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UTILITY MAXIMISATION AND UTILITY
INDIFFERENCE PRICE FOR EXPONENTIAL

SEMI-MARTINGALE MODELS WITH RANDOM
FACTOR

A. Ellanskaya1 and L. Vostrikova2

Abstract. We consider utility maximization problem for semi-
martingale models depending on a random factor ξ. We reduce
initial maximization problem to the conditional one, given ξ = u,
which we solve using dual approach. For HARA utilities we con-
sider information quantities like Kullback-Leibler information and
Hellinger integrals, and corresponding information processes. As
a particular case we study exponential Levy models depending on
random factor. In that case the information processes are deter-
ministic and this fact simplify very much indifference price calcu-
lus. Then we give the equations for indifference prices. We show
that indifference price for seller and minus indifference price for
buyer are risk measures. Finally, we apply the results to Geo-
metric Brownian motion case. Using identity in law technique we
give the explicit expression for information quantities. Then, the
previous formulas for indifference price can be applied.

Key words and phrases: utility maximisation, utility indifference
price, semi-martingale, f-divergence minimal martingale measure, ex-
ponential Levy model

MSC 2010 subject classifications: 60G07, 60G51, 91B24

1. Introduction

In the real financial market investors can held traded risky assets of
maturity time T and receive some particular derivatives such as con-
tingent claims offering some pay-off at maturity time T ′ > T > 0. It
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2 UTILITY MAXIMISATION AND UTILITY INDIFFERENCE PRICE

can happen that the assets related with contingent claims can not be
traded since the trading is difficult or impossible for investor because
of lack of liquidity or legal restrictions. In this situation the investor
would like maximize expected utility of total wealth and at the same
time reduce the risk due to the uncertainty of pay-off of the contingent
claim. In such situations the utility indifference pricing become to be
a main tool for option pricing.

To be more precise, let us suppose that our market consists on non-
risky asset Bt = B0 exp(rt), where r is interest rate, and two risky
assets

St = S0 E(X)t, S̃t = S̃0 E(X̃)t

whereX and X̃ are semi-martingales with jumps ∆X > −1, ∆X̃ > −1,
and E is Dolean-Dade exponential. The investor can trade S and at
the same time he has a European type claim on S̃ given by g(S̃T ′)
where g is some real-valued Borel function. Let us denote by Π the
set of self-financing admissible strategies. Then, for utility function U
and initial capital x, the optimal expected utility related with S will
be

VT (x) = sup
φ∈Π

E[U(x+

∫ T

0

φs dSs)]

and if we add an option, then the optimal utility will be equal to

VT (x, g) = sup
φ∈Π

E[U(x+

∫ T

0

φs dSs + g(S̃T ′)]

As known, the indifference price pbT for buyer of the option g(S̃T ′) is a
solution to the equation

VT (x− pbT , g) = VT (x)

and it is an amount of money which the investor would be willing to
pay today for the right to receive the claim and such that he is no
worse off in expected utility terms then he would have been without
the claim. The indifference price for the seller psT of the option is a
solution to the equation

VT (x+ psT ,−g) = VT (x)

and it is an amount of money which the seller of the option would be
willing to receive in counterpart of the option in order to preserve his
own optimal utility.

The optimal utility of assets containing the options highly depends on
the level of information of the investor about S̃. More precisely, the
investor can be non-informed, partially informed or perfectly informed
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agent and the level of information changes the class Π mentioned in
previous formulas. Namely, a non-informed agent can maximize his
expected utility taking the strategies only from the set of self-financing
admissible strategies with respect to the natural filtration F of X.
At the same time, a partially informed agent can built his optimal
strategy using the set of self-financing admissible strategies with respect
to the progressively enlarged filtration F̃ with the process X̃. Finally, a
perfectly informed agent can use the self-financing admissible strategies
with respect to initially enlarged filtration G with S̃T ′ .

Utility maximisation and utility indifference pricing was considered in a
number of books and papers, see for instance [3], [4],[6], [12], [18], [31],
[28], [29], [32],[33]. Some explicit formulas for the indifference prices
were obtained for Brownian motion models, where the incompleteness
on the market comes from the non-traded asset (see [18], [28], [29]).
Close to our setting case, but for complete markets, was considered
in [2] and one can find there nice explicit formulas for indifference
price.

In this note we concentrate ourselves on non-complete market case,
and we establish some explicit formulas for the indifference prices for
semi-martingale models when the traded and non-traded asset are de-
pendent. This dependence is modelled by including the non-traded
asset into the structure of the traded asset as a factor influencing its
price dynamics. We will concentrate ourselves on the problem of util-
ity maximisation and utility indifference pricing for perfectly informed
agents. Our aim is to obtain explicit and numerically tractable solu-
tions for these questions, especially for exponential Levy models and
diffusions.

It should be noticed that the indifference price for partially informed
agents and non-informed agents will be the same in considered case
since the σ-algebras at time T in all three cases coincide( to do cal-
culus, one has to ensure that g(ξ) is measurable!), and the last fact
implies that the minimal equivalent martingale measure, when exist,
will be the same in three cases, too. Contrarily to this, the optimal
strategies will depend on the used filtration. It should be noticed that
in the case of exponential Levy models and HARA utilities the optimal
strategy for initial enlargement, when it exists, is always progressively
adapted. The same is true for the processes with independent incre-
ments. This fact can be explained by preservation of Levy property and
”independent increments” property by minimal equivalent martingale
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measure when such measure exists, and explicit formulas for optimal
strategies( cf.[7],[8]).

From point of view of modelling our approach consists to introduce
semi-martingales depending on a random factor ξ. Namely, the con-
sidered risky asset S will be of the form S(ξ) = E (X(ξ)) with the
semi-martingale X(ξ) = (Xt(ξ))t≥0 leaving on a canonical probability
space and depending on a supplementary random factor ξ. The random
variable ξ is given on Polish space (Ξ,H). We denote by α the law of
this variable ξ. The details concerning such mathematical framework
is given in section 2 and they are close to the approach in [17].

The section 3 is devoted to the general results about the maximisation
of utility for semi-martingale models depending on a random factor. As
previously let us introduce the total utility with the option g(ξ):

V (x, g) = sup
ϕ∈Π(G)

EP

[
U

(
x+

∫ T

0

ϕsdSs(ξ) + g(ξ)

)]
Here Π(G) is the set of all self-financing and admissible trading strate-
gies related with the initially enlarged filtration G = (Gt)t∈[0,T ], where
Gt =

⋂
s>t (Fs ⊗ σ(ξ)). To solve the utility maximisation problem in

the initially enlarged filtration we make an assumption about the ab-
solute continuity of the conditional laws αt = P(ξ | Ft) of the random
variable ξ given Ft with respect to α, namely

αt << α

for t ∈]0, T ]. Then we define the conditional laws (P u)u∈Ξ of our semi-
martingale S(ξ) given {ξ = u} and we reduce the initial utility maximi-
sation problem to the conditional utility maximisation problem on the
asset prices filtration F ( see Proposition 1). Proposition 1 says that
to solve the utility maximisation problem on the enlarged filtration it
is enough to solve the conditional utility maximisation problem on the
asset prices filtration F

V u(x, g) = sup
ϕ∈Πu(F)

EPu

[
U

(
x+

∫ T

0

ϕs(u)dSs(u) + g(u)

)]
and then integrate the solution with respect to α. To solve conditional
utility maximisation problem we use dual approach. Let us denote
by f a convex conjugate of U . Under the assumption about the ex-
istence of an equivalent f -divergence minimal measure for the condi-
tional semi-martingale model, we give the expression for conditional
maximal utility (cf. Proposition 2). The main result of this section is
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Theorem 1 which gives the final result for general utility maximisation
problem.

In section 3.1 we study HARA utilities. For HARA utilities we intro-
duce corresponding information quantities and we give the expression
for the maximal expected utility in terms of these quantities (cf. Theo-
rem 2). Finally, we introduce the information processes and we give the
expression of the maximal expected utility involving these information
processes (see Propositions 3, 4, 5 and Theorem 3).

In section 5 we give the formulas for indifference price of buyers and
sellers of the option for HARA utilities. Then we discuss risk measure
properties of the mentioned indifference prices. We show that −pbT (g)
and psT (g) are risk measures.

In the section 6 we study utility maximisation and utility indifference
pricing of exponential Levy models. It should be noticed that in Levy
models case the information processes are deterministic processes con-
taining the constants which are the solutions of relatively simple inte-
gral equations. It gives us the possibility to calculate the indifference
prices relatively easy.

The section 7 in devoted to the explicit calculus of information quanti-
ties for Geometric Brownian motion case and use identity in law tech-
nique.

2. Mathematical Framework

We consider a semi-martingale X(ξ) = (Xt(ξ))t≥0 of the law P , depend-
ing on a supplementary factor ξ which can be a random process or a ran-
dom variable. The semi-martingale X(ξ) is given on a canonical prob-
ability space (Ω,F , P ), equipped with the filtration F = (Ft)t≥0 satis-
fying the usual conditions: F =

∨
t≥0Ft, Ft =

⋂
u>t σ{Xv(ξ), v ≤ u}

and F0 = {∅,Ω}.

We suppose that the law P of X(ξ) is uniquely defined by its semi-
martingale characteristics (B,C, ν). We recall here the notion of the
characteristics for the convenience of the readers. Let µ be a jump
measure of the process X = X(ξ) and l : R → R be a truncation
function: l(x) = x in the neighbourhood of 0 and l has a compact
support. Then one can write the semi-martingale X as

X = (X −X(l)) +X(l),
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where X(l) is a ’big’ jumps process, defined as

X(l)t =
∑
s≤t

(∆Xs − l(∆Xs))

with ∆Xs = Xs−Xs−. The process X̃ = (X −X(l)) is a special semi-
martingale with the bounded jumps and allows the representation

X̃t = X0 +Xc
t +

∫ t

0

∫
R
l(x) (µ(ds, dx)− ν(ds, dx)) +Bt(l),

where Xc is the continuous local martingale part of X, ν is the (P,F)
compensator of µ, B = B(l) is the unique (P,F)-predictable locally in-
tegrable process such that the process X̃−B(l) is a (P,F)-local martin-
gale. Let C be a continuous process such that the process (Xc)2−C is a
(P,F)-local martingale. We have defined the triplet of predictable char-
acteristics of the (P,F)-semi-martingale X = X(ξ) as TF = (B,C, ν)
(see also [23]).

We suppose that the supplementary random factor ξ is given on the
probability space (Ξ,H, α) with α being the law of ξ.

We assume that our market contains a single traded risky asset with
the price process S = S(ξ) and without any loss of generality we will
assume that the riskless interest rate is 0, and then the riskless bond
process is identically equal to 1. Our risky asset S = S(ξ) which we
consider will be simply of the form

(1) S(ξ) = E (X(ξ)) ,

where E(·) is a stochastic exponential,

E(X)t = exp
{
Xt −

1

2
< Xc >t

} ∏
0≤s≤t

exp{−∆Xs}(1 + ∆Xs).

We prefer the representation (1) of the risky asset more than the rep-
resentation with the usual exponent by the simple reason that if the
process X is a local (P,F)-martingale then the process S inherits this
property, i.e. is a local (P,F)-martingale. To ensure that St > 0 for all
t ≥ 0 we assume that ∆Xt > −1.

The process X(ξ) can be defined in a different way. One of the possibil-
ities is to give, when they exist, a family of the regular conditional laws
of X(ξ) given ξ = u, denoted by (P u)u∈Ξ. Such family of conditional
laws should verify: for all t ≥ 0, for all A ∈ F

(2) P (A) =

∫
Ξ

P u(A) dα(u).
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Now, on the product space (Ω× Ξ,F ⊗H) we can also define a prob-
ability P as it follows: for all A ∈ F and B ∈ H

(3) P(A×B) =

∫
B

P u(A)dα(u),

such that P(A × Ξ) = P (A) and P(Ω × B) = α(B). In such situation
for all A ∈ F

P u(A) = P(A | ξ = u)

Now we define the initially enlarged filtration G = (Gt)t≥0 by

(4) Gt =
⋂
s>t

(Fs ⊗ σ(ξ)) .

Let t ∈ R+ and αt be a regular conditional distribution of the random
variable ξ given the information Ft, i.e.

αt(ω, du) = P(ξ ∈ du|Ft)(ω).

We make the following assumption

Assumption 1. The regular conditional distribution of random vari-
able ξ is absolutely continuous with respect to its law, i.e.

αt � α, ∀t ∈ ]0, T ] .

Lemma 1. (see[21]) Under Assumption 1 there exists a positive O(G)
measurable function (ω, t, u)→ put (ω) such that

(1) For each u ∈ supp(α), pu is (P,F)-martingale.

(2) For each t ∈ [0, T ], the measure put α(du) is a version of the
regular conditional distribution αt(du) so that Pt × α-a.s.

(5)
dαt

dα
(u) = put .

To avoid unnecessary complications, we introduce also

Assumption 2. For each u ∈ Ξ the probability P u is locally absolutely
continuous with respect to P , i.e

P u loc
� P.

The Assumptions 1, 2 and Lemma 1 imply that for all t ∈ [0, T ] and
Pt × α-a.s.

(6)
dP u|Ft
dP |Ft

= put
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The process X is also (P u,F)-semi-martingale, u ∈ Ξ. If we know the
density pu, then using Ito formula we can write the semi-martingale de-
composition of it and restore the (P u,F)-characteristic triplet TF(u) =
(Bu, Cu, νu). This triplet is related to the triplet TF = (B,C, ν) as fol-
lows

Bu = B +

∫ ·
0

βus dCs +

∫ ·
0

∫
R
l(x) (Y u

s (x)− 1)ν(ds, dx),

Cu = C,

νu = Y u · ν,(7)

with certain (P u,F)-predictable process βu = (βut )t∈[0,T ] and Y u =
(Y u

t )t∈[0,T ] such that P − a.s for all t ∈ [0, T ]∫ t

0

(βus )2 dCs +

∫ t

0

∫
R
| l(x) (Y u

s (x)− 1)| ν(ds, dx) <∞.

For the details about the integration with respect to the random mea-
sures and its compensators , stochastic integration with respect to a
local martingales and Riemann-Stieltjes integral see [23].

Since the density process pu is a (P,F)-martingale, we define the sto-
chastic logarithm mu of pu by:

dmu
t =

dput
put−.

Then mu is a (P,F)-local martingale and pu is a stochastic exponential
of mu

pu = E(mu).

By the predictable representation property we have that the local mar-
tingale mu has the following semi-martingale representation

mu =

∫ ·
0

βus dX
c
s +

∫ ·
0

∫
R

(
Y u
s − 1 +

Ŷ u
s − 1̂

1− 1̂

)
(µ− ν)(ds, dx),

where the process βu and Y u are the same as in (7) and the processes

Ŷ u and 1̂ are related to the compensator ν, namely

1̂t(ω) = ν(ω, {t} × R0)

and

Ŷ u
t (ω) =

∫
R0

Y u
t (ω, x)ν(ω, {t}, dx).

For more information see again [23].
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3. Utility maximisation problem

In this section we introduce the sets of the self-financing admissible
trading strategies and the sets of the equivalent martingale measures
for the initially enlarged filtration and we establish the connection be-
tween them and the analogous sets on the (Ω,F ,F, P u) filtered space.
Then we show that the solution of the utility maximisation problem
in the enlarged filtration can be reduced to the solution of the condi-
tional utility maximisation problem (cf. Proposition 1) which in turn,
we solve using the dual approach (cf. Proposition 2). The final re-
sult on utility maximisation is given in Theorem 1 at the end of this
section.

3.1. Utility maximisation problem in enlarged filtration. We
consider a utility function U : R → R

⋃
{−∞}, which is assumed to

be strictly increasing, strictly concave, continuously differentiable in
dom(U) = {x ∈ R|U(x) > −∞} and is supposed to satisfy the Inada
conditions

U
′
(∞) = lim

x→+∞
U
′
(x) = 0,

U
′
(x) = lim

x↓x
U
′
(x) =∞,

where x = inf{x ∈ R|U(x) > −∞}. We require that the utility func-
tion is the increasing function of the wealth because with the growth
of wealth the investor’s usefulness also grows. The concavity of the
function reflects a phenomenon of risk-aversion for the investor.

Suppose that the investor carries out the trading on the finite time
interval [0, T ] and holds a European type option with the pay-off func-
tion GT = g(ξ) in his portfolio, where g is an H-measurable function.
We define by Π(G) the set of admissible and self-financing strategies
ϕ(ξ), such that ϕ(ξ) is G-predictable and S(ξ)-integrable on [0, T ]
P − a.s., with the integrals bounded from below. To describe this
set we recall the known result about G-predictable processes, denoted
by P(G).

Lemma 2. (cf. [4]) A random process ϕ(ξ) is G-predictable if and only
if the application (t, ω, ξ) → ϕt(ξ) is a P (F) ⊗H-measurable random
process where P(F) is the set of F-predictable processes.
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Thus, the set of the admissible and self-financing strategies Π(G) on
(P,G) is of the form

Π(G) =
⋃
c>0

{
ϕ(ξ) ∈ P(F)⊗H |

∫ t

0

ϕs(ξ)dSs(ξ) ≥ −c, ∀t ∈ [0, T ] (P-a.s.)
}

The classical utility maximisation problem consists to find the opti-
mal investment portfolio over set of all self-financing and admissible
strategies in order to maximise the given expected utility, namely

(8) V (x, g) = sup
ϕ∈Π(G)

EP

[
U

(
x+

∫ T

0

ϕs(ξ)dSs(ξ) + g(ξ)

)]
,

where U is the given utility function and x is the initial endowment.

We define also the set Πu(F) of the admissible and self-financing strate-
gies related with the filtration F:

Πu(F) =
⋃
c>0

{
ϕ ∈ Su(P(F)⊗H) |

∫ t

0

ϕs(ξ)dSs(ξ) ≥ −c, ∀t ∈ [0, T ] (P-a.s.)
}

where Su(P(F)⊗H) is a section of P(F)⊗H in u. For any u ∈ Ξ we
denote

(9) V u(x, g) = sup
ϕ∈Πu(F)

EPu

[
U

(
x+

∫ T

0

ϕs(u)dSs(u) + g(u)

)]
The next result establishes that the value of the maximal utility in en-
larged filtration G can be obtained from the solutions of the conditional
utility maximisation problem.

Proposition 1. Let us suppose that Assumptions 1 and 2 hold. Then
we can reduce classical utility maximisation problem to the correspond-
ing conditional utility maximisation problem in the sense that

(10) V (x, g) =

∫
Ξ

V u(x, g)dα(u).

To prove this proposition we prove first one lemma.

Lemma 3. Let ϕ(ξ) ∈ Π(G). Then for t ∈ [0, T ] and u ∈ Ξ

(11) LP

(
(

∫ t

0

ϕs(ξ)dSs(ξ), ξ)
∣∣∣ξ = u

)
= LPu

(
(

∫ t

0

ϕs(u)dSs(u), u)

)
.

As consequence, we get that

EP

[
U

(
x+

∫ t

0

ϕs(ξ)dSs(ξ) + g(ξ)

) ∣∣∣ξ = u

]
= EPu

[
U

(
x+

∫ t

0

ϕs(u)dSs(u) + g(u)

)]
.
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Proof: It is known that Π(G) can be generated by the simple func-
tions of the type ϕ(ξ) = 1A(ξ)ϕt11]t1,t2], where t1, t2 ∈ R+, t1 ≤
t2, A ∈ H and ϕt1 is Ft1-measurable random variable. For such ϕ(ξ)
we have: ∫ T

0

ϕs(ξ)dSs(ξ) = 1A(ξ)ϕt1(St2(ξ)− St1(ξ)).

Since the filtration F is natural, ϕt1 = F (Xv(ξ), 0 ≤ v ≤ T ) where F
is a measurable functional. Since

(12) LP ((ξ,X(ξ))|ξ = u) = LPu (u,X) ,

the same identity in law is true for measurable functional of (ξ,X(ξ))
such as (S(ξ), ϕt1 , 1A(ξ)) and it gives (11) for a special type of ϕ(ξ).

For general ϕ(ξ) ∈ Π(G) there exists a sequence of linear combination
of simple functions, (ϕn(ξ))n∈N+ such that for s ∈ [0, T ] and P ×α-a.s.

ϕns (ξ)→ ϕs(ξ),

and |ϕns (ξ)| ≤ |ϕs(ξ)|. Since ϕ(ξ) is locally bounded predictable func-
tion, then, according to Theorem I.4.31 in [23], we have the convergence
in P -law:

(13)

∫ T

0

ϕns (ξ)dSs(ξ) −→
n→∞

∫ T

0

ϕs(ξ)dSs(ξ).

For the same reason and since for s ∈ [0, T ] (P u × α-a.s)

ϕns (u) −→ ϕs(u),

we have the convergence in P u-law:

(14)

∫ T

0

ϕns (u)dSs(u) −→
n→∞

∫ T

0

ϕs(u)dSs(u).

From (12), (13) and (14) we obtain (11). If we denote Φ(v, r) = U(x+
v+g(r)) then it is a B(R2)-measurable function of (v, r) for all x ∈ R+,
and it gives the second claim. Then lemma is proved. 2

Proof of Proposition 1: If in Lemma 3 we take regular versions of
stochastic integrals and conditional expectations ( cf. [35]), then we



12 UTILITY MAXIMISATION AND UTILITY INDIFFERENCE PRICE

have:

EP

[
U

(
x+

∫ T

0

ϕs(ξ)dSs(ξ) + g (ξ)

)]
=

=

∫
Ξ

EPu

[
U

(
x+

∫ T

0

ϕs(u)dSs(u) + g(u)

)]
dα(u)

≤
∫

Ξ

supϕ∈Πu(F)EPu

[
U

(
x+

∫ T

0

ϕs(u)dSs(u) + g(u)

)]
dα(u),

and hence,

(15) V (x, g) ≤
∫

Ξ

V u(x, g)dα(u).

For each ε > 0 there exists ϕ(ε) ∈ Πu(F) such that

supϕ∈Πu(F)EPu

[
U

(
x+

∫ T

0

ϕs(u)dSs(u) + g(u)

)]
≤

EPu

[
U

(
x+

∫ T

0

ϕ(ε)
s (u)dSs(u) + g(u)

)]
+ ε

Integration with respect to α gives:∫
Ξ

supϕ∈Πu(F)EPu

[
U

(
x+

∫ T

0

ϕs(u)dSs(u) + g(u)

)]
dα(u) ≤

≤
∫

Ξ

EPu

[
U

(
x+

∫ T

0

ϕ(ε)
s (u)dSs(u) + g(u)

)]
dα(u) + ε

= EP

[
U

(
x+

∫ T

0

ϕ(ε)(ξ)sdSs(ξ) + g(ξ)

)]
+ ε

≤ V (x, g) + ε

Combining the two previous inequalities we have (10). 2

3.2. The solution to conditional utility maximisation problem.
To solve the conditional utility maximisation problem V u(x, g) we use
the dual approach. For that we consider the equivalent martingale mea-
sures in the enlarged filtration G and then we provide the link between
them and the equivalent martingale measures related to (P u,F).

Let M(G) be a set of P-equivalent martingale measures on product
space (Ω× Ξ,F ⊗H) defined as

M(G) =
{
Q : Q loc∼ P and such that S(ξ) is an (Q,G)-martingale

}
.
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Let T be a finite time horizon. Then the restrictions of the measures
Q on the σ-algebra GT can be given by density process Z(ξ):

(16)
dQ|GT
dP|GT

= ZT (ξ)

The density process Z(ξ) = (Zt(ξ))t∈[0,T ] is a uniformly integrable pos-
itive (P,G)-martingale with EP [ZT (ξ)] = 1. We recall the following
known result about G-martingales. Let us fix u ∈ supp(α) and let the
process Z(u) be obtained from the process Z(ξ) by replacing of ξ by u.

Lemma 4. (cf. [4]) Under Assumptions 1 and 2 there exists a ver-
sion of density process Z(ξ) such that the following two statements are
equivalent:

(i) The process Z = Z(ξ) is a (P,G)-martingale

(ii) The process Z(u) = (Zt(u))t∈[0,T ] is a (P u,F)-martingale, for all
u ∈ supp(α).

As it was mentioned, Z(u) is a positive (P u,F)-martingale. However
Z(u) is not a density process because of the fact that

EP [ZT (u)] = Z0(u)

with Z0(u) which is not necessarily equal to 1. But the modified den-

sity process process Z̃(u) = Z(u)
Z0(u)

describes the equivalent martingale

measures Qu such that

(17)
dQu|Ft
dP u|Ft

= Z̃t(u).

We denote by Mu(F) the set of such measures, namely

(18) Mu(F) =
{
Qu : Qu loc∼ P u, S is an (Qu,F)-martingale

}
Let us denote by f the convex conjugate of U obtained by Frenchel-
Legendre transform of U :

f(y) = sup
x>0

(U(x)− yx) .

Let us denote by I(y) = −f ′(y), y ∈ R+, then

(19) f(y) = U(I(y))− yI(y),

Now we consider the dual problem of finding

inf
Qu∈Mu(F)

EPu

[
f

(
dQu

T

dPT

)]
.
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If minimum is reached on the setMu(F), then the corresponding mea-
sure Qu,∗ is called f -divergence minimal martingale measure.

Let also u ∈ Ξ to be fixed, and the set Ku be defined as follows:

Ku =
{
Qu ∈Mu(F) : EPu

∣∣∣∣f (λdQu
T

dPT

)∣∣∣∣ <∞, EQu ∣∣∣∣f ′ (λdQu
T

dPT

)∣∣∣∣ <∞,∀λ > 0
}
.

We introduce two additional Assumptions.

Assumption 3. For each u ∈ Ξ, there exists f -divergence minimal
equivalent martingale measure Qu,∗, it belongs to the set Ku and verify
scaling property: for each λ > 0

inf
Qu∈Mu(F)

EPu

[
f

(
λ
dQu

T

dPT

)]
= EPu

[
f

(
λ
dQu,∗

T

dPT

)]
.

Remark 1. For HARA utilities the scaling property is automatically
verified and the definition of the set Ku can be simplified:

Ku =
{
Qu ∈Mu(F) : EPu |f

(
dQu

T

dPT

)
| <∞

}
.

The next assumption is related with the properties of the density Z̃∗T (u)
of f -divergence minimal equivalent martingale measure Qu,∗

T with re-
spect to P u

T .

Assumption 4. There exists H- measurable function λg, which veri-
fies:∫

Ξ

EPu |f(λg(u) Z̃∗T (u)|dα(u) <∞,
∫

Ξ

EQu|f ′(λg(u) Z̃∗T (u)|dα(u) <∞

and such that for each u ∈ Σ and x > x

(20) EPu
[
Z̃∗T (u) I(λg(u)Z̃∗T (u) )

]
= x+ g(u).

Remark 2. For HARA utilities the integrability conditions of the As-
sumption 4 is reduced to the first one.

Proposition 2. Let the Assumptions 3 and 4 hold. Then there exists
an optimal strategy ϕ ∈ Πu(F) such that

V u(x, g) = EPu

[
U

(
x+

∫ T

0

ϕ∗s(u)dSs(u) + g(u)

)]
Moreover, we have

(21) V u(x, g) = EPu
[
U
(
I(λ(u)Z̃∗T (u) )

)]
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Proof: For any martingale measure QT equivalent to PT , and ZT (ξ)
its Radon-Nikodym derivative which is F ⊗H-measurable, we write:

EP f(ZT (ξ)) =

∫
Ξ

EPu f(ZT (u)) dα(u) =∫
Ξ

EPu f(Z0(u)Z̃T (u)) dα(u)

where Z̃T (u)) = ZT (u)/Z0(u). Now, we consider conditional f -divergence
minimisation problem, i.e. find inf EPu f(Z̃T (u)) over all martingale

measures Qu equivalent to P u with Z̃T (u) =
dQuT
dPuT

, under initial capital

equal to x+g(u). Let Qu,∗
T be f-minimal equivalent martingale measure

and Z̃∗T (u) =
dQu,∗T
dPuT

. According to Assumption 4, there exists λg(u) such

that

EQu,∗( I(λg(u) Z̃∗T (u)) = x+ g(u)

One can show that λg is unique α− a.s..

Since standard f -divergences verify scaling property, we get for any
QT :

EP f(ZT (ξ)) ≥
∫

Ξ

EPu f(Z0(u) Z̃∗T (u)) dα(u)

But Z0(u) is entirely defined by the restriction on conditional initial
capital, so the minimum over all equivalent martingale measures QT

with this restriction is
∫

Ξ
EPu f(λg(u)Z̃∗T (u)) dα(u).

Then we can use the result of [16] and write (P - a.s.):

I(λg(ξ) Z̃
∗
T (ξ)) = x+ g(ξ) +

∫ T

0

ϕ∗s(ξ) dS(ξ)

where ϕ∗ ∈ P(G), it is self-financing and admissible, and such that∫ ·
0
ϕ∗s(ξ) dS(ξ) is Q∗-martingale. The previous expression conditioned

in ξ = u gives (P u-a.s.):

I(λg(u) Z̃∗T (u)) = x+ g(u) +

∫ T

0

ϕ∗s(u) dS(u)

We see that ϕ∗(u) ∈ Πu(F), it is self-financing, admissible and such
that

∫ ·
0
ϕ∗s(u) dS(u) is Qu,∗-martingale.

Now we show that ϕ∗(u) is optimal strategy. Let us put x+ g(u) = x̃.
Then, since (19) and I(y) = −f ′(y),

U(x̃+

∫ T

0

ϕ∗s(u) dS(u)) = f(λg(u)Z̃∗T (u)) + Z̃∗T (u) f ′(λg(u) Z̃∗T (u))
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We show easily that the left-hand side of the previous equality is inte-
grable:

EPu|U(x̃+
∫ T

0
ϕ∗s(u) dS(u)) | ≤

EPu |f(λg(u)Z̃∗T (u))|+ EPu|Z̃∗T (u) f ′(λg(u) Z̃∗T (u))| <∞

We write for any ϕ ∈ Πu(F) using the definition of Fenchel-Legendre
transform:

U(x̃+

∫ T

0

ϕs(u) dS(u)) ≤
[
x̃+

∫ T

0

ϕs(u) dS(u)

]
λg(u)Z̃∗T (u)

+f(λg(u)Z̃∗T (u)) ≤
[
x̃+

∫ T

0

ϕs(u) dS(u)

]
λg(u)Z̃∗T (u)+U(I(λg(u) Z̃∗T (u))−

λg(u) Z̃∗T (u) I(λg(u) Z̃∗T (u))

We take an expectation with respect to P u, then we use the fact
that

∫ ·
0
ϕs(u) dS(u) is a super-martingale started from zero and that∫ ·

0
ϕ∗s(u) dS(u) is a martingale with respect to Qu,∗. Finally we get

that

EPu [U(x̃+

∫ T

0

ϕs(u) dS(u))] ≤ EPu [U(x̃+

∫ T

0

ϕ∗s(u) dS(u))] 2

3.3. Final result on utility maximisation problem. We combine
the results of Proposition 1 and Proposition 2 to get the following final
result on utility maximisation.

Theorem 1. We suppose that The Assumptions 1, 2, 3, 4 hold. Then,
the maximal expected utility verify:

(22) V (x, g) =

∫
Ξ

EPu
[
U
(
I
(
λg(u)Z̃∗T (u)

))]
dα(u),

and

(23) V (x, 0) =

∫
Ξ

EPu
[
U
(
I
(
λ0(u)Z̃∗T (u)

))]
dα(u),

where λg(u) is a solution of (20) and λ0 is a solution of (20) with
replacing g(u) by 0.
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4. Utility maximisation for HARA utilities

In the overwhelming part of the literature, the utility maximisation
analysis is carried out under the hyperbolic absolute risk utilities (HARA),
which are logarithmic, power and exponential utilities represented be-
low:

U(x) = lnx, then f(x) = − lnx− 1,

U(x) =
xp

p
, p ∈ (−∞, 0) ∪ (0, 1), then f(x) = −p− 1

p
x

p
p−1 ,

U(x) = 1− e−γx, γ > 0, then f(x) = 1− x

γ
+

1

γ
x lnx− 1

γ
x ln γ

where x > 0. This choice can be explained by the good properties
of these functions such as scaling property, time horizon invariance
property, preservation of Levy property and so on (see for instance
[8]).

We introduce the information quantities related with HARA utilities.
The corresponding maximal utilities are given in Theorem 2. Then,
we express these information quantities via information processes (cf.
Propositions 3, 4, 5). The final result on utility maximisation is given
in Theorem 3.

4.1. Maximal utilities and information quantities. As before,
we assume the existence of f -divergence minimal martingale measure
Qu,∗ ∈ Ku. We introduce three important quantities related with P u

T

and Qu,∗
T namely the entropy of P u with respect to Qu,∗

T ,

I(P u
T |Q

u,∗
T ) = −EPu

[
ln Z̃∗T (u)

]
,

the entropy of Qu,∗
T with respect to P u

T ,

I(Qu,∗
T |P

u
T ) = EPu

[
Z̃∗T (u) ln Z̃∗T (u)

]
,

and Hellinger type integrals

H
(q),∗
T (u) = EPu

[
(Z̃∗T (u))q

]
,

where q = p
p−1

and p < 1.

Now we give the expressions of the value function V (x, g) involving
relative entropies and Hellinger type integrals.
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Theorem 2. Under The Assumptions 1, 2, 3, 4 the information quan-
tities areH-measurable and we have the following expressions for VT (x, 0) :

(i) If U(x) = ln x then

(24) VT (x, 0) =

∫
Ξ

[ lnx+ I(P u
T |Q

u,∗
T ) ]dα(u)

(ii) If U(x) = xp

p
with p < 1, p 6= 0 then

(25) VT (x, 0) =
1

p

∫
Ξ

xp
(
H

(q),∗
T (u)

)1−p
dα(u)

(iii) If U(x) = 1− e−γx with γ > 0 then

(26) VT (x, 0) = 1−
∫

Ξ

exp{−[ γx+ I(Qu,∗
T |P

u
T ) ]} dα(u)

The expressions for V u
T (x, g) can be obtained from previous expressions

replacing in right-hand side x by x+ g(u).

Proof: First of all we remark that Z̃∗T is FT ⊗ H measurable and
dPuT
dPT

= pT is also FT ⊗H measurable. Hence, the information quantities
are H-measurable.

(i) The Theorem 1 states that

(27) VT (x, 0) =

∫
Ξ

EPu
[
U
(
I
(
λ0(u) Z̃∗T (u)

))]
dα(u),

where λ0(u) is defined from the equation

EPu
[
Z̃∗T (u)I

(
λ0(u)Z̃∗T (u)

)]
= x.(28)

The corresponding inverse function of the derivative of the logarithmic
utility is I(y) = 1

y
, then λ0(u) = 1

x
. Putting this result into (27) we

have that

VT (x, 0) =

∫
Ξ

EPu

[
ln

[
x

Z̃∗T (u)

]]
dα(u)

=

∫
Ξ

EPu
[
lnx− ln Z̃∗T (u)

]
dα(u)

=

∫
Ξ

[ lnx+ I(P u
T |Q

u,∗
T ) ]dα(u).(29)

The formula (53) has been proved.
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(ii) The corresponding inverse function of the derivative of the power

utility is I(y) = y
1
p−1 . Then, using (28) we deduce that

λ0(u) =
xp−1(

EPu
[(
Z̃∗T (u)

)q])p−1 .

with q = p
p−1

, and we get finally that

EPu
[
U
(
I
(
λ0(u) Z̃∗T (u)

))]
= EPu

[
1

p

(
λ0(u) Z̃∗T (u)

)q]
=

xp

p

(
EPu

[(
Z̃∗T (u)

)q])1−p
.(30)

Then, we integrate over Ξ with respect to α and we obtain (25).

(iii) The corresponding inverse function of the derivative of the expo-
nential utility is I(y) = − 1

γ
(ln y − ln γ). Then, value function in the

case of the exponential utility can be simplified to the form

VT (x, 0) =

∫
Ξ

EPu
[
U
(
I
(
λ0(u)Z̃∗T (u)

))]
dα(u)

= 1− 1

γ

∫
Ξ

λ0(u) dα(u).(31)

The corresponding λ0 is given by

λ0(u) = γ exp

{
− γx− EPu

[
Z̃∗T (u) ln Z̃∗T (u)

]}
.

Taking into account that

EPu
[
Z̃∗T (u) ln Z̃∗T (u)

]
= I(Qu,∗

T |P
u
T )

we get that

λ0(u) = γ exp

{
− γx− I(Qu,∗

T |P
u
T )

}
.

and it gives us (26). 2

4.2. Information quantities and information processes. In this
subsection we express the information quantities via corresponding in-
formation processes. As previously, we assume the existence of an
equivalent f -divergence minimal martingale measure Qu,∗. We recall
that a semi-martingale X(ξ) under P u is also a semi-martingale with
the triplet TF(u) = (Bu, C, νu) defined by (7). To avoid non-necessary
complications we introduce the following additional assumption.
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Assumption 5. For each u ∈ Ξ, the (P u,F)-semi-martingale X is a
quasi-left continuous, i.e. for any predictable stopping time τ , the jump
∆Xτ = 0 on the set {τ <∞}.

Let us denote by βu,∗ and Y u,∗(x) two (P u,F)-predictable processes
known as Girsanov parameters for the changing of measure from P u

into Qu,∗ such that: ∀t ≥ 0 and P u-a.s.∫ t

0

∫
R
| l(x) (Y u,∗

s (x)− 1)|νu(ds, dx) <∞,
∫ t

0

(βu,∗s )2dCs <∞.

In the case of logarithmic utility we consider the entropy I(P u
T |Q

u,∗
t )

and we introduce the corresponding predictable process I∗(u) = (I∗t (u))t∈[0,T ]

(32)

I∗t (u) =
1

2

∫ t

0

(βu,∗s )2dCs−
∫ t

0

∫
R

(ln(Y u,∗
s (x))− Y u,∗

s (x) + 1) νu(ds, dx).

Proposition 3. We suppose that EPu | ln Z̃∗T (u)| <∞ and Assumption
5 holds. Then

(33) I(P u
T |Q

u,∗
T ) = EPuI∗T (u).

Proof: To avoid the complicated notations we omit for the proof of
this Proposition the indexes u, ∗, and replace the notation of Z̃ by Z.
Let Q and P be two equivalent probability measures on canonical space
and let (Zt)t∈[0,T ] be the Radon-Nikodym density, Zt = dQt

dPt
, where Qt

and Pt are the restrictions of Q and P on σ-algebra Ft. Let X be
P -semi-martingale with the characteristics (B,C, ν).

For ε > 0 we put

(34) τε = inf{0 ≤ t ≤ T |Zt ≤ ε}

with inf{∅} = +∞. We remark that τε is a stopping time and that the
sequence of stopping times (τε) is increasing to infinity as ε → 0, and
hence, it is localising sequence. Then, by Ito formula we have:

(35) lnZT∧τε = lnZ0 +

∫ T∧τε

0

1

Zs−
dZs −

1

2

∫ T∧τε

0

1

(Zs−)2
d < Zc >s

+
∑

0<s≤T∧τε

(
lnZs − lnZs− −

1

Zs−
∆Zs

)
,

where ∆Zs = Zs − Zs− and < Zc >s is a predictable variation of the

continuous martingale part of Z. We remark that
(∫ t∧τε

0
1

Zs−
dZs

)
t∈[0,T ]

is a (P,F)-martingale started from zero, since it is stochastic integral
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with respect to (P,F)-martingale Z and since Zs− ≥ ε > 0 on the
stochastic interval [0, T ∧ τε] . By Theorem 1.8, p.66 in [23], we get

EP

∫ t∧τε

0

∫
R

(
ln

(
1 +

x

Zs−

)
− x

Zs−

)
µZ(ds, dx) =

EP

∫ t∧τε

0

∫
R

(
ln

(
1 +

x

Zs−

)
− x

Zs−

)
νZ(ds, dx),

where µZ and νZ are measure of jumps of Z and its compensator.
Finally, from (35) and the fact that Z0 = 1, we have:

(36) EP lnZT∧τε = EP

[
−1

2

∫ T∧τε

0

1

(Zs−)2
d < Zc >s

+

∫ T∧τε

0

∫
R

(
ln

(
1 +

x

Zs−

)
− x

Zs−

)
νZ(ds, dx)

]
.

Now, since Z = E(M) where E(·) is a Dolean-Dade exponential, for all
t ∈ [0, T ] we get:

(37) Mt =

∫ t

0

βsdX
c
s +

∫ t

0

∫
R
(Ys − 1)(µ− ν)(ds, dx)

Then, dZt = Zt−dMt, and in particular, dZc
t = ZtdM

c
t and ∆Zt =

Zt−∆Mt. In addition, (37) implies that for t ∈ [0, T ]

(38) M c
t =

∫ t

0

βsdX
c
s and ∆Mt = (Yt(∆Xt)− 1) ,

and, hence,
d < Zc >t= (Zt−)2β2

t d < Xc >t

and
∆Zt = Zt− (Yt(∆Xt)− 1) .

Using mentioned above relations we obtain:
(39)

EP lnZT∧τε = EP

[
−1

2

∫ T∧τε

0

β2
sdCs +

∫ T∧τε

0

∫
R

(lnYs(x)− Ys(x) + 1) ν(ds, dx)

]
.

Since ln(1+x) ≤ x, both integrands in the right hand side are negatives.
So, using the Lebesgue monotone convergence theorem, we can pass to
the limit on the right-hand side.

It remains to pass to the limit on the left hand side in (39), i.e. to
prove

(40) lim
ε→0

EP lnZT∧τε = EP lnZT .
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We can write

(41) EP lnZT∧τε−EP lnZT = EP
[
lnZτε1{τε<T}

]
−EP

[
lnZT1{τε<T}

]
.

We show that two last terms in (41) tend to zero as ε→ 0.

Let Ẑt = 1
Zt

for t ∈ [0, T ]. We remark that (Ẑt)[0,T ] is a Q-martingale.
Then, by maximal inequality for positive martingales

(42) Q (τε < T ) ≤ Q

(
sup

0≤t≤T
Ẑt ≥

1

ε

)
≤ EQẐT · ε = ε

Finally,

P (τε < T ) ≤ EQ(ẐT1{ sup
0≤t≤T

Ẑt≥ 1
ε
})→ 0

as ε→ 0 since EQẐT = 1. Since lnZT is P -integrable, the relation (42)
implies that

(43) lim
ε→0

EP
(
lnZT1{τε<T}

)
= 0.

Since Zτε ≤ ε, for ε < 1 we get EP (lnZτε1{τε<T}) ≤ 0. From concavity
of ln x, x > 0

EP (lnZτε1{τε<T}) ≥ EP
(
lnZT1{τε<T}

)
The relation (43) implies that EP

(
lnZτε1{τε<T}

)
→ 0 when ε → 0.

Finally, we proved (40). 2

In the case of exponential utility we consider the entropy I(Qu,∗
T |P u

T ),
which is known also as Kullback-Leiber information. We introduce the
corresponding Kullback-Leiber process I∗(u) = (I∗t (u))t∈[0,T ] with
(44)

I∗t (u) =
1

2

∫ t

0

(βu,∗s )2dCs+

∫ t

0

∫
R

[Y u,∗
s (x) ln(Y u,∗

s (x))− Y u,∗
s (x) + 1] νu(ds, dx).

We remark that, Kullback-Leibler process was first introduced in [25]
and it was studied in [27], [13], [20]. We give here some properties of
this process needed for our final results.

Proposition 4. We suppose that EPu |Z̃∗T (u) ln Z̃∗T (u)| < ∞ and that
the Assumption 5 holds. Then,

(45) I(Qu,∗
T |P

u
T ) = EPu

[∫ T

0

Z̃∗s−(u) dI∗s (u)

]
= EQu,∗ ( I∗T (u) )

Proof: We continue in the framework of Proposition 3 to prove the
first equality. The second one is a consequence of integration by part
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formula. Let ε > 0 and the localising sequence (τε) : for ε > 0

τε = inf{0 ≤ t ≤ T |Zt ≤ ε orZt ≥
1

ε
}

with inf{∅} = +∞. Then, by Ito formula we have

(46)

ZT∧τε lnZT∧τε = Z0 lnZ0+

∫ T∧τε

0

(lnZs−+1)dZs+
1

2

∫ T∧τε

0

1

Zs−
d < Zc >s

+

∫ T∧τε

0

∫
R

[(Zs− + x) ln(Zs− + x)− Zs− lnZs− − (lnZs− + 1)x]µZ(ds, dx).

We remark that
(∫ T∧τε

0
(lnZs− + 1)dZs

)
t∈[0,T ]

is a (P,F)-martingale

started from zero, since it is stochastic integral with respect to (P,F)-
martingale Z such that Zs− ≥ ε and Zs− ≤ 1

ε
on the stochastic interval

[0, T ∧ τε]. Using Theorem 1.8, p.66, in [23], we get

EP

∫ t∧τε

0

∫
R

[(Zs− + x) ln(Zs− + x)− Zs− lnZs− − (lnZs− + 1)x]µZ(ds, dx) =

EP

∫ t∧τε

0

∫
R

[(Zs− + x) ln(Zs− + x)− Zs− lnZs− − (lnZs− + 1)x] νZ(ds, dx),

where µZ and νZ are the measure of jumps of Z and its compensator.

Finally, from (46) and the fact that Z0 = 1, we have:

(47) EP [ZT∧τε lnZT∧τε ] = EP

[
1

2

∫ T∧τε

0

1

Zs−
d < Zc >s

+

∫ T∧τε

0

∫
R

[(Zs− + x) ln(Zs− + x)− Zs− lnZs− − (lnZs− + 1)x] νZ(ds, dx)

]
.

Using the relations between Z = E(M), M and the process X given by
(37) and (38), we get

(48) EP [ZT∧τε lnZT∧τε ] = EP

[
1

2

∫ T∧τε

0

Zs−β
2
sdCs

+

∫ T∧τε

0

∫
R
Zs− (Ys(x) lnYs(x)− Ys(x) + 1) ν(ds, dx)

]
.

Since τε → +∞ as ε → 0 and x lnx − x + 1 ≥ 0 for all x > 0, by
Lebesgue monotone convergence theorem we can pass to the limit in
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the right-hand side of (48). It remains to show that the left-hand side
of (48) converges to EP [ZT lnZT ] . We can write

(49) EP [ZT∧τε lnZT∧τε ]− EP [ZT lnZT ] =

EP
[
Zτε lnZτε1{τε<T}

]
− EP

[
ZT lnZT1{τε<T}

]
.

We show that the last two terms in (49) tends to zero as ε→ 0. Since
ZT lnZT is P -integrable and P (τε < T )→ 0 as ε→ 0, we get that

lim
ε→0

EP
[
ZT lnZT1{τε<T}

]
= 0.

Using the inequality x lnx ≥ 1
e

for all x ∈ R+, we have for 0 ≤ ε ≤ 1
e

−1

e
· P (τε < T ) ≤ EP

[
Zτε lnZτε1{τε<T}

]
≤ 0,

and EP
[
Zτε lnZτε1{τε<T}

]
→ 0 when ε→ 0. Finally,

lim
ε→0

EP [ZT∧τε lnZT∧τε ] = EP [ZT lnZT ] .

and the proposition is proved. 2

For the case of power utility we consider Hellinger types integrals

H
(q),∗
T (u) = EPu

[
(Z̃∗T (u))q

]
,

where q = p
p−1

, p < 1. We notice that if p < 0 then 0 < q < 1 and if

0 < p < 1 then q < 0, so, in any cases q < 1.

We introduce the corresponding predictable process called Hellinger

type process h(q),∗(u) = (h
(q),∗
t (u))t∈[0,T ]

(50) h
(q),∗
t (u) =

1

2
q(q − 1)

∫ t

0

(βu,∗s )2dCs+∫ t

0

∫
R

[(Y u,∗
s (x))q − q(Y u,∗

s (x)− 1)− 1] ν(ds, dx),

In the case when 0 < q < 1 the Hellinger processes was studied in [36],
[23], [10],[11]. We show that the result can be extended for q < 1.

Proposition 5. Suppose that H
(q),∗
T (u) <∞ and that the Assumption

5 holds. Then

H
(q),∗
T (u) = 1 + EPu

[∫ T

0

(Z̃∗s−)q dh(q),∗
s (u)

]
or, in the terms of the stochastic exponential:

(51) H
(q),∗
T (u) = EPu

[
E
(
h(q),∗)

T

]
.
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Proof: We continue in the framework of Proposition 3. Let ε > 0 and
the localising sequence (τε) defined by (34). Applying Ito’s formula we
have:

Zq
T∧τε = 1 + q

∫ T∧τε

0

Zq−1
s− dZs +

1

2
q(q − 1)

∫ T∧τε

0

Zq−2
s− d < Zc >s

+

∫ T∧τε

0

∫
R

[
Zq
s−

((
1 +

x

Zs−

)q
− 1

)
− qZq−1

s− x

]
µZ(ds, dx).

Since
(∫ t∧τε

0
Zq−1
s− dZs

)
t∈[0,T ]

is a (P,F)-martingale starting from 0 and

due to the projection theorem we get:

EPZ
q
T∧τε = 1 + EP

[
1

2
q(q − 1)

∫ T∧τε

0

Zq−2
s− d < Zc >s

+

∫ T∧τε

0

∫
R

[
Zq
s−

((
1 +

x

Zs−

)q
− 1

)
− qZq−1

s− x

]
νZ(ds, dx)

]
.

Using the relation between Z = E(M), M and the initial process X,
we get

EPZ
q
T∧τε = 1 + EP

{
1

2
q(q − 1)

∫ T∧τε

0

Zq
s−β

2
sdCs

+

∫ T∧τε

0

∫
R
Zq
s− [Y q

s (x)− q(Ys(x)− 1)− 1] ν(ds, dx)

}
We remark that lim

ε→0
τε = +∞. Since for 0 < q < 1, q(q − 1) < 0 and

xq − qx − 1 ≤ 0 and for q < 0, q(q − 1) > 0 and xq − qx − 1 ≥ 0,
the right hand side of above expression contains the integral of some
negative function. Then, by Lebesgue monotone convergence theorem
we can pass to the limit on the right hand side.

It remains to show that

lim
ε→0

EPZ
q
T∧τε = EPZ

q
T .

We have:

(52) EPZ
q
T∧τε − EPZ

q
T = EP

(
Zq
τε1{τε<T}

)
− EP

(
Zq
T1{τε<T}

)
.

Since P (τε < T ) → 0 as ε → 0 and Zq
T is P -integrable, the first term

in the right-hand side of (52) tends to zero. For the second term we
distinguish two cases: 0 < q < 1 and q < 0. In the first case,

EP
(
Zq
τε1{τε<T}

)
≤ εqP (τε < T )→ 0
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as ε→ 0. In the second case we have:

EP
(
Zq
τε1{τε<T}

)
= EQ

(
Ẑ1−q
τε 1{τε<T}

)
,

where Ẑτε =
1

Zτε
. From maximal inequalities for the martingales we

have:

EQ

[
sup

0≤t≤T
Ẑt

]1−q

≤ c(q)EQ(Ẑ1−q
T ) = c(q)EP (Zq

T ) <∞

where c(q) is a constant. In addition, Q (τε < T ) → 0 as ε → 0, and,
then,

lim
ε→0

EQ

(
Ẑ1−q
τε 1{τε<T}

)
= 0.

We prove now (51). From Ito formula we also get that

Zq
T∧τε = 1 +

∫ T∧τε

0

Zq
s dKs

where K = N+h(q) is a sum of a martingale N and predictable process
h(q) with

Nt = q

∫ t

0

βs− dX
c
s +

∫ t

0

∫
R
(Y q

s (x)− 1)(µ− ν)(ds, dx)

Then, we have:

Zq
T∧τε = E(N + h(q))T∧τε = E(N)T∧τε E(h(q))T∧τε

We take the expectation with respect to P and we show that (E(N)t∧τε)0≤t≤T
is uniformly integrable martingale with expectation 1. Since h(q) is
monotone and continuous process, we can pass to the limit and it gives
(51). 2

4.3. Maximal utility and information processes. The final result
for maximal utility in terms of information processes follows directly
from Theorem 2 and Propositions 3, 4 and 5 and is given in the follow-
ing Theorem 3.

Theorem 3. Under The Assumptions 1, 2, 3, 4, 5 and for HARA
utilities we have the following expressions for VT (x, 0) :

(i) If U(x) = ln x, then

(53) VT (x, 0) =

∫
Ξ

EPu [ lnx+ I∗T (u)] dα(u)
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(ii) If U(x) = xp

p
with p < 1, p 6= 0, then

(54) VT (x, 0) =
1

p

∫
Ξ

xp
(
EPu

[
E
(
h(q),∗(u)

)
T

])1−p
dα(u)

(iii) If U(x) = 1− e−γx with γ > 0, then

(55) VT (x, 0) = 1−
∫

Ξ

exp{−(γx+ EQu,∗( I
∗
T (u) )} dα(u)

The expressions for VT (x, g) can be obtained from previous expressions
replacing x by x+ g(u) in right-hand side.

5. Indifference pricing on the initially enlarged
filtration

We consider the situation when the investor carries out the trading of
risky asset S(ξ) on the finite time interval [0, T ] and has a European
type option with the pay-off function GT = g(ξ), g is an H-measurable
real-valued function. Then, as it was already mentioned a buyer’s
indifference price pbT is the solution to the equation

(56) VT (x, 0) = VT (x− pbT , g).

and a seller’s indifference price psT is defined from

(57) VT (x, 0) = VT (x+ psT ,−g).

We notice that the indifference prices pbT and psT are related, namely

(58) pbT (g) = −psT (−g).

5.1. Indifference price formulas. Now we apply the results of The-
orem 1 and Theorem 2 to give the formulas for the indifference prices
in the cases of the exponential, power and logarithmic utilities.

Proposition 6. In the case of logarithmic utility U(x) = ln x, x > 0,
and under the Assumptions 1, 2, 3, 4, and g(ξ) ∈]0, x[ (α-a.s.), the
buyer’s and seller’s indifference price satisfy:

(59)

∫
Ξ

ln

[
1− pbT

x
+
g(u)

x

]
dα(u) = 0

and

(60)

∫
Ξ

ln

[
1 +

psT
x
− g(u)

x

]
dα(u) = 0.
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Moreover, if ln(g(ξ)), ln(x − g(ξ)) are integrable functions then the
solutions of the equations (59) and (60) exist, they are unique and
pbT , p

s
T ∈ [0, x].

Remark 3. It should be noticed that in logarithmic utility case, the
formulas for indifference price do not reflect the dependence between
X(ξ) and ξ: exactly the same equations will hold when X(ξ) and ξ are
independent.

Proof: From (24) and (56) we have (59). Formula (60) is obtained
from the relation (58). We see that

F (y) =

∫
Ξ

ln

[
1− y

x
+
g(u)

x

]
dα(u), y ∈ [0, x] ,

is well-defined strictly decreasing function and F (0) ≥ 0. If ln g(ξ)
is integrable with respect to α, then F is a continuous by Lebesgue
dominated theorem. Under the condition that g(ξ) ∈]0, x[ (α-a.s.),
F (x) ≤ 0. Then, solution exists by the mean-value theorem and it is
unique.

In the case of the seller’s indifference price, the function

F (y) =

∫
Ξ

ln

[
1 +

y

x
− g(u)

x

]
dα(u), y ∈ [0, x] ,

is a strictly increasing continuous function with F (0) ≤ 0 and F (x) ≥ 0
and then, there exists a unique solution of (60). 2

Proposition 7. In the case of the power utility U(x) = xp

p
, x > 0,

with p < 1, p 6= 0, we suppose that the Assumptions 1, 2, 3, 4 hold,
g(ξ) ∈]0, x[(α -a.s.) and∫

Ξ

(
H

(q),∗
T (u)

)1−p
dα(u) <∞.

Then, the buyer’s and seller’s indifference prices are defined respectively
from the equations:

(61)

∫
Ξ

[(1− pbT
x

+
g(u)

x
)p − 1]

(
H

(q),∗
T (u)

)1−p
dα(u) = 0

and

(62)

∫
Ξ

[(1 +
psT
x
− g(u)

x
)p − 1]

(
H

(q),∗
T (u)

)1−p
dα(u) = 0

Moreover, the equations (61) and (62) have unique solutions belonging
to the interval [0, x].
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Remark 4. In the case when X(ξ) and ξ are independent, the in-

formation quantity H
(q),∗
T (u) does not depend on u and we get from

Proposition 7 the following equations for indifference price:∫
Ξ

[(1− pbT
x

+
g(u)

x
)p − 1]dα(u) = 0,∫

Ξ

[(1 +
psT
x
− g(u)

x
)p − 1]dα(u) = 0.

Proof: The formula (61) follows from (25) and (56), then, the formula
(62) can be obtained from the relation (58).

We denote for y ∈ [0, x]

F (y) =

∫
Ξ

[
(1− y

x
+
g(u)

x
)p − 1

] (
H

(q),∗
T (u)

)1−p
dα(u)

We see that F is continuous strictly decreasing function for p ∈ (0, 1)
on [0, x] and that F (0) ≥ 0 and F (x) ≤ 0. Then the solution of the
equation exists by mean value theorem and it is unique. For p < 0, F is
a strictly increasing continuous function with F (0) ≤ 0 and F (x) ≥ 0,
then (61) has a unique solution. The case of seller’s indifference price
can be considered in a similar way. 2

Proposition 8. In the case of the exponential utility U(x) = 1 −
e−γx, x > 0, with γ > 0 and under the Assumptions 1, 2, 3, 4 , the
buyer’s and seller’s indifference prices verify:

(63) pbT =
1

γ
ln


∫

Ξ
exp

{
− I(Qu,∗

T |P u
T )

}
dα(u)

∫
Ξ

exp

{
− γg(u)− I(Qu,∗

T |P u
T )

}
dα(u)


and

(64) psT = −1

γ
ln


∫

Ξ
exp

{
− I(Qu,∗

T |P u
T )

}
dα(u)

∫
Ξ

exp

{
γg(u)− I(Qu,∗

T |P u
T )

}
dα(u)


Remark 5. In the case when X(ξ) and ξ are independent, the in-
formation quantity I(Qu,∗

T |P u
T ) does not depend on u and we get from

Proposition 8 the following equations for indifference price:

pbT = −1

γ
ln

[∫
Ξ

exp

{
− γg(u)

}
dα(u)

]
,
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psT =
1

γ
ln

[∫
Ξ

exp

{
γg(u)

}
dα(u)

]
.

Proof: In the case of the exponential utility I(y) = − 1
γ
(ln y − ln γ)

and from (56) and (26) we get the equation for buyer’s indifference
price: ∫

Ξ

(λg(u)− λ0(u)) dα(u) = 0,

where λg is given by

λg(u) = γ exp

{
− γ

(
x− pbT + g(u)

)
− I(Qu,∗

T |,P
u∗
T )

}
,

and

λo(u) = γ exp

{
− γ x− I(Qu,∗

T |,P
u∗
T )

}
These formulas give us (63). The seller’s indifference price (64) can be
obtained from the relation (58). 2

5.2. Indifference prices and risk measure properties. In this
subsection we will show that indifference prices psT and −pbT are risk
measures. First we recall here the definition of risk measure.

The application ρ : FT → R+ is convex risk measure if for all contingent

claims C
(1)
T , C

(2)
T ∈ FT and all 0 < γ < 1 we have:

(1) convexity of ρ with respect to the claims:

ρ(γ C
(1)
T + (1− γ)C

(2)
T ) ≤ γρ(C

(1)
T ) + (1− γ)ρ(C

(2)
T )

(2) it is increasing function with respect to the claim:

for C
(1)
T ≤ C

(2)
T , we have ρ(C

(1)
T ) ≤ ρ(C

(2)
T )

(3) it is invariant with respect to the translation: for m > 0

ρ(C
(1)
T +m) = ρ(C

(1)
T ) +m

Proposition 9. We suppose that The Assumptions 1, 2, 3, 4 hold.
Then for HARA utilities the indifference prices for sellers psT (g) and
(−pbT ) for buyers obtained in the Propositions 6, 7, 8 are risk measures.

Proof: We prove the claim for seller’s indifference price since the cor-
responding properties for −pbT will follow from (58).
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(i) Let U(x) = ln(x), x > 0. From the Proposition 6 the indifference
price for seller psT = psT (g) is defined from the equation:∫

Ξ

ln

[
1 +

psT (g)

x
− g(u)

x

]
dα(u) = 0.

Since for each m ∈ R+, psT (g +m) verify∫
Ξ

ln

[
1 +

psT (g +m)

x
− g(u) +m

x

]
dα(u) = 0.

and the solution of this equation is unique,

psT (g +m) = psT (g) +m

and, hence, the property (3) holds.

Let g1(u) ≤ g2(u) for u ∈ Ξ. Then we have:

0 =

∫
Ξ

ln

[
1 +

psT (g1)

x
− g1(u)

x

]
dα(u) ≥

∫
Ξ

ln

[
1 +

psT (g1)

x
− g2(u)

x

]
dα(u)

and it gives (2).

We put g(u) = γ g1(u) + (1 − γ) g2(u). Then from concavity of ln we
get: ∫

Ξ

ln

[
1 +

γ psT (g1) + (1− γ) psT (g2)

x
− g(u)

x

]
dα(u) ≥

γ

∫
Ξ

ln

[
1 +

psT (g1)

x
− g1(u)

x

]
dα(u)+(1−γ)

∫
Ξ

ln

[
1 +

psT (g2)

x
− g2(u)

x

]
dα(u)

Then, since the right-hand side of previous expression is equal to zero,

psT (γ g1(u) + (1− γ) g2(u)) ≤ γ psT (g1) + (1− γ) psT (g2)

and we proved the relation (1).

(ii) Let U(x) = xp

p
, p < 1, p 6= 0. From the Proposition 7 the indiffer-

ence price for seller is defined from the equation:∫
Ξ

[(1 +
psT (g)

x
− g(u)

x
)p − 1]

(
H

(q),∗
T (u)

)1−p
dα(u) = 0

The properties (2) and (3) can be proved in the same way as in (i).
Let us denote by g(u) = γ g1(u) + (1− γ) g2(u) and let us suppose that
0 < p < 1. Then using the concavity of the function (1 + x)p − 1 we
have:∫

Ξ

[(1 +
γ psT (g1) + (1− γ) psT (g2)

x
− g(u)

x
)p − 1]

(
H

(q),∗
T (u)

)1−p
dα(u) ≥
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γ

∫
Ξ

[(1 +
psT (g1)

x
− g1(u)

x
)p − 1]

(
H

(q),∗
T (u)

)1−p
dα(u)+

(1−γ)

∫
Ξ

[(1+
psT (g2)

x
−g2(u)

x
)p−1]

(
H

(q),∗
T (u)

)1−p
dα(u)

Since the right-hand side of above expression is equal to zero, we get
the property (1). The case p < 0 can be considered in similar way.

(iii) Let U(x) = 1− e−γ0x, x > 0, with γ0 > 0. From the Proposition 8
the indifference price for the seller is defined by the formula:

psT (g) = − 1

γ0

ln


∫

Ξ
exp

{
− I(Qu,∗

T |P u
T )

}
dα(u)

∫
Ξ

exp

{
γ0g(u)− I(Qu,∗

T |P u
T )

}
dα(u)


We see directly from this formula that the properties (2) and (3) are
verified. Let us take g(u) = γ g1(u) + (1 − γ) g2(u). Then, by Holder
inequality with p = 1

γ
and q = 1

1−γ we get:∫
Ξ

exp

{
γ0g(u)−I(Qu,∗

T |P
u
T )

}
dα(u) ≤

(∫
Ξ

exp

{
γ0g1(u)− I(Qu,∗

T |P
u
T )

}
dα(u)

)γ
(∫

Ξ

exp

{
γ0g2(u)− I(Qu,∗

T |P
u
T )

}
dα(u)

)1−γ

and it gives the property (1). 2

6. Conditionally exponential Levy models

We continue in the framework of Section 2. In addition, and it will
be specific for this part, we assume that conditionally to ξ = u, X(ξ)
is a Levy process. It means that P u is the law of Levy process with
the parameters (bu, (σu)2, νu), where bu is a drift parameter, (σu)2 is a
parameter related with a continuous martingale part and νu is a Levy
measure, such that ∫

R
(x2 ∧ 1) νu(dx) <∞

Since P u � P we deduce that (σu)2 does not depend on u and then
(σu)2 = σ2. We recall that according to the Levy-Ito decomposi-
tion theorem, conditional Levy process X with the generating triplet
(bu, σ2, νu) can be represented in the following form

Xt = σW u
t + but+

∫ t

0

∫
|x|>1

xNu(ds, dx) +

∫ t

0

∫
|x|≤1

xÑu(ds, dx),
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where W u is a (P u,F) standard Wiener process, Nu(ds, dx) is a (P u,F)
Poisson random measure and Ñu(ds, dx) is a (P u,F) compensated Pois-
son random measure with a compensator νu(dx)ds.

The parameters of Levy process define entirely the law of the process
via its one-dimensional distributions : for all λ ∈ R

EPue
iλXt = etψ

u(λ),

where the characteristic exponent ψu(λ) is given by Levy-Kinchin for-
mula:

ψu(λ) = iλbu − 1

2
λ2σ2 +

∫
R

(
eitx − 1− x1{|x|≤1}

)
νu(dx).

Exponential Levy models was very well studied (see for instance [1],
[34]). In particular, the notion of minimal entropy martingale measure
was introduced first in [27], the question of existence of f -divergences
minimal martingale measures, for the first time was studied in [16], and
for classical f -divergences for the exponential Levy models it was done
in its generalised version in [7]. Again, we denote by βu,∗ and Y u,∗(x)
two (P u,F)-predictable processes known as Girsanov parameters for
the changing of measure from P u to Qu,∗ such that: ∀t ≥ 0 and P u-
a.s. ∫ t

0

∫
R
|l(x) (Y u,∗

s (x)− 1)| νu(dx) ds <∞,
∫ t

0

(βu,∗s )2 ds <∞.

We recall that for HARA utilities, the equivalent f -divergence minimal
martingale measures when they exist, have Levy preservation property,
i.e. being Levy process under P u, the process remains Levy process
under Qu,∗. More about preservation of Levy property see [8]. The
preservation of Levy property implies that all information processes
introduced in section 5 are deterministic and this fact simplifies very
much the expression for maximal utility of Theorem 3.

Proposition 10. Let U(x) = lnx, x > 0, and Assumption 1 holds.
We suppose that there exists a solution βu to the equation

(65) bu + βuσ2 +

∫
R

(Y u(x)− 1) 1{|x|≤1}ν
u(dx) = 0,

with

(66) Y u(x) = (1− βu x 1{|x|≤1})
−1
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and such that Y u(x) > 0 νu−a.s. Then, there exists f -divergence
minimal equivalent martingale measure Qu and the corresponding in-
formation process is equal to:

(67) IT (u) = T

{
1

2
(βuσ)2 +

∫
R

(− ln (Y u(x)) + Y u(x)− 1) νu(dx)

}
If we assume, in addition, that g(ξ) ∈]0, x[ (α-a.s.) and that ln g(ξ),
ln(x− g(ξ)) and IT (ξ) are α-integrable random variables, then

(68) V (x, 0) =

∫
Ξ

IT (u)dα(u)− lnx

and for the buyer of option

(69) V (x− pbT , g) = V (x, 0) +

∫
Ξ

ln

(
1− pbT

x
+
g(u)

x

)
dα(u),

for the seller of option

(70) V (x+ psT , g) = V (x, 0) +

∫
Ξ

ln

(
1 +

psT
x
− g(u)

x

)
dα(u).

Moreover, the indifference prices pbT , psT are defined by the formulas
(59) and (60) respectively.

Proof: The stochastic exponent of X will be a (Qu,F) local martin-
gale if the process X is a (Qu,F) local martingale. The process X will
be a local martingale under the measure Qu if and only if the corre-
sponding drift parameter BQu is equal to 0 for each t. It was shown
in [26] that Girsanov parameters of the minimal martingale measure
does not depend on (ω, t) (see also [8]). Since βu and Y u(x) denote
the Girsanov parameters for the changing of measure from P u to Qu,
according to [23], Theorem 3.24, p. 159, we have ∀t ∈ [0, T ]

BQu

t = but+ βuσ2t+ t

∫
R
(Y u(x)− 1)1{|x|≤1}(x)dν(x).

Equating BQu to 0, one gets the relation (65).

It was shown in [26] (see also [8]) that if St = exp(X̃t) then

Y u(∆X̃) = (1− βu(e∆X̃ − 1))−1

But at the same time St = E(X)t and writing the relation for the jumps
we get

(71) exp(∆X̃)− 1 = ∆Xt1{|∆Xt|≤1}

and it gives the formula (66). From (32) we get the expression of the
corresponding information process (67). From Theorem 3 we obtain
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the expressions for maximal expected utility, and Proposition 6 gives
us the formulas for indifference prices. 2

Proposition 11. Let U(x) = xp

x
, x > 0, with p < 1, p 6= 0 and

Assumption 1 holds. We suppose that there exists a solution to the
equation (65) with

(72) Y u(x) =

(
1− |p|

(p− 1)2
βu x 1{|x|≤1}

)p−1

such that 1 − |p|
(p− 1)2

βu x 1{|x|≤1} > 0 (νu−a.s.) Then, there exists

f -divergence minimal equivalent martingale measure Qu and the corre-
sponding Hellinger type process of order q = p

p−1
is given by:

(73)

h
(q)
T (u) = T

{
1

2
q(q−1) (βuσ)2+

∫
R

[(Y u(x))q −q(Y u(x)− 1)− 1] νu(dx)

}
If we assume, in addition, that g(ξ) ∈]0, x[ (α-a.s.) and that eh

(q)
T (ξ) is

α-integrable random variable, then

V (x, 0) = xp
∫

Ξ

eh
(q)
T (u)dα(u),

for the buyer of the option

V (x− pbT , g) =

∫
Ξ

(x− pbT + g(u))p eh
(q)
T (u)dα(u),

for the seller of the option

V (x+ psT , g) =

∫
Ξ

(x+ pbT − g(u))p eh
(q)
T (u)dα(u),

Moreover, the buyer’s and seller’s indifference prices are defined by the

formulas (61) and (62) respectively with H
(q),∗
T (u) = eh

(q)
T (u).

Proof: The same reasons as in the proof of the Proposition 10 gives
us (65). It was shown in [24] that Girsanov parameters of the minimal
martingale measure does not depend on (ω, t) (see also [8]) and that if
St = exp(X̃t) then

Y u(∆X̃) =

(
1− |p|

(p− 1)2
βu(e∆X̃ − 1)

)p−1

But then St = E(X)t and (71) gives us the formula (72). Then from
(50) we deduce the expression (73). From Theorem 3 we obtain the
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expressions for maximal expected utility, and Proposition 7 gives us
the formulas for indifference prices. 2

Proposition 12. Let U(x) = 1−e−γx, x > 0, with γ > 0 and Assump-
tion 1 holds. We suppose that there exists a solution to the equation
(65) with

(74) Y u(x) = exp{βux 1{|x|≤1}}

Then, there exists f -divergence minimal equivalent martingale measure
Qu and the corresponding information process is given by:

(75) IT (u) = T

{
1

2
(βuσ)2 +

∫
R

[Y u(x) lnY u(x)− Y u(x) + 1] νu(dx)

}
,

If we suppose that IT (u) is finite (α-a.s.) then we have:

V (x, 0) = 1−
∫

Ξ

exp{−γx− IT (u)} dα(u),

for the buyer,

V (x− pbT , g) = 1−
∫

Ξ

exp{−γ
(
x− pbT + g(u)

)
− IT (u)} dα(u),

for the seller,

V (x+ psT , g) = 1−
∫

Ξ

exp{−γ (x+ psT − g(u))− IT (u)} dα(u).

Moreover, the buyer’s and seller’s indifference prices are defined by the
formulas (63) and (64) respectively with I(Qu,∗

T |P u
T ) = IT (u).

Proof: It was shown in [13] that Girsanov parameters of the minimal
martingale measure does not depend on (ω, t) (see also [8]). Since βu

and Y u(x) denote the Girsanov parameters for the changing of measure
from P u to Qu, according to [23], Theorem 3.24, p. 159, we have (65).

It was shown in [20] (see also [8])that if St = exp(X̃t) then

Y u(∆X̃) = eβ
u (e∆X̃−1)

But since St = E(X)t and (71) we get the formula (74). From (44) we
get the expression of the corresponding information process (75). From
Theorem 3 we obtain the expressions for maximal expected utility, and
Proposition 8 gives us the formulas for indifference prices. 2
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7. Applications to Geometric Brownian motion case

Let (W (1),W (2)) bi-dimensional standard Brownian motions with cor-
relation ρ, |ρ| < 1 on [0, T ]. Let µ1, µ2 ∈ R and σ1 > 0, σ2 > 0. We
put

S
(1)
t = exp{(µ1 −

σ2
1

2
)t+ σ1W

(1)
t }

S
(2)
t = exp{(µ2 −

σ2
2

2
)t+ σ2W

(2)
t }

for two risky assets.

The first asset will play the role of S(ξ) and Xt(ξ) = µ1 t + σ1W
(1)
t

in this case. We take ξ = W
(2)
T ′ instead of S

(2)
T ′ since they generate the

same σ-algebras. In this case α = N (0, T ′).

We know that for all t ∈ [0, T ]

W
(1)
t = ρW

(2)
t +

√
1− ρ2γt

where γ is independent from W (2) standard Brownian motion. Then,

the conditional law of X given W
(2)
T ′ = u coincide with the law of

(76) Xt(u) = µ1t+ σ1ρVt(u) + σ1

√
1− ρ2γt

where V (u) is a Brownian bridge starting from 0 at t = 0 and ending in
u at t = T ′ which is independent from the process γ. As known,

Vt(u) =

∫ T

0

u− Vs(u)

T ′ − s
ds+ ηt

where η is standard Brownian motion independent from γ. Finally,
since γ̂ = ρη +

√
1− ρ2γ is again standard Brownian motion, we

get:

(77) Xt(u) = µ1t+ σ1ρ

∫ t

0

u− Vs(u)

T ′ − s
ds+ σ1 γ̂t

Hence, P u
t << Pt for all u ∈ R and t ∈ [0, T ], and the Assumptions 1

and 2 are satisfied.

Let au calculate the conditional law αt = P (ξ | Ft) given Ft = σ(W
(1)
s , s ≤ t).

By Markov property we get: for A ∈ B(R)

αt(A) = P (W
(2)
T ′ ∈ A | Ft) = P (W

(2)
T ′ ∈ A |W

(1)
t ) = P (W

(2)
T ′ −W

(2)
t +W

(2)
t ∈ A |W

(1)
t )

Since W
(2)
T ′ −W

(2)
t is independent from (W

(1)
t ,W

(2)
t ), the law of ξ given

W
(1)
t = x is N (ρ x, T ′ − ρ2t). So, since T ′ − ρ2t 6= 0 for t ∈ [0, T ], it is

equivalent to the law of W
(2)
T ′ being N (0, T ′).
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To give the formulas for indifference price it is convenient to remark
that Qu,∗ is a unique martingale measure which annulate the drift of
X(u) given by

Bt(u) = µ1t+ σ1ρ

∫ t

0

u− Vs(u)

T ′ − s
ds

If we denote

βus = µ1 + σ1ρ
u− Vs(u)

T ′ − s
then

dQu,∗
T

dP u
T

= exp{σ1

∫ T

0

βus dγ̂s +
σ2

1

2

∫ T

0

(βus )2ds}

Let us write the information processes corresponding to (P u, Qu,∗). For
Hellinger process we have:

h
(q)
t =

q(1− q)σ2
1

2

∫ T

0

(βus )2ds

and

H
(q)
T (u) = EPu

[
exp{q(1− q)σ

2
1

2

∫ T

0

(βus )2ds}
]
.

For Kullback-Leibler process we get:

I∗T (u) =
σ2

1

2

∫ T

0

(βus )2ds

and Kullback-Leibler information

I(Qu,∗ |P u) = EQu,∗( I
∗
T (u) ).

For the entropy of P u
T with respect to Qu,∗ we deduce that:

I∗T (u) =
σ2

1

2

∫ T

0

(βus )2ds

and
I(P u |Qu,∗) = EPu(I∗T (u)).

Proposition 13. For mentioned three information quantities we have
the following result:

I(P u |Qu,∗) =
σ2

1

2

[(
µ1 −

σ1ρu

T ′

)2

T +
σ2

1ρ
2

T ′

(
T ′ ln(

T ′

T ′ − T
)− T

)]
,

I(Qu,∗ |P u) =
σ2

1

2

{
µ2

1 T + 2σ1 µ1 ρ u ln(
T ′

T ′ − T
) + σ2

1ρ
2 u2 T

T ′(T ′ − T )

+σ2
1ρ

2

[
T

T ′ − T
− ln(

T ′

T ′ − T
)

]}
,
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H
(q)
T (u) =

(
T ′

T ′ − T + qT

)1/2

exp

{
−(1− q)

2

[
u2

T ′
− (u+ cT )2

T ′ − T + qT

]}
where q > −(

T ′

T
− 1) and c =

µ1

σ1

√
1− ρ2

Proof: We begin with the calculus of EPu(βut )2. We have:

(βut )2 = µ2
1 + 2µ1σ1ρ

u− Vt(u)

T ′ − t
+ σ2

1ρ
2 (u− Vt(u))2

(T ′ − t)2

From second representation for Brownian bridge we know that

(Vt(u))0≤t≤T ′
L
= (Wt −

t

T ′
(WT ′ − u))0≤t≤T ′

Then,

EPu(u− Vt(u)) =
u(T ′ − t)

T ′

and

EPu(u− Vt(u))2 =
t(T ′ − t)

T ′
+ u2 (T ′ − t)2

(T ′)2

Hence,

EPu(βut )2 = (µ1 +
σ1ρu

T ′
)2 + σ2

1ρ
2 t

T ′(T ′ − t)
,

and using Fubini theorem and the expression for I∗T (u) we get the first
equality.

The semi-martingale characteristics X(u) under P u are: (B(u), I, 0)
where I(t) = t and

Bt(u) = µ1t+ σ1ρ

∫ t

0

u− Vs(u)

T ′ − s
ds.

From another side, the change of the measure P u into Qu,∗ annulate
the drift of X(u), i. e. the semi-martingale characteristics of X(u)
will be (0, I, 0). One of the possibilities to do this is annulate the
drift of V (u) transforming this process into Brownian motion, then
to annulate the drift µ1I using independent Brownian motion γ. All
successive equivalent change of the measures will give the same final
result in terms of information quantities. Hence,

EQu,∗(β
u
t )2 = µ2

1 + 2µ1σ1ρ
u

T ′ − t
+ σ2

1ρ
2 u2 + t

(T ′ − t)2

Using Fubini theorem and the expression for IT (u) given previously, we
get the second result.
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Now, we calculate H
(q),∗
T applying the definition of Hellinger integral,

namely,

(78) H
(q),∗
T = EPu(Z∗T (u))q = EQu,∗(Z

∗
T (u))q−1

We will find Z∗T (u) first. For that we remark that P u is the law of the
process X(u) = (Xt(u))0≤t≤T with

Xt(u) = µ1t+ σ1ρVt(u) + σ1

√
1− ρ2γt

where V (u) is Brownian bridge independent from standard Brownian
motion γ. As it was mentioned, the change of the measure P u into Qu,∗

annulate the drift of X(u). This annulation can be made in two steps:
annulate the drift of V (u) transforming V (u) into standard Brownian
motion, and then, annulate the drift µ1I using the change of the mea-
sure related with the process γ. More precisely, we do the following
transformations:

(V (u), σ1

√
1− ρ2γ+µ1I)→ (W,σ1

√
1− ρ2γ+µ1I)→ (W,σ1

√
1− ρ2γ)

where W and γ are standard independent Brownian motions.

Let us denote P̂ u the law of (Vt(u))0≤t≤T and by PT the law of (Wt)0≤t≤T .
We show that

(79) Z
(1)
T =

dPT

dP̂T
=

√
T ′

T ′ − T
exp

{
−(u−WT )2

2(T ′ − T )
+

u2

2T ′

}
In fact, for any measurable bounded functionals F and G we have:
(80)

E[F (Ws, s ≤ T )G(WT ′)] = E

E(F (Ws, s ≤ T ) |WT )

∫
R

exp( (x−WT )2

2(T ′−T )
)√

2π(T ′ − T )
G(x)dx


since WT ′ = WT ′ −WT +WT

L
= W̃T ′−T +WT where W̃ is independent

from W standard Brownian motion. Hence,

E[F (Ws, s ≤ T )G(WT ′)] = E

F (Ws, s ≤ T )

∫
R

exp( (x−WT )2

2(T ′−T )
)√

2π(T ′ − T )
G(x)dx


In addition,
(81)

E[F (Ws, s ≤ T )G(WT ′)] = E

[
E(F (Ws, s ≤ T ) |WT ′)

∫
R

exp( x2

2T ′
)

√
2πT ′

G(x)dx

]
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Since (80) and (81) are verified for any bounded G we get:

E(F (Ws, s ≤ T ) |WT ′) = E

F (Ws, s ≤ T )
exp( (x−WT )2

2(T ′−T )
+ x2

2T ′√
(T ′ − T )/T ′


The last equality proves that (79) holds.

To annulate the drift µ1I we use the process γ and the change of the
measure with the density:

Z
(2)
T = exp

{
µ1 γT

σ1

√
1− ρ2

− µ2
1 T

2σ2
1(1− ρ2)

}
So, the measure which transform (V (u), σ1

√
1− ρ2γ+µ1I) into (W,σ1

√
1− ρ2γ]

has a density Z
(1)
T Z

(2)
T . Using the theorem about of change of variables

we find equivalent to Z∗T (u) expression in law with respect to Qu,∗:

Z∗T (u)
L
=

∫
Z

(1)
T (WT − y)Z

(2)
T (y)dPγT (y)

Simple calculations gives us that

Z∗T (u)
L
= exp

(
u2 − (u−WT + cT )2

2T ′

)
with c = µ1

σ1

√
1−ρ2

. Then, using (78) we get after simple calculus the

third result.2

Now, from Propositions 6, 7, 8 and 13 we can find indifference prices
taking α = N (0, T ′).
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