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Theorems regarding existence and uniqueness of weak solutions to mixed boundary value problems in the linear theory of
micropolar shells in statics and dynamics are proved. Convergence of FEM for the static mixed problems is established.
Eigenvalue problems for micropolar shells are studied and properties of the spectrum and eigenmodes are formulated.

Introduction

Although shell theory is one of the oldest areas in continuum mechanics and applied mathematics, it is still under develop-
ment. New materials and the increasing requirements of engineering practice stimulate the appearance of new non-classical
versions of shell theories. In the recently developed 6-parametric or micropolar shell theory [3, 12, 16, 18], a shell is a
Cosserat two-dimensional continuum (surface *) as introduced by the Cosserat brothers [10] over 100 years ago. A linear
version of this theory is presented in [3,12] and [14]. For infinitesimal deformations, at each point of ) the shell kinematics
is described by six scalar quantities: three of these are the components of the displacement vector w and the other three
are the components of the microrotation vector #. A shell particle has six degrees of freedom described by the comporerts
of u and 9. The vectors u and ¥ are mutually independent. For a micropolar shell, we can assign the force and couple
loads acting on the shell surface. The order of the equilibrium equations in the theory is 12, so we should supplement the
equations with 6 conditions on the shell edge. On the portion of the edge that is free from geometrical constraints, we
should assign forces and couple distributions.

The micropolar theory is used, in particular, to describe branching shells: thin-walled bodies with complex internal
structure. These include multilayered or composite plates and shells, shells with internal partitions and stringers, cellular
bodies made from highly porous materials such as foams.

Mathematical studies of boundary value problems in shell theory are presented in the literature; see, for example, [2,7,
8,15, 19]. In large part these consider classical versions of shell theory.

In this paper we prove the existence and uniqueness of weak solutions to boundary value problems of statics and dy-
namics for micropolar shells. We also consider the properties of the spectrum in this theory.

Sect. 1 presents the governing relations of the linear theory of a micropolar shell. The weak setup of equilibrium prob-
lems is studied in Sect. 2. Here we introduce the setup of the problem in the energy space, and prove the theorem on the
uniqueness and existence of the weak solution. In Sect. 3 we establish some properties of the spectrum of the eigenvalue
problem and present the Rayleigh principle for micropolar shells. Sect. 4 treats the problems of existence and uniqueness
for dynamic problems in micropolar shell theory.

1 Basic relations for micropolar shells

Following [14], we present the micropolar shell equations for small deformations. An elastic micropolar shell is repre-
sented by a deformable surface ¥ possessing surface energy and other characteristics distributed over the surface. The shell
deformation is described by two vector fields

U = u’(ql:qga‘t)a 9= 19(91, QQa t): 8]
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where ¢', ¢? are coordinates on ¥, ¢ is time, w is the displacement vector, and 1 is the microrotation vector at a point on 3.
The position vector of a pointon ¥ is 7 = r(q*, ¢?).
We shall require the main and dual bases on 3, denoted by 7, and 77, respectively. They are determined by the formulas

or

:@, ra'rﬁzég, n-r’=0, op=1,2,

Ta

where 67 is the Kronecker symbol and m is the unit normal to ..
The dynamical equations are

V-T+q=pi+pO,-9, V-M+Tyx+m=pOFit+pO, -V, ()

where T and M are surface stress and couple stress tensors, respectively, V = r¢ % is the surface nabla operator, an
overdot denotes differentiation with respect to time ¢, p is the shell surface density, ©; and ©5 are the inertia tensors, and
q and m are distributed surface forces and couples, respectively. The tensor O is symmetric with ©1 = ©,. Here T
denotes the vectorial invariant of the second-order tensor T [14].

On some portion of the boundary the kinematic conditions
u|wl =ul(s, 1), '19‘w3 =9%(s, 1), 3)
are specified. On the rest of the boundary the conditions are static:
V-T‘W2 = p(s,t), 1/-M|w4 ={(s,1). 4)

Here u®(s,t) and 9°(s,t) are given vector functions of the length parameter s and time ¢, defining the displacements and
microrotations of the shell edge, and v is the external normal vector to the shell contour w = 0% such that v - n = 0. The
functions (s, t) and £(s, t) determine the surface stresses and stress couples on the edge. We have w = w; Uws = w3 Uwa,
where wo = w\w; and wy = w\ws.

The linear strain measures take the form

e=Vu+ A x99, Kk = V1, (5)

where € and k are non-symmetric surface strain and bending strain tensors, respectively,andIand A = I-n®n = r,r®
are the three- and two-dimensional unit tensors, respectively.
The constitutive equations for an elastic shell are represented through the strain energy density U = U (e, x):

W W

T = S = o (6)
For an isotropic shell, U is a quadratic form with respect to the components of € and x [11]:
2U = aqtr2e + agtrEQ + agtr (% . ET) +asmn-€ e-n
+ Bitr %k + ﬂgtrf-@z + Batr (IN{ . /%T) +Bm kT k-,
e=¢-A, K=kK-A, 7
where oy, and G, (k = 1, 2, 3, 4) are elastic moduli. Substituting (7) into (6), we get
T = oy Atre + asél + azé + ag(e-n)n, M=[Atrk + BokT + Bsi + Ba(k - n)n. 8)

Suppose the energy density U is a positive definite function of its arguments; that is, there exists a positive constant C'
such that

Ule,w) = C(lle]* + [Is]%). ©)

To avoid constants and norms carrying units, we suppose that all quantities and equations have been cast in dimensionless

form. The norm of the second order tensor X is defined by || X|| = [tr (X - XT)] V2 _ (XW,,X””")UQ, where X,,,,, and
X™™ are co- and contravariant components of X in a basis, respectively.



Inequality (9) implies the following inequalities for the elastic moduli:
200 +as+a3 >0, arx+a3 >0, az—as >0, ag >0,

(10)
261+ B2+ B3>0, Bo+0B3>0, Bz3—0F2>0, B4>0.

The set of Egs. (2)—(4), (5), and (8) constitutes a linear boundary value problem in the unknown variables u and ; the
equations describe the motion of a micropolar shell in the case of small deformations.

We consider the coordinates ¢!, g> on ¥ related to the lines of principal curvature. The basis vectors e; and e, related
to ql, q2 are orthogonal; they are eigenvectors of the curvature tensor

1 1
BE—Vn:—R—lel®el— R—262®€2.

Here R, Ro are the radii of the principal curvatures.
In this basis, u and ¢ are represented as

u =uje; +uses +wn, ¥ =1vie;+ e+ V3n.
The nabla operator takes the form

ol 0 1, 0
1

where the A,, are the Lamé coefficients, A; = (71 - 71)'/? and Ay = (75 - 72)"/2. The strain tensors (5) are

€=¢npla D eg+En€y @M, K=FKqg€a®eg+kKy€y DN, (11)
where
. 1 duq n 1 04 L w - 1 Ous n 1 04, L w
= —-—— _— U —_— = —-—— _— U —_—
A 0" T AA 02 P Ry T A 02 T AA, 0t T Ry
e LOuz 1 04 - ey o 20w L 04
12 = Al 8q1 A1A2 8q2 1 3 21 — AQ 8q2 A1A2 8q1 2 3
1 ow w1 1 ow Us
€1 A, 90, + o + V2, €2 45 0 + 7 1
1 0%y 1 04 I3 1 0Us 1 04, I3
— 9 g 73 ] 29 3
S o T A 0 2T Ry 2= e T A g T Ry
L0k 1o o Lon 1 o4
T4 9gt ALA, 02 Y T4, 02 AjA, gt Y
1 093 1 093 U9
K1 = — — + —_, R = — — + -
YT A o R 2T A 02 R

2 Weak setup of boundary-value problems of statics
The equilibrium equations for the shell and the boundary conditions take the form

V-T+q=0, V-M+T,+m=0, (12)
u|wl = u’(s), '19‘w3 =9%s), v- T|w2 =(s), v- M|w4 ={(s).

The boundary value problem (12) can be formulated as a variational problem. Lagrange’s variational principle for an
elastic micropolar shell starts with the formulation of the total potential energy functional

J(u,d) = -/EU(E, k)dL — A(u, V), (13)

where the potential of external loads A(u, 1) is

A(u,ﬁ):/(q'u—i—m%?) dE—f—/ go'uds—i—/ 0-9ds.
% w2 w4



The functional J(u, 9) is considered on the set of twice continuously differentiable fields of displacements and microrota-
tions that satisfy (3). The pair (u, ) that satisfies (12) is a stationary point of J(u,®). Lagrange’s stationary principle is
minimal: on the equilibrium solution, the functional (13) attains its minimum.

The first variation of J is

5.7 (u,9) = /Z (T 0l + M- .MT) s — 5 A(u, V), (14)
where
0A(u, ) = /z (g 0u+m-o69) d2+/ tp-éuds+/ £-09ds, (15)
w2 wa
and the symbol ““--” stands for the double dot product in the space of second order tensors, for example, X--Y = X,,,,, Y™

The equation 6 J (u, ) = 0 serves as the basis for introduction of a weak (or generalized, or energy) solution of the problem
(12). In spanned form, it is

/Z(T(e)uéeT—i—M(fe)uénT) dE—/E(q-éu—i—m-&?) dE—/

w

go'éuds—/ £-60ds=0. (16)

First we introduce the energy space. For simplicity, we suppose that X is sufficiently smooth and that the coordinate
lines are the lines of principal curvature. Hence R, Ry are the principal radii of curvature of X at a point. Suppose R1, Ro
are continuous functions on Y. Also suppose and that Lamé’s coefficients Ay, A5 of 3 are continuously differentiable on
> and do not degenerate at any point. Hence there is a constant m > 0 such that

AL >m, Ay > m. (17)

In addition, suppose that in the coordinate plane ¢!, ¢> the domain has a piecewise smooth boundary contour possessing
the cone property. This means that there exists a finite triangle such that each point of the contour can be touched by the
vertex of the triangle while the triangle lies wholly within the domain. The cone condition is necessary for the application of
Sobolev’s embedding theorem [1]. The existence—uniqueness theorems established below are valid for general coordinates
q1, q2 that can degenerate at certain points of X, provided that these singular points can be removed via a local change of
coordinates (as is possible for spherical coordinates on a sphere).

Let C! be the set of vector functions U = (u,9) = (u1,us, w, 91,92, 93) having continuously differentiable compo-
nents on ¥ that satisfy the boundary conditions

ul =0, 9 =0 (18)

w

On C! we introduce the energy inner product
(U,0U), = / (T() - de” + M(r) - 6s7) d, (19)
5

where U = (du, §9) € C*. Itis clear that the form (-, ). satisfies the inner product axioms on C'*.
Definition 2.1. The completion of the set C'! in the norm induced by the scalar product (19),

U]l = (U, U~

is called the energy space &.

Lemma 2.2. In the space £ the energy norm is equivalent to the Sobolev norm
3
2 _ 2 2
Ul w2(syye = § <|Ui||wly2(2) + 193l .2y )a U = (u1, ug, ug, 1,92, 3).

i=1
Proof. By the smoothness properties of ¥, there is a constant ¢; such that for any U € £ we have

Ul <a HU||(W1,2(2))6 :

The reverse inequality is established by applying Theorem 10.8 of [19]. The norm ||U ||§ has the structure required by that
theorem:

Juj2 = / [P2(U) + Py (U)] Ay Ay dg' de?,



where

Py =U(e", k")
and the components of €, k* are the principal parts of €, k:

oo Lo TOow o 10w 10w
11 Al 8(]17 22 A2 8(]27 12 Al 6q1’ 21 A2 ana
. 1 ow . 1 ow

E1= 4 3 > €y = 747 >

A Oqr Ay 0go
. 1 0% . 1 09, . 1 094 . 1 09,

K“:A_la—ql’ HQQ:A_Qa—q?’ Hu:A_lE)—ql’ H21:A—26—q27
. 1 093 N 1 093

T T A0

Each term of P; contains no more than one derivative of u; or ¥; as a factor. The idea of Theorem 10.8 of [19] is to split
||UH3 into two parts. The first part [, Po(U)A; Az dg' dg® contains the principal part of ||U||f, which can be shown to be
equivalent to the squared norm of some Sobolev space. In this case, it is seen that ||U Hi is one of the equivalent norms of
the subspace of (W2(X))¢ consisting of elements satisfying (18). Each term of the second part [y, P1(U)A; A2 dg* dg?
conforms to the principal part; at least one of its factors is a component of U without the differentiation. To apply Theorem
10.8 we should check two conditions. In our nomenclature, the first is as follows:

||U||f >0 and ||U||f =0 implies U= 01in X.

It is satisfied. Indeed, ||UH3 > 0 and ||U||§ = 0 implies U = 0 in X. In our nomenclature, the second condition of the
theorem reads as follows. For any sequence {U,,} C & weakly convergent to zero in (W!?(X))® and such that ||U,,|, — 0
as n — oo, it follows that

||Un|\(WL2(z:))6 — 0.

We show this. As {U,,} converges weakly to zero in (W1:2(%))¢, by Sobolev’s embedding theorem [1] each sequence of
the components of {U,, } converges strongly to zero in L?(X). It is seen that the terms of the form

/k(ql,qQ)% b,A1As dgtdg®  and /k(ql,qQ)anbnAlAg dq'dg?
by q b

with continuous coefficients k, where a.,, b, are the sequences of the components of {U,, }, tend to zero as n — oo. Thus
/ P1(U,)A1 Ay dgtdg® — 0 as n — oo.
b))

From ||U, ||, — 0it follows that [, P2(U,,) A1 Az dgq*dg® — 0asn — oo. By the form of P, and its positive definiteness as
a quadratic form, all the sequences of the first derivatives of the components of {U,,} converge to zero in L?(X). Therefore
[Unlly1.2(sy — 0. This completes the proof. O

Let us assume there exists a vector function U* = (u*,9") € (W2(X))° that takes the geometric boundary values of
the problem:

u*|  =ul(s), U =9%(s).

w3

If the geometric conditions are given on the whole boundary contour, which is smooth, then U™ exists if the components of
u and ¥° belong to H 1/ 2(w). For the mixed problem, we only can suppose the existence of U*.
We will seek a solution of the problem under consideration in the form

U=U+U"

Substituting this into (16), we obtain

(uwkz4wﬁwﬁj%qw+mﬁmﬁm/ﬁmmw+/eﬁw& (20)

b w2 w4



Definition 2.3. A weak (energy) solution of the mixed problem (8), (11), (12) is U = U + U* such that U € € satisfies
Eq. (20) for any 6U € &.

Definition 2.3 shows that we have reduced our problem to a problem with respect to U in the space £. Clearly the right-
hand side of (20) is a linear functional with respect to 6U € £. The Sobolev embedding theorem states that the embedding
operators from W12(X) to LP(X) and L9(w) are continuous for any p, ¢ < co. By Lemma 2.2, all terms on the right-hand
side of (20) are continuous functions with respect to 60U € £. For example, consider one of the terms:

(r=1)/p 1/p
/ (q - ou) dz‘ < (/ ||/ d2> </ [Eais d2>
P P =

<c ||5u||(W12(E))3

< 2 [oull,

with constants ¢ not dependent on 6U € &. At last (U, 6U). is the result of formal substitution of U* to the inner product
(;)e- AsU" = (u*,9") € (W12(%))° the components of T(e(U")) and M(x(U")) belong to L?(¥) and (U™, sU). is
a linear continuous functional in £. So by the Riesz representation theorem for a linear continuous functional in a Hilbert
space, there exists a uniquely defined element U™ ¢ £ such that

—(U*,5U). +/

(g -du+m-067) dE—i—/
)

w2

<p~5uds+/ 0-59ds = (U™, 0U),.

Eq. (20) takes the form

(U,0U), = —(U",0U). + (U™, 6U).. (21)
It follows that

U=-U"+U"€eég,

which is uniquely defined. Thus we have proved the existence of a weak (energy) solution of the problem under consider-
ation. As U™ is not defined uniquely, we must also prove uniqueness of the weak solution. Suppose there exist two weak
solutions of the problem, U; and Us. Their difference Uy — Uy € & satisfies

(Uy — Uy, 6U), = 0.

So 02 = 01. Thus we have proved

Theorem 2.4. The mixed boundary value problem (8), (11), and (12), describing shell equilibrium, has a unique weak
(energy) solution U € (W12(2))S.

The method of the proof of the theorem uses the ideas developed by I.I. Vorovich for nonlinear problems of shallow
shells [19]. Some other methods of the proof of existence theorems in shell theory can be found in [8].

One reason we study existence of a weak solution is that the techniques used in the proof permit us to establish conver-
gence of the Finite Element Methods (FEM) for these problems. As the components of the unknown variables that appear in
the expression for J contain only first derivatives of w and 1, it makes sense to consider only “conforming” finite elements
that belong to the energy space. So we introduce the set of finite elements (Up, Vi) that belong to €. The parameter h is
the largest diameter of the support of the finite elements (U, Vi,i). We seek a finite element approximation to the solution
(up, V) in the form

up =u" + Z crUpk, O =09" + Z CkVhk- (22)
3 3

Let us write U, = (up, 9},). Substituting this into (20), and taking dU first as (Up1, Vp1), then as (Upz, Vp2), and so on, we
obtain the system of linear algebraic equations in the constants c; which are known as the FEM equations. It is clear that
we can repeat the considerations of the last theorem, but in the finite dimensional space having basis (U, Vj,k); hence we
immediately find that the FEM algebraic system has an unique solution.

Now suppose the set of all finite elements (Upx, Vi,i) as b — 0 is a complete set in £. A standard procedure [9] permits
us to assert that the sequence Uy, of FEM approximations for the problem under consideration converges strongly to the
weak solution of the problem in the norm of (W1:2(%))S.



Now we wish to touch on the equilibrium problem for a free shell whose boundary has no fixed point. Eq. (16) continues
to hold in this situation. The set of admissible 6U is (W!2(X))°. The zero of the norm ||U||, = 0 is the set of vector
functions known as rigid displacements of X; these have the form

UZUO+190><?°, ¥ =1y

with arbitrary constant vectors ug, ¥ and the position vector . Taking JU from the class of rigid displacements in (16),
we get two vector equations

/qd2+/gads:0,
b)) w

/(qxr+m) d2+/go><rds+/€ds=0.
P w w

These are the classical mechanical equations of the self-equilibrium of the shell as a rigid body. They are necessary for
existence of a solution of the equilibrium problem for a free shell. It can be shown that under this additional condition on
the external forces, the equilibrium problem for the free shell has a weak solution U in (W12(%))6. This solution is unique
up to rigid displacements, so it takes the form

U= (u+ug+ 9 xr,9+9)

with arbitrary vector constants ug and Y.

3 Eigenvalue problems

Consider the problem of finding the eigenfrequencies of a micropolar shell. Rayleigh’s variational principle takes the
following form.

On the set of functions w, 9 with boundary conditions u|w1 =0, 19‘% = 0 that obey the constraint
K(u®,9°) E/Ep (%uo ‘u®+u’-01-9° + %190-6)2-19°> dy =1,
the eigenmodes of the shell are stationary points of the strain energy functional
E(u®,9°) = / U(e®, k%) dx, (23)
b

where €© = Vu® + A x 9° and k° = V°.

Rayleigh’s principle also includes the converse statement: on the set of functions wu, 9 satisfying the restrictions u|w1 =

0 and 19|w3 = 0, the stationary points of E are the eigenmodes. The solutions of the eigenoscillation problem arise in the
dynamic problem when one seeks a solution in the form u = u°®e™?, 9 = ¥°ei«!
the oscillations of the displacements and microrotations.

Rayleigh’s quotient is

. Hence u° and 1J° are the amplitudes of

E(u®,9°)

R(uo, 190) - m.

The smallest eigenfrequency of the shell is equal to the minimum value of the functional R.

Let us formalize these considerations in the space £. We will omit the superscript ° in what follows. The equation for
the eigenproblem in £ takes the form

(U,5U). = \(U,5U), (24)

where A is the squared eigenfrequency of the problem, U # 0, and

(U,&U)z/p(u-5u+u-®1-519+5u-61-19+19-@2-519)d2.
b))



Applying the Riesz representation theorem for a linear continuous functional in a Hilbert space (cf., [15] (Sect. 2.15)),
we can write

(U,0U) = (AU, 0U),
for some linear operator A in £. So we have obtained an operator eigenvalue problem:
U= )\AU.

The operator A is continuous. By Sobolev’s embedding theorem [1], the embedding operator from W12(¥) to L?(X) is
compact and hence A is also compact. From the symmetry of (U, §U) with respect to the arguments, it follows that A is
selfadjoint. Finally, (U,U) > 0 and (U, U) = 0 implies U = 0 almost everywhere in X, which means that A is positive
definite. Now applying Theorem 2.14.2 of [15], which states certain spectral properties of the equation U = AAU when A
is linear, compact, self-adjoint, and positive definite, we get the following.

1. The spectrum A\, (k = 0,1,2,...) of the mixed problem is an infinite set of positive numbers. It is discrete and has no
finite accumulation points. The smallest eigenvalue )\ is nonzero.

2. To each Ay there corresponds no more than a finite set of linearly independent eigenvectors U, (r = 1,...mg).

3. Itis possible to select a set of eigenvectors Uy, that is orthonormal and complete in £. This set is also orthogonal with
respect to the inner product (-, -).

4 Weak solutions for dynamical problems

Using the results for the equilibrium problems, we can introduce weak solutions for dynamics problem. For simplicity we
take homogeneous boundary conditions

ul, =0, I, =0 v -T| =0 v M =0
and supply the dynamical equations (2) with the initial conditions

ou
ot
To obtain the equation needed for a weak formulation of the problem, we dot-multiply the first equation in (2) by w

and the second equation by 9. After adding the results, we integrate over ¥ and then over the time interval [0, T']. Taking
oU = 0 at time 7" and integrating by parts, we get

T T 76U asU
/O(U,(SU)edt_/O <E,W>dt+<vo,5u>

We seek a weak solution in the space defined by the inner product

r T /70U oV
(U, V), —/0 (U,V)edt—i—/o <W’E>dt'

The energy space H (0, T') is defined as the completion of the set of vector functions U(, t) that are smooth on ¥ x [0, T]
and that satisfy the boundary conditions

ul =0, I =0
1 3

U(r,t)

= UO;

t=0

= V. (25)
t=0

T
+/ /(q.5u+m~5'l9) dsdt. (26)
t=0 0 /=

Its subspace H°(0,T') is the completion of the subset of vector functions that vanish at t = T'.
Now we can define the weak solution to the dynamical problem. We say that U € H(0,T) is a weak solution to the
dynamical problem if it satisfies (26) for any 6U € H°(0,T") along with the initial condition

u =V, in (L*(%))S.

t—0

The proof of existence—uniqueness theorems for weak solutions to hyperbolic problems is quite traditional (cf. [17] or
Sect. 4.6 of [13]) so we present only the conditions under which a weak solution to the dynamical problem exists and is
unique:

UO S 87 VO € (LQ(Z))67 q,mec L2(E X [OaT])

This finalizes our study of the weak setup for typical boundary value problems of linear micropolar shell theory.



Conclusion

Within the framework of micropolar or 6-parametric linear shell theory, we prove the existence and uniqueness of weak
solutions to boundary value equilibrium problems. The key point in the proof is the introduction of the energy functional
space & and the proof that the norm of € is equivalent to the norm of the Sobolev space (W !?(X))6. This result allows us
to show existence and uniqueness of solutions to dynamical problems and to establish spectral properties similar to those
for bounded bodies in linear elasticity.

Is is well known that the weak formulation of boundary value problems permits us to introduce various versions of the
finite element method that is used in engineering calculations. Based on the proofs of existence theorems, the traditional
considerations for various versions of the FEM demonstrate strong convergence of the finite element approximations to the
weak solution in &.

The micropolar version of shell theory, being in precision equivalent to the classical Kirchhoff—Love theory, is preferable
for numerical calculations. That is, unlike the Kirchhoff-Love model which contains a fourth-order differential equation
for the transversal displacement w, all equations of micropolar theory are of second order. In FEM practice using the
Kirchhoff-Love theory, various finite element schemes for w are proposed; these schemes generally converge more slowly
than those for FEM approximations in the micropolar theory.

The Mindlin—Reissner theory possesses a similar advantage regarding the order of the equations as compared with
the Kirchhoff-Love theory. However, the linear version of the Mindlin—Reissner’s theory contains five independent scalar
variables of the components of w and ¥ as ¥ - n = 0. A relative advantage of the micropolar shell theory is that it uses
the complete 3D kinematics. This allows us to describe multi-folded shells, shells with junctions, etc., which is impossible
with Mindlin—Reissner’s theory.

Hence the investigation of boundary value problems in micropolar theory deserves special attention from engineers.
Numerous examples of FEM calculations with the micropolar theory of shells can be found [3-6].
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