radiation and thermal stability.

Shorter cooling times would therefore be required for the fuel be-

fore reprocessing, allowing faster and a more compact back-end of

the fuel cycle.

It has already been proven that molten chloride media are suit-

able for dissolution and pyrochemical processing of metallic or

oxide fuels [2–5]. However, the inherent high neutron capture of

chloride ions excludes the use of molten chlorides in Molten Salt

Reactor technology, where molten salts are used as fuel and pri-

mary coolant. In this case, fluoride salt media will be more appro-

priate. Studying properties of actinides in molten fluoride salts is

therefore especially important for the understanding of an electro-

chemical technique for processing of Molten Salt Reactor fuel. It

seems very advantageous to recover actinides on some reactive

electrode material, as shown, e.g. during development of an

electrorefining process for nuclear fuel treatment using molten

chloride media. Due to the very demanding working conditions

(higher melting point, corrosion, oxide dissolution. . .), molten flu-

orides and properties of actinides in those media have not been

extensively investigated. In fact only a limited number of studies

has been published about electrochemistry of actinides in molten

fluorides [6–12].

In the first part of this work, the electrochemical behaviour of

U(III) and U(IV) are investigated in LiF–CaF2 eutectic mixture

(79–21 wt.%). Previously, the authors have already investigated

U(III) in LiF–CaF2 [7] and U(IV) in LiF–NaF [7] or in LiF–BeF2–ZrF4
[9] melts. The second part is focused on the U recovery on a Ni elec-

trode in a salt containing U and Gd ions. This technique, is close to

the technique developed in molten chloride [2,3] based on extrac-

tion of actinides on a reactive aluminium cathode. The successful

selective reduction of U is a first step for the clean-up of spent fuel

from actinides in molten fluoride media.

2. Experimental

2.1. Electrochemical experiments

All the electrochemical experiments and melt preparations

were done in a glove box under pure argon atmosphere (<5 ppm

of oxygen and moisture). Electrochemical experiments and electro-

deposition runs were carried out with a three-electrode set-up

connected to a PAR 273 potentiostat using CorrWare2 electro-

chemical software. A Pt wire immersed in the salt was used as a

quasi-reference or comparison electrode (RE), based on the Pt/

PtOx/O
2ÿ red-ox system [13]. For analytical experiments, working
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electrodes (WE) were made of 1 mm diameter W or Ni wire and

the counter electrode (CE) was a Mo wire bent into the shape of

a spiral. For the electrorefining, a nickel plate (0.5 cm2) was used

as the cathode and a tantalum basket filled with uranium metal

(ITU stock, very high purity) served as the anode.

2.2. Preparation of the melt

Boron nitride (HP grade) was selected as a material for the cru-

cible. Pure LiF and CaF2 (Alfa Aesar, 99.99% ultra dry, packed under

argon) were used for the solvent preparation. The eutectic LiF–CaF2
(79–21 mol.%) was prepared in the glove box by mixing of the pure

chemicals with no additional treatment. U ions were produced by

chemical oxidation of metallic uranium by bismuth ions. The melts

were prepared according to Eqs. (1) and (2) respectively with an

excess of Bi or with an excess of U, leading to the formation of

U(IV) or U(III):

4Bi
3þ

þ 3U ¼ 3U4þ þ 4Bi ð1Þ

Bi
3þ

þ U ¼ U3þ þ Bi ð2Þ

Theses two melts were prepared for the analysis of the U(IV)/U(III)

and U(III)/U(0) systems, respectively. Bi3+ was introduced into the

melt as BiF3 (Alfa Aesar 99.999%) and a Bi pool was at the bottom

of the crucible and so recovered the metallic Bi formed, as shown

in Fig. 1. The conditions used for the melts preparation are summa-

rised in Table 1.

2.3. Analytical techniques

The U concentration in the bath was followed by ICP–MS anal-

ysis of the salt samples (about 30 mg) taken during the experi-

ment. The samples were dissolved in 4 ml of HCl (8 M) heated at

80 °C and diluted with 1 M HNO3 for the measurements. The initial

concentrations were 2 and 1.5 wt.% (U metal) for U(III) and U(IV)

melts, that is 8.7 � 10ÿ2 mol/kg and 6.5 � 10ÿ2 mol/kg respec-

tively. After the electrorefining the nickel electrode was embedded,

cut and the cross-section polished and then analysed with SEM–

EDS on a Philips XL40 SEM.

3. Electrochemical analysis of the U system

A comparison of cyclic voltammograms plotted in the pure sol-

vent (thin curve) and in the melt containing U ions (thick curve) is

shown in Fig. 2.

After addition of U ions to the melt, two electrochemical sys-

tems were observed:

– Soluble–soluble system at a potential of ÿ0.5 V/ref (B).

– Solid phase formation system (sharp reduction and re-oxidation

peaks) at a potential of ÿ1.1 V/ref (A).

3.1. Reversibility of the system

Cyclic voltammetry and square wave voltammetry were used in

this work and the reversibility of both systems was checked for

those two techniques at different scan rates and frequencies.

3.1.1. Cyclic voltammetry

A system can be considered reversible if the peak intensity Ip
depends linearly on the square root of the scan rate v and if the dif-

ference DEp ¼ Epa ÿ Epc �
2:3RT
nF

½V�, where Epa and Epc are the anodic

and cathodic peak potential, respectively [14]. The dependency of

Ip on v
1/2 is shown in Fig. 3 for both systems.

The numbers of exchanged electrons are supposed to be 3 and 1

for the studied systems A and B, respectively (cf 3.2). The theoret-

ical values of 2:3RT
nF

are 0.072 V and 0.216 V, which agree very well

with the graphically measured values of DEp, 0.080 V and

0.205 V, respectively. Therefore, both systems were considered as

reversible for the studied scan rates.

3.1.2. Square-wave voltammetry

A typical square wave voltammogram of the system is show in

Fig. 4.

Both systems observed by cyclic voltammetry (A and B) were

also detected on the square-wave voltammogram. The potential

difference was caused by a shift of the Pt comparison electrode po-

tential indeed, the comparison potential is higly influenced by O2ÿ

concentration. This concentration, is very low during the experi-

ment but may slightly change after electrolysis or immersion of

new electrode in the melt. Similarly to the cyclic voltammetry,

reversibility of electrochemical systems for square wave voltam-

metry is evaluated by measuring of the peak intensities Ip versus

square root of frequencies f. The dependency of Ip on f1/2 is shown

in Fig. 5 for both systems. This dependency was linear in the

9–36 Hz range, showing reversibility of both systems for these fre-

quencies [15,16]. For higher frequencies, the system is quasi-

reversible.

3.2. Number of exchanged electrons

The number of exchanged electrons was calculated using square

wave voltammetry technique according to Eq. (3), which is valid

for reversible systems [15–17].

W1=2 ¼ 3:52
RT

nF
ð3Þ

W1/2 is the half width of the peak (V), R is the ideal gas constant

(J molÿ1 Kÿ1), T is the absolute temperature (K), n is the number

of exchanged electrons and F is the Faraday constant (C molÿ1). Cal-

culations were done with square wave voltammograms plotted at

9 Hz. For the soluble–soluble system, it was possible to directly ap-

ply the Eq. (3). However, in case of the second system, the signal

was modified due to the currentless nucleation phase of the metal

deposition [7]. The peak was deconvoluted into two half Gaussian

curves. The more negative one, uninfluenced by nucleation, was

Bi Pool 

 

LiF-CaF2  

Bi
3+

U 

U
3+

Bi +

Fig. 1. Scheme of the set-up used for the melt preparation.

Table 1

Preparatory conditions for the two melts.

mLiFCaF2 (g) mBiF3 (g) mUplate (g) Reaction time Colour of the salt

30.00 1.532 1.045 �16 h Green (U(IV))

29.83 0.905 0.904 �9 h Purple/red (U(III))



extrapolated to form the complete Gaussian curve. Fig. 6 shows the

original experimental curve and the deconvoluted signal.

According to Eq. (3), the number of exchanged electrons is

2.9 ± 0.2 and 1.0 ± 0.1 electrons for the systems A and B, respec-

tively. Thus the reduction of U(IV) to U metal in molten LiF–CaF2
proceeds in two steps. The first step involves one electron and

leads to formation of U(III), the second step involves three elec-

trons and U metal is formed according to Eqs. (4) and (5),

respectively:

UðIVÞ þ eÿ ! UðIIIÞ ð4Þ

UðIIIÞ þ 3eÿ ! Uð0Þ ð5Þ

3.3. Determination of the diffusion coefficient

Diffusion coefficients were calculated on the basis of cyclic vol-

tammetry, applying the Randles–Sevcik equation (Eq. (6)) for the

soluble U(IV)–U(III) system and the Berzins–Delahaye [18,19] equa-

tion (Eq. (7)) for the U(III)–U(0) system with an insoluble product:

ip ¼ 0:446ðnFÞ3=2ðRTÞÿ1=2CðDvÞ1=2 ð6Þ

ip ¼ 0:61ðnFÞ3=2ðRTÞÿ1=2CðDvÞ1=2 ð7Þ

ip is the peak intensity (A cmÿ2), C is the electroactive substance

concentration at the electrode surface (mol cmÿ3), D is electroactive

substance diffusion coefficient (cm2 sÿ1) and v is the potential

sweep rate (V sÿ1).

At 1083 K, U(IV) diffusion coefficient is equal to 1.7 ± 0.1 �

10ÿ5 cm2/s and U(III) diffusion coefficient is equal to 2.4 ± 0.1 �

10ÿ5 cm2/s. The obtained results are compared with literature

results in Table 2.

The results obtained in this work are in good agreement with

reference [7]. The limited literature data above indicate a slight fall

in D with temperature.

3.4. Electrochemical study on a Ni reactive electrode

Fig. 7 shows a comparison between two cyclic voltammograms

plotted on W (grey curve) and on Ni (black curve).
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v = 100 mV/s.
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The black curve exhibits a significant peak at ÿ0.16 V, which

was not observed on the grey curve. This peak corresponds to

the reduction of uranium ions forming intermetallic compounds

with the electrode substrate. The depolarisation caused by this

phenomenon, i.e. underpotential deposition (UPD), was approxi-

mately 0.5 V. The existence of many oxidation waves corresponds

to the re-oxidation of the different UxNiy compounds (for the U–Ni

phase diagram see Fig. 8 [20]) formed during the reduction step.

The U–Ni phase diagram contains 7 intermetallic compounds:

two already molten at working temperature (U6Ni, U7Ni9) and 5

solids at working temperature (U5Ni7+d, UNi2, d, e and UNi5).

4. Uranium electrorefining in presence of Gd(III) ions

4.1. Analysis of a melt containing U and Gd ions

Gd(III) ions were introduced to the melt as GdF3 to simulate the

lanthanides formed during fission reactions. 0.5247 g of GdF3 was

added, yielding a concentration of 1.1 wt.%. Fig. 9 shows a cyclic

voltammogram plotted using a W electrode in a melt containing

both U and Gd ions.

In addition to the previously described U system, a new system

attributed to Gd was observed at ÿ1.3 V (C). It has been proven by

our previous study [21] that Gd(III) ions are reduced in a single

step into Gd metal on an inert electrode in LiF–CaF2 medium. In

the present case, the system C was composed of 2 peaks. This dis-

crepancy can be explained by the change of the cathode material

due to uranium deposition before the gadolinium reduction.

Fig. 10 shows a comparison of cyclic voltammograms using a Ni

working electrode in different melts.

A peak at a potential of ÿ0.16 V was observed on Ni electrode in

a melt containing U ions. This peak corresponds to U–Ni alloys for-

mation (cf 3.4) and it was followed by a constant current plateau

starting from a potential of ÿ0.38 V. In a melt containing U and

Gd ions, the same peak was observed, but in this case the cathodic

current steadily increased after this peak. This can be attributed to

the reduction of Gd(III) ions forming U–Ni–Gd or Ni–Gd alloys. The

mentioned reduction potentials are reported in Fig. 11.

It can be seen that a selective separation of U from Gd on a Ni

electrode, required the cathode potential to be kept between

ÿ0.16 V and ÿ0.38 V.

4.2. Electrorefining

Electroseparation of uranium from gadolinium was carried out

using a nickel plate cathode, while the anode consisted of a tanta-

lum basket filled with uranium metal. During the experiment, U

was anodically dissolved and U3+ ions were reduced at the cathode,

forming U–Ni alloys:

Anodic side Uð0Þ ! UðIIIÞ þ 3eÿ

Cathodic side UðIIIÞ þ 3eÿ ! Uð0Þ ÿ Ni

During the electrolysis, the cathode potential was kept at ÿ0.3 V. As

seen in Section 4.1, U(III) should be selectively reduced at this po-

tential, leaving Gd(III) dissolved in the melt at constant concentra-

tion. The evolution of cathodic current versus time is reported in

Fig. 12.

The increasing deposition current can be explained by an in-

crease of the cathode surface due to electro-formation of U–Ni al-

loys and also by a shift of the reference potential cathodically.

During an electrolysis, the melt composition is always changing

and the Pt electrode potential is extremely sensitive to the melt

composition [13]. After the electrolysis the electrode was embed-

ded, cut, polished and analysed by SEM–EDS. Fig. 13 shows the

electrode SEM analysis.

The following phases were observed:? The bulk of the electrode

(Ni), a layer at the electrode surface, composed of the e phase (see

Fig. 8) of composition Ni(78)–U(12) at.% (1) and uranium metal

particles detached from the electrode (2) in the salt (3). According

to the applied potential, formation of pure U metal was not ex-

pected. However, this phenomenon has been already observed in

some previous studies, e.g. during underpotential deposition of

Sm on Ni and Cu electrodes in the same salt [22,23]. Gd metal

was detected neither on the electrode, nor in the salt.

From the previous results, it is possible to calculate the maxi-

mum theoretical extraction rate, g ¼ 1ÿ
aFinale
U

aInitiale
U

, of U, where aU is

the activity of U in the melt [24].

DE ¼
RT

nF
ln

1

1ÿ g

� �

ð8Þ

DE, is the difference between U(III) and Gd(III) reduction potential

on Ni electrode.

g ¼ 1ÿ exp ÿ
nF

RT
DE

� �

ð9Þ

At 1083 K, with DE = 0.22 V (cf Fig. 11), g = 99.91%.

These observations demonstrate the feasibility of selective

reduction of U(III) ions on the Ni electrode, with good efficiency.
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Fig. 6. Comparison of the experimental square wave voltammogram plotted at 9 Hz

(black curve) with the deconvoluted signal (grey curve); in dashed gray, the

extrapolated part.

Table 2

Comparison of diffusion coefficient determined in this study with literature data.

This study [7] [9]

Media LiFCaF2 LiFCaF2 LiFNaF LiFBeF2ZrF4
Ion U(IV) U(III) U(III) U(IV) U(IV)

T (K) 1083 1083 1083 993 773

D (cm2/s) 1.7 � 10ÿ5 2.4 � 10ÿ5 2.2 � 10ÿ5 1.5 � 10ÿ5 0.2 � 10ÿ5
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Fig. 7. Comparison of cyclic voltammograms plotted in LiF–CaF2–UF3
(8.7 � 10ÿ5 mol/kg) at 1083 K; WE: W (grey curve) Ni (black curve), CE: Mo, RE:

Pt; v = 100 mV/s.



5. Summary

The electrochemical behaviour of U(III) has been studied in

molten LiF–CaF2 at 1083 K. The obtained results are in agreement

with the literature and show that U(III) is reduced to U metal in

one step controlled by diffusion in solution.

Therefore, the present study has also been focused on uranium

electrochemical behaviour on nickel, which has been selected as a

possible candidate for a solid reactive electrode for electrorefining

process for recovery of actinides from spent fuel in molten

fluorides.

The phenomenon known as depolarisation has been observed

on Ni electrode. A study of a melt containing U and Gd ions has

been carried out and shows that selective separation of uranium

is possible on a Ni electrode in an appropriate potential range.

Electrorefining of a uranium plate in a melt containing Gd(III) ions

has been performed. This is the first step to prove the feasibility of

Fig. 8. U–Ni Phase diagram; the dashed grey line corresponds to the working temperature [20].
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selective reduction of U(0) on Ni electrode. Although the used

parameters in this experiment were different from the real

conditions expected for the process (i.e. the concentration of

Gd(III) remained constant during the electrolysis), this experiment

indicates the potential applicability of the method for irradiated

fuel.
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Fig. 13. SEM analysis of the Ni cathode after a 215 C electrolysis in LiF–CaF2–UF3
(1.7 wt.%)–GdF3 (1.1 wt.%).


