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INDIFFERENCE PRICING OF THE EXPONENTIAL
LEVY MODELS

A. Ellanskaya1

Abstract. We consider the geometric Levy processes and we
study the utility indifference pricing approach for the European
type option. Describing the investor’s risk preferences by the so-
called HARA-utilities we define the formulas for their value func-
tions on the initially enlarged filtration and the equations for the
indifference prices.

Key words and phrases: utility maximisation, utility indiffer-
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1. Introduction

The geometric Levy models have been widely used since the 1990’s to repre-
sent the asset prices. In comparison with the classical geometric Brownian
motion modelling, which became the basis for the Black-Scholes option pric-
ing theory, the use of the geometric Levy processes in asset price modelling
has undisputed advantages. In the classical modelling, the log-returns pro-
duced by the geometric Brownian motion processes are normally distributed
random variables which are far from the realistic for most time series of
the financial data. The class of the geometric Levy models is also flexible
enough to allow the process with either finite or infinite variation and finite
or infinite activity on the market and, in particular, contains the classical
Black-Scholes model (in the case of the a.s. continuous trajectories) and a
number of the popular jump models [13].

It is well known that the exponential Levy models are in general incomplete
and the problem of the option pricing reduces to the problem of the choice of
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2 INDIFFERENCE PRICING OF THE EXPONENTIAL LEVY MODELS

suitable equivalent martingale measure. However, the unified algorithm for
choosing such a suitable measure has not been emerged. From the other side,
the assumption that one can always trade the asset is often rather restrictive
because of low liquidity or legal restrictions. In some situations one can at
best trade the asset correlated with some non-traded asset and at the same
time to have an option on this non-traded asset. In these situations the
traditional contingent claim valuation approaches are not applicable to the
non-hedgeable contingent claims in the sense that one cannot construct the
investment strategies that minimise the risk for the non-traded asset.

Nowadays, the utility indifference pricing becomes the main tool for the
valuation of the claims in incomplete markets. Under the buyer’s (seller’s)
indifference price of the claim one understands a price which an investor is
willing to pay (to get) now to receive (to deliver) a claim at terminal time
and to be indifferent to the situation of the non-having the claim, in the sense
that his expected utility will not change under the optimal trading strategy
in the both situations. The utility indifference pricing approach allows to
hedge a risk from trading contingent claims and can be applied to the non-
traded assets as well as to the traded asset. First, Hodges and Neurberges
[22] asked at what price the investor is indifferent about a given claim under
the transaction costs which bring the incompleteness on the market. Later
this approach were extended in a number of papers, see for instance [3],
[4], [6], [10], [34]. However, the explicit formulas of the indifference prices
were derived only for Black-Scholes models ([32], [31]) and diffusion models
([20]), where the incompleteness on the market comes from the non-traded
asset, for the stochastic volatility models ([19]), and in the situation of the
complete market modelled by the by general semimartingales ([1]).

In this note we study the buyer’s (seller’s) indifference pricing of the Eu-
ropean type option in the situation when one trades the asset on the finite
time interval and at the same time has the European type option on the
independent non-traded asset under the assumption that investor possesses
some strong insider information about the non-traded asset. We consider the
market model on the initially enlarged reference filtration which supports a
traded asset and independent non-traded asset, both assets prices driven by
the geometric Levy processes. The phenomenon of the enlarged filtration
leads to the change of the set of self-financing and admissible strategies. In
general, the reference filtration of the traded asset prices can be enlarged in
the initial and progressive ways (see [24]).

More precisely, let T be a a fixed time horizon and we assume that trading
is carried out on the time interval [0, T ]. Let Levy process L be a process

which generates the reference filtration and Levy process L̃ be an auxiliary
process independent from L . We consider the market with the risk-less bond
which is identically equal to 1, one traded risky-asset S and one non-traded
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risky-asset S̃ defined as

St = E(L)t, S̃t = E(L̃)t, t ∈ [0, T ]

where E is a Doleans-Dade exponential. According to [23], the processes S

and S̃ are semimartingales. To ensure that the price processes S > 0 and
S̃ > 0 we assume that the jumps ∆L > −1 and ∆L̃ > −1. We consider the
situation when investor is buying or selling the European-type option at time
T . Let us denote by ξ the random variable which takes values on (R,B(R))
and by µ its law. We will interpret the random variable ξ as a spot price
of the non-traded underlying asset S̃T and the function GT = g(ξ), where
g is a positive Borel function as a payoff of European type option. Then,
considering that investor knows from the beginning the spot price at time
T as a random variable, the new information flow is described, therefore, by
the initially enlarged filtration.

Let x be an initial endowment and U be a utility function describing the
investor’s risk preferences. By V (x, g) we denote the value function for
the utility maximisation problem on the initially enlarged filtration. Then
V (x, g) is defined as

V (x, g) = sup
ϕ∈Π

E
(
U

(
x+

∫ T

0
ϕs(ξ)dSs + g(ξ)

))
,

where Π is a set of self-financing and admissible strategies on the initially
enlarged filtration. Under the buyer’s and seller’s indifference prices we
understand the quantities pbT and psT which are the solution to the following
equations

(1) V (x, 0) = V (x− pbT , g)

and

(2) V (x, 0) = V (x+ psT ,−g)

respectively (for the details see [6], [32]). We remark that a following relation
holds between pbT and psT :

pbT (g) = −psT (−g).

As we can see from (1) and (2) the indifference prices are the solutions to
the equations consisting of two maximised utility function on the enlarged
filtration. In our analysis we consider that the risk preferences of the investor
are described by hyperbolic absolute risk (HARA) utilitiy functions.
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There are two possible methods to evaluate the value function V (x, g) and
to solve the utility maximisation problem. The primal approach is based on
the dynamic programming approach which leads to HJB equations for the
value functions. However, in the most cases of the incomplete markets the
associated HJB equations become the non-linear PDEs (see [20], [32]). We
prefer to use the another approach which consists in the converting of the
primal approach into the dual one which involves the minimisation problem
over all equivalent martingale measures. This problem becomes a problem
of finding the so-called f -divergence minimal equivalent measures if such a
measure exists (see for instance [9],[7],[8],[10],[20],[30]).

The note is organised in a following way. Section 2 is devoted to the dual
methods to solve the utility maximisation problem on the reference filtration
and on the initially enlarged filtration. In Section 3 we discuss about the
f -divergences minimal martingale measures on the both filtrations. In the
cases of the exponential, logarithmic and power utilities we provide the
explicit formulas for the Girsanov parameters of the changing of probability
measure to the f -divergence minimal equivalent martingale measures. In
Section 4 we present the main result for the utility maximisation problem
on the initially enlarged filtration and the equations for the buyer’s and
seller’s utility indifference prices for the exponential Levy models as well
as their properties as risk measures. Section 5 is devoted to the calculus
of the buyer’s indifference prices in the setting of the defaultable geometric
brownian motion model.

2. Methods to utility maximisation problem

In this section we introduce some known and new results concerning the
maximising expected utility theory. We start by describing in detail our
model. Let T be a fixed time horizon. Let L be a Levy process starting
from 0 with generating triplets (b, σ2, ν), where b is a drift parameters, σ2

is a diffusion parameter and ν is a Levy measures, i.e. the measure on R
satisfies the following two assumptions

ν({0}) = 0(3)

and∫
R min

{
x2, 1

}
ν(dx) <∞.(4)

We remind that according to the Levy-Ito decomposition theorem a Levy
process L with the generating triplet (b, σ2, ν) can be represented in the
following form: for ∀t ∈ [0, T ]

(5) Lt = σWt + bt+

∫ t

0

∫
|x|>1

xN(dsdx) +

∫ t

0

∫
|x|≤1

xÑ(dsdx),
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where W is a Winer process, N(ds, dx) is a Poisson random measure and

Ñ(ds, dx) is a compensated Poisson random measure with a compensator
ν(dx)ds.

We consider a canonical probability space (Ω,FT , P ) endowed with filtration
F = (Ft)t∈[0,T ] generated by process L = (Lt)0≤t≤T . We suppose that
financial market consists of the risk-less bond which is identically equal to
1, one traded risky-asset S = E(L) and one non-traded risky-asset S̃ = E(L̃),

with S0 = 1 and S̃0 = 1, where E(·) is a stochastic exponential,

E(L)t = exp

{
Lt −

1

2
< L >t

} ∏
0≤s≤t

exp{−∆Ls}(1 + ∆Ls).

According to Theorem 4.61 in [23], the process S is a semimartingale. To
ensure that the price process S > 0 we assume that the jumps ∆L > −1.
By Lemma A.8 in [17], the assumption that ∆L > −1 is in fact equivalent to

the existence of a Levy process L
′

such that St = E(L)t = exp(L
′
t). Lemma

A.8 in [17] also gives the following formulae to determine the Levy triplet

(b
′
, σ
′2, ν

′
) of L

′
:

σ
′

= σ,

b
′

= b− 1

2
σ2 +

∫
R

(h(ln(1 + x))− h(x))ν(dx),

ν
′
(G) =

∫
R

1G(ln(1 + x))ν(dx), for ∀G ∈ B(R),

where h is a bounded truncation function. In fact, if we apply Ito’s formula
to the function lnST = L

′
T we will see, that for an existence of the charac-

teristics (b
′
, σ
′2, ν

′
) of L

′
it is sufficient to define the truncation function in

a specific way, for example:

h(x) = x1|x|≤ 1
2
(x).

We remark that the non-traded risky assets S̃ also satisfies all the above
properties.

By means of the relation between L and L
′
, it was shown in [21] that a

Levy process is a local martingale if and only if its stochastic exponential
is a local martingale. For this reason we prefer to model the asset’s price
dynamic by the stochastic exponential Levy processes.

We assume that at time T , investor is buying or selling the European-type
option with payoff function GT and the underlying non-traded asset’s price
is driven by the geometric Levy process S̃. Let us denote by ξ the random
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variable which takes values on (R,B(R)) and by µ its law. We will interpret

the random variable ξ as a spot price S̃T . Then, the payoff function of
European type option GT = g(ξ), where g is a positive Borel function.

We assume that investor possesses the strong insider information about the
spot price of the non-traded asset, i.e. knows ξ as a random variable from
the beginning of the trading. Then, on the product space (Ω×R,FT⊗B(R))
we define a probability P as it follows: for all A ∈ F and B ∈ B(R)

(6) P(A×B) =

∫
B
P (A)dµ(u),

such that P(A× R) = P (A) and P(Ω×B) = µ(B).

Now we define the initially enlarged filtration G = (Gt)t∈[0,T ] by

(7) Gt =
⋂
s>t

(Fs ⊗ σ (ξ)) .

The set of admissible and self-financing strategies, being the set of pre-
dictable functions, depend highly on the probability space and the filtration
which we consider. We denote by Π(F) the set of self-financing and admis-
sible strategies ϕ on the reference filtration, i.e. F-predictable, S-integrable
on [0, T ] investment strategies with the wealth bounded from below P -a.s..
By P (F) we denote F-predictable processes, then the set Π(F) is of the
form

Π(F) =
{
ϕ ∈ P (F) | ∃c ∈ R+ : (ϕ · S)t ≥ −c ∀t ∈ [0, T ] P − a.e.

}
,

where (ϕ · S)t =
∫ T

0 ϕsdSs is a stochastic integral. (For definition of a
stochastic integral see [23].)

Next, we denote by Π = Π(G) the set of investment strategies ϕ(ξ) on the
initially enlarged filtration such that ϕ(ξ) is G-predictable and S-integrable
on [0, T ] with the wealth P-a.s. bounded from below. In next lemma we
recall the known result about the G-predictable processes.

Lemma 1. (cf. [5] ) A random process ϕ(ξ) is G-predictable if and only
if the application (t, ω, ξ) → ϕ(ξ) is a P (F) ⊗ B(R)-measurable random
variable.

Hence, the set of the self-financing and admissible strategies on the initially
enlarged filtration is of the form

Π(G) =
{
ϕ(ξ) ∈ P (F)⊗B(R) | ∃c ∈ R+ : (ϕ(ξ)·S)t ≥ −c ∀t ∈ [0, T ] P− a.e.

}
.
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In order to find the indifference prices of the claim in the considered model
we solve two utility maximisation problems in (1) and (2). We start from
the solution to the classical utility maximisation problem.

2.1. Classical utility maximisation problem. Again (Ω,FT ,F, P ) is a
filtered probability space. By E we denote the mathematical expectation
with respect to probability measure P and by EP , Eµ, the mathematical ex-
pectations with respect to probability measure P and to measure µ respec-
tively. Under the classical utility maximisation problem we imply through-
out of the note the optimisation problem of the form

V̄ (x, 0) = sup
ϕ∈Π(F)

EP

[
U

(
x+

∫ T

0
ϕsdSs

)]
.

Similarly as in [9], [18] we consider a utility function U : R → R ∪ {−∞},
which is assumed to be strictly increasing, strictly concave, continuously
differentiable in dom(U) = {x ∈ R|U(x) > −∞} and to satisfy the Inada
conditions

U
′
(∞) = lim

x→∞
U
′
(x) = 0,

U
′
(x) = lim

x↓x
U
′
(x) = +∞,

for x = inf{x ∈ R|U(x) > −∞}.

We require that the utility function is the increasing function of the wealth
because the growth of wealth the investor’s usefulness also grows. The con-
cavity of the function stands for the risk-aversion of the investor.

In the next proposition we present the auxiliary result concerning the solu-
tion to the utility maximisation problem on the reference and on the initially
enlarged filtration.

Proposition 1. Let Π(F) and Π(G) be the sets of the self-financing and ad-
missible strategies on the reference filtration and initially enlarged filtration
respectively. Then,

(8)

sup
ϕ∈Π(F)

EP

[
U

(
x+

∫ T

0
ϕsdSs

)]
= sup

ϕ(ξ)∈Π(G)
E
[
U

(
x+

∫ T

0
ϕs(ξ)dSs

)]
.

Proof:

Let us set
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Πu(F) =
{
ϕ(u) ∈ Su (P (F)⊗ B(R)) | ∃c ∈ R+ : (ϕ(ξ)·S)t ≥ −c ∀t ∈ [0, T ] P− a.e..

}
,

where Su (P (F)⊗ B(R)) is a section of P (F)⊗ B(R) in u.

Then, if ϕ(u) ∈ Πu(F) then ϕ(u) ∈ Π(F). From the independence of L and

ξ and the fact that U
(
x+

∫ t
0 ϕs(ξ)Ss

)
is a B(R)- measurable function of

(ϕ · ST ) for all x ∈ R+, it follows that

E
[
U

(
x+

∫ t

0
ϕs(ξ)dSs

) ∣∣∣ξ = u

]
= EP

[
U

(
x+

∫ t

0
ϕs(·, u)Ss

)]
.

Then, one gets:

E
[
U

(
x+

∫ t

0
ϕs(ξ)Ss

)]
=

∫
R
E
[
U

(
x+

∫ T

0
ϕs(u)Ss

)]
dµ(u)

≤
∫
R

sup
ϕ(u)∈Πu(F)

EP

[
U

(
x+

∫ T

0
ϕs(u)Ss

)]
dµ(u)

≤
∫
R

sup
ϕ∈Π(F)

EP

[
U

(
x+

∫ T

0
ϕsSs

)]
dµ(u)

= sup
ϕ∈Π(F)

EP

[
U

(
x+

∫ T

0
ϕsdSs

)]
,

and, hence

sup
ϕ∈Π(F)

EP

[
U

(
x+

∫ T

0
ϕsdSs

)]
≥ sup

ϕ(ξ)∈Π(G)
E
[
U

(
x+

∫ T

0
ϕs(ξ)dSs

)]
.

The inequality in the opposite sense follows from the fact that each ϕ ∈ Π(F)
can be extended on Π(G) as ϕ(t, ω, ξ) = ϕ(t, ω), for ∀t ∈ [0, T ], ∀ω ∈ Ω and
∀ξ ∈ R. Finally, we have (8).

2

In the next discussions concerning the classical utility maximisation the-
ory we will use the notation V (x, 0) for the classical utility maximisation
problem instead of V̄ (x, 0) since we have proved that V̄ (x, 0) = V (x, 0).
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2.2. Dual approach to utility maximisation problem. The dual ap-
proach to the classical utility maximisation problem consists in the convert-
ing of the primal problem into the dual one which involves the minimisation
problem over all equivalent martingale measures on the reference filtration.

More precisely, dual optimisation problem is derived in the following way.
(For details see [18], [20]). Let M(F) be the set of locally equivalent to P

martingale measures. Let us denote by I the inverse function of U
′
, i.e.

I =
(
U
′
)−1

and let f be the convex conjugate function of the utility function U , namely

(9) f(y) = sup
x>0

{
U(x)− yx

}
= U(I(y))− yI(y).

The convex function f is a Frenchel-Legendre transform of U and from
equation (9) the relation I(y) = −f ′(y) follows. The duality here can be
explained by the fact that U is also a Frenchel-Legendre transform of f such
that

U(x) = sup
y>0

{
f(y) + xy

}
= f(I(x)) + xI(x).

In this paper we consider the HARA utilities. They are the utilities U such
that its convex conjugate f verifies:

f
′′
(x) = axγ ,

with a > 0 and γ ∈ R. As known, such functions f can be represented in
the form

f(x) = Afγ(x) +Bx+ C,

with A > 0, B,C ∈ R and the function fγ = fγ(x) given by

fγ(x) =


cγx

γ+2, if γ 6= −1,−2,

x log x, if γ = −1,

− log x, if γ = −2.

The functions from up to down correspond to the power, exponential and
logarithmic utilities respectively. We recall the following correspondences
between utility functions U and f -divergence functions:

if U(x) = log x, then f(x) = − ln(x)− 1,

if U(x) =
xp

p
, p < 1, then f(x) = −p− 1

p
x

p
p−1 ,

if U(x) = 1− e−γx, γ > 0, then f(x) = 1− x

γ
+

1

γ
x lnx− 1

γ
x ln γ.
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Definition 1. The f -divergence minimal equivalent martingale measure on
[0, T ] is equivalent to PT probability measure Q∗T on FT which satisfies the
following equality:

EP

[
f

(
dQ∗T
dPT

)]
= inf

Q∈M(F)

{
EP

[
f

(
dQT
dPT

)]}
.

Definition 2. We say that an f -divergence minimal martingale measure
Q∗ on FT is invariant under scaling if for all c ∈ R+

EP

[
f

(
c
dQ∗T
dPT

)]
= inf

Q∈M(F)

{
EP

[
f

(
c
dQT
dPT

)]}
.

Let us denote by XT the wealth at time T , i.e. XT = x+
∫ T

0 ϕsdSs, where x
is the initial capital and ϕ ∈ Π(F). For any equivalent probability measure
Q ∈M(F) we introduce the following maximisation problem

VQ(x) = sup
XT

{
EP (U(XT )) : XT ∈ L1(Q), EQ(XT ) ≤ x, EP (U(XT )−) <∞

}
.

Next we recall the well-known result of Goll and Ruschendorf which gives
us the dual representation of V (x, 0).

Proposition 2. (cf. [18], Lemma 4.1) Let Q be a probability measure dom-

inated by P and EQ

(
−f ′

(
λdQ|TdP |T

))
<∞ for ∀λ ∈ R+. Then

(i) VQ(x) = infλ>0

{
EP

(
f
(
λdQ|TdP |T

))
+ λx

}
.

(ii) There is a unique solution for λ to the equation EQ

(
−f ′

(
λdQ|TdP |T

))
= x,

denoted as λQ(x) ∈ R+, and VQ(x) = EP

[
U
(
−f ′

(
λQ(x)dQ|TdP |T

))]
.

Therefore, the similar result holds for the f -divergence minimal martingale
measure Q∗ and

(10) VQ∗(x) = inf
λ>0

inf
Q∈M(F)

{
EP

(
f

(
λ
dQ|T
dP |T

))
+ λx

}
.

2.3. Dual approach with initially enlarged filtration. Let (Ω×R,FT⊗
B(R),G,P) be a filtered probability space, where G and P are defined in (6)
and (7) respectively. We remind that the utility maximisation problem on
the initially enlarged filtration is of the form:
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(11) V (x, g) = sup
ϕ∈Π(G)

E
(
U

(
x+

∫ T

0
ϕs(ξ)dSs + g(ξ)

))
.

The set of the admissible and the self-financing portfolios depends highly on
the filtration which we considered. In the framework of our model, the set
of such portfolios on the initially enlarged filtration is represented by the set
Π(G).

In the terms of the dual approach, the set of the equivalent martingale mea-
sures will be changed when we replace the filtration of the price process by
the initially enlarged filtration. Let M(G) be a set of P-equivalent martin-
gale measures on the initially enlarged filtration G defined as

M(G) =
{
Q : Q loc∼ P and S is (Q,G)-martingale

}
.

Then the restrictions of the measures Q on the σ-algebra GT can be given
by

(12)
dQ|GT
dP|GT

= ZT (ξ),

where the process Z(ξ) = (Zt(ξ))t∈[0,T ] is a uniformly integrable (P,G)-
martingale and the random variable ZT (ξ) has to be positive random vari-
able with

E [ZT (ξ)] = 1.

Since Z0(ξ) is not necessary equal to 1, we introduce a process Z̃(ξ) =(
Z̃t(ξ)

)
t∈[0,T ]

such that for t > 0, Z̃t(ξ) = Zt(ξ)
Z0(ξ) and

Z̃0(ξ) =
Z0(ξ)

EµZ0(ξ)
.

The process Z̃(u) is a positive (P,F)-martingale (cf. [5], Proposition 2.1)
and, moreover, is a density process of the equivalent martingale measures

Qu such that
dQu|FT
dP |FT

= Z̃T (u). For u ∈ supp(µ) we define the set of the

equivalent to P martingale measures Qu such that

Mu(G) =
{
Qu : Qu

loc∼ P, S is (Qu,F)-martingale and Q ∈M(G)
}
.

Let us denote by K the set of the measures Q ∈M(G) such that the corre-
sponding f - divergence function is P-integrable, i.e.
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K =
{
Q ∈M(G) : E

∣∣∣∣f (dQ|GTdP|GT

)∣∣∣∣ <∞}.
Next, let us put

K̃ =
{
Q ∈ K : EµZ0(ξ) = 1

}
.

In the next proposition we give the dual representation of the value function
V (x, g) on the initially enlarged filtration.

Proposition 3. If the f -minimal equivalent martingale measure Q∗ exists
and belongs to K̃ 6= ∅, then the utility optimisation problem on initially
enlarged filtration can be written in a following dual form: for λ > 0

(13) V (x, g) = inf
λ>0

inf
Q∈K̃

{
E
[
f

(
λ
dQ|T
dP|T

)
+ λZ0(ξ)(x+ g(ξ))

]}
.

Proof:

Let ϕ(ξ) ∈ Π(G). Then, from the independence of L and ξ and the fact that

U
(
x+

∫ t
0 ϕs(ξ)Ss + g(ξ)

)
is a B(R2)- measurable function of (ϕ · ST , g) for

all x ∈ R+, it follows that

E
[
U

(
x+

∫ t

0
ϕs(ξ)dSs + g(ξ)

) ∣∣∣ξ = u

]
= EP

[
U

(
x+

∫ t

0
ϕs(·, u)Ss + g(u)

)]
.

The strategies ϕ(ω, u) ∈ Πu(F) and u ∈ supp(µ). Let us define the wealth
process (Xt(u))t∈[0,T ] as

Xt(u) = x+ g(u) +

∫ t

0
ϕs(u)dSs,

where ϕ(u) ∈ Πu(F). Hence, the conditional utility maximisation problem
is of the form

V u(x, g) = sup
XT (u)

EP [U (XT (u))] .

Since the terminal wealth is generated from the initial wealth x+ g(ξ) using
a self-financing strategy, the self -financing condition becomes

E
[
ZT (ξ)XT

∣∣ξ = u
]
≤ E

[
ZT (ξ)(x+ g(ξ))

∣∣ξ = u
]
,
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or using that ZT (u) = Z0(u)Z̃T (u) we can write the self-financing condition
in a following form:

(14) EP

[
Z0(u)Z̃T (u)XT (u)

]
≤ Z0(u) (x+ g(u)) .

For the equivalent probability measures Qu ∈ Mu(G) we introduce the
following maximisation problem

V u
Qu(x) = sup

XT

{
EP (U(XT )) : XT ∈ L1(Qu),

EQu [Z0(u)(XT (u))] ≤ Z0(u) (x+ g(u)) , EP (U(XT )−) <∞
}
.

Let us set λ̃(u) = λZ0(u) and λ̃(u) > 0. Then, using (i) from Proposition 2
we get that

V u
Qu(x) = inf

λ̃(u)>0

{
EP

(
f

(
λ̃(u)

dQu|T
dP |T

))
+ λ̃(u)x

}
.

In particular, for Q∗,u these formulas are true and from (ii) of Proposition

2, it follows that there is a unique solution for λ̃∗(u) to the equation

E∗,uQ

(
−f ′

(
λ̃∗(u)

dQ∗,u|T
dP |T

))
= x+ g(u),

denoted as λ̃Q∗,u(x) ∈ R+, and that

V u
Q∗,u(x) = EP

[
U

(
−f ′

(
λ̃∗(u)Q∗,u(x)

dQ∗,u|T
dP |T

))]
.

Then, we can conclude that
(15)

sup
XT (u)

EP [U (XT (u))] = inf
λ̃>0

inf
Z̃T (u)

{
EP

[
f(λ̃(u)Z̃T (u))

]
+ λ̃(u)(x+ g(u))

}
.

Then, if the measure Z∗T (u) is the minimal divergence martingale measure,
according to Theorem 3.1 in [18], we know that

− f ′(λ̃(u)Z∗T (u)) = x+

∫ T

0
ϕ∗s(·, u)dSs + g(u)

for some process ϕ∗(u) ∈ Πu(F) such that ϕ∗(u) · ST is martingale under
Qu∗.
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Then, according to (ii) of Theorem 5.1 in [18], we can conclude that

sup
ϕ∈Πu(F)

EP

[
U

(
x+

∫ T

0
ϕs(·, u)dSs + g(u)

)]
= EP

[
U

(
x+

∫ T

0
ϕ∗s(·, u)dSs + g(u)

)]
and ϕ∗(ξ) is an admissible optimal portfolio strategy.

Then, one gets that

(16)

EP

[(
x+

∫ T

0
ϕ∗s(·, u)Ss + g(u)

)]
= EP

[
f(λ̃∗(u)Z̃∗T (u))

]
+λ̃∗(u)(x+g(u)),

where the corresponding minimal divergence measure is uniquely defined by
the value of λ̃∗(u).

Now, we prove that V (x, g) =
∫
R V

u(x, g)dµ(u). Taking into account the
independence of L and ξ we get:

E
[
U

(
x+

∫ T

0
ϕs(ξ)dSs(ξ) + g (ξ)

)]
=

∫
R
EP

[
U

(
x+

∫ T

0
ϕs(·, u)dSs + g(u)

)]
dµ(u)

≤
∫
R

sup
ϕ(u)∈Πu(F)

EP

[
U

(
x+

∫ T

0
ϕs(u)dSs + g(u)

)]
dµ(u).

For each ε > 0 there exists ϕ(ε)(u) ∈ Πu(F) such that

sup
ϕ∈Πu(F)

EP

[
U

(
x+

∫ T

0
ϕs(u)dSs + g(u)

)]
≤ EP

[
U

(
x+

∫ T

0
ϕ(ε)
s (u)dSs + g(u)

)]
+ε.

Integration with respect to µ gives:∫
R

sup
ϕ∈Πu(F)

EP

[
U

(
x+

∫ T

0
ϕs(u)dSs + g(u)

)]
dµ(u)

≤
∫
R
EP

[
U

(
x+

∫ T

0
ϕ(ε)
s (u)dSs + g(u)

)]
dµ(u) + ε

= E
[
U

(
x+

∫ T

0
ϕ(ε)(ξ)sdSs(ξ) + g(ξ)

)]
+ ε

≤ V (x, g) + ε.

Combining the both inequalities we get :

V (x, g) =

∫
R
EP

[(
x+

∫ t

0
ϕ∗s(·, u)Ss + g(u)

)]
dµ(u)
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and from (16) we obtain the following equality:

V (x, g) =

∫
R

(
EP

[
f(λ̃∗(u)Z̃∗T (u))

]
+ λ̃∗(u)(x+ g(u))

)
dµ(u),

where the corresponding minimal divergence measure is uniquely defined by
the value of λ̃∗(u).

Using the independence of ξ and L and the fact that λ̃∗(u) = λ∗Z∗0 (u),

Z∗T (u) = Z∗0 (u)Z̃∗T (u), and that ZT (ξ) is the density process of the equiv-
alent martingale measure defined on the enlarged filtration, we obtain the
following relation:

∫
R

(
EP

[
f(λ̃∗(u)Z̃∗T (u))

]
+ λ̃∗(u)(x+ g(u)

)
dµ(u)

=

∫
R

(EP [f(λ∗Z∗T (u))] + λ∗Z∗0 (u)(x+ g(u))) dµ(u)

= inf
ZT (ξ)

{∫
R

(EP [f(λ∗ZT (u))] + λ∗Z∗0 (u)(x+ g(u))) dµ(u)

}

= inf
λ>0

inf
Q∈K̃

{
E
[
f

(
λ
dQ|T
dP|T

)
+ λZ0(ξ)(x+ g(ξ))

]}
.

Then, the equation (13) holds.

2

3. f-divergence minimal equivalent martingale measures for
geometric Levy models

Proposition 2 and Proposition 3 establish that the dual problem becomes a
problem of finding the so-called f -divergence minimal equivalent measures
if such a measure exists. A general characterisation of f -divergence minimal
martingale measure was given first in [18]. Then, for the semimartingale
models the necessary and sufficient conditions of the existence and unique-
ness the minimal equivalent measures were formulated first in [15] and the
f -divergence minimal equivalent measures for the geometric Levy processes
models were studied in the number of papers and books, see for instance [7],
[8],[9], [16], [25], [30].

In this section we provide the explicit form of the Girsanov’s parameters of
the changing of measure P to the f -divergence minimal equivalent martin-
gale measures on the reference filtration F. Then we determine the density
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process of the f -divergence minimal martingale measure on the initially en-
larged filtration and we find its expression through the density process of
the f -minimal martingale measure on the reference filtration.

3.1. f-divergence minimal equivalent martingale measures on F
and corresponding information processes. The equivalent martingale
measure Q ∈M(F) can be given by its density process Z = (Zs)s∈[0,T ] which
is a uniformly integrable (F, P )-martingale. In turn, Z can be written in the
form of Z = E(M), where M is a local martingale and E(·) is a Doleans-
Dade exponential. Let h be a truncation function. From Girsanov’s theorem
we know that there exists two predictable functions β and Y verifying the
following conditions ∀s ∈ [0, T ] , P − a.s.

∫ t

0
β2
sds <∞ and

∫ t

0

∫
R
h(x)(Ys(x)− 1)ν(dx)ds <∞,

such that

(17) Mt =

∫ t

0
σβsdWs +

∫ t

0

∫
R

(Ys(x)− 1) Ñ(ds, dx).

We will refer to the pair (β, Y ) as the Girsanov’s parameters of the changing
of measure from P to the equivalent martingale measure Q.

For the price process S to be a (Q,F)-martingale it is necessary and sufficient
to have a new drift equal zero under the measure Q. Since S = E(L) it
follows that process S is a martingale if and only if L is a martingale. Then
it is enough that the new drift with respect to the measure Q of process L
will be equal zero. From the Girsanov’s theorem we know that the knew
drift of Levy process L with the Levy triplet (b, σ2, ν) with respect to the
measure Q is of the form

BQ
t = bt+

∫ t

0
βsσ

2ds+

∫ t

0

∫
R
h(x)(Ys(x)− 1)dν(x).

It was shown in [11], [12] , [23], [30] that when P is a law of the Levy
process L the Girsanov’s parameters of minimal martingale measure are
independent on (ω, t). Then, if there exists the minimal martingale measure
Q∗, its Girsanov’s parameters are β ∈ R and a positive measurable function
Y such that for all t ∈ [0, T ] and all ω ∈ Ω, βt(ω) = β and Yt(ω, x) = Y (x).
Then the condition for the process S to be a (Q,F)-martingale is of the
form:

(18) b+ βσ2 +

∫
R

(Y (x)− 1)h(x)ν(dx) = 0, P -a.s..

We set
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K̄ =

{
(β, Y ) : (18) is fulfilled, EP

∣∣∣f (Z(β,Y )
T

)∣∣∣ <∞},
and we reformulate Definition 1 of the f -divergences minimal martingale
measures in the terms of the density processes.

Definition 3. The f -divergence minimal equivalent martingale measure for
the geometric Levy models is the equivalent probability measure Q∗ ∈M(F)
which satisfies the following two conditions:

(i) dQ∗|T
dP |T = ZT (β∗, Y ∗);

(ii) EP [f (ZT (β∗, Y ∗))] = inf
(β,Y )∈K̄

EP [f (ZT (β, Y ))] .

We introduce three important quantities related with PT and Q∗T namely
the entropy of P with respect to Q∗T ,

I(PT |Q∗T ) = −EP [lnZ∗T ] ,

the entropy of Q∗T with respect to PT ,

I(Q∗T |PT ) = EP [Z∗T lnZ∗T ] ,

and Hellinger type integral

H
(q∗)
T = EP [(Z∗T )q] , q =

p

p− 1
, p < 1.

Proposition 4. Let fγ(x) = − lnx. We suppose that there exists the solu-
tion (β∗, Y ∗) ∈ K̄ to the equation (18) with

(19) Y ∗(x) =
1

1− β∗h(x)
such that Y ∗(x) > 0 ν − a.s.

Then, there exists f -divergence minimal equivalent martingale measure Q∗

and the corresponding information process is of the form:
(20)

I(PT |Q∗T ) = T

{
1

2
(β∗σ)2 +

∫
R

(
ln (1− β∗h(x)) +

1

1− β∗h(x)
− 1

)
ν(dx)

}
.

The integral in the right-hand side is well-defined.

Proof: We start from the proof of the following equality:
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(21) EP [− lnZT ] = T

{
1

2
(βσ)2 −

∫
R

(lnY (x)− Y (x) + 1) ν(dx)

}
.

The density process Z is a positive local martingale. For ε > 0 we put
τε = inf{0 ≤ t ≤ T |Zt ≤ ε} with inf{∅} = +∞. We can write for ∀t ∈ [0, T ]:

{τε < t} =
⋃

s∈Q+, s<t

{
Zs ∈ (0, ε]

}
and since Z is adapted process, the right-hand side above is Ft measurable.
Hence, τε is a stopping time. Next, we show that τε →∞ as ε→ 0.

Let us take the sequence (εn)n∈N. Since {τεn ≤ T} is FT -measurable, we
can write

Q(τεn ≤ T ) = EP
[
Zτεn1{τεn≤T}

]
≤ εnP (τεn ≤ T ).

Therefore,

Q

(⋂
n∈N
{τεn ≤ T}

)
≤ lim

εn→0
εnP (τεn ≤ T ) = 0.

Using the fact that the measure Q is locally absolutely continuous with
respect to measure P we can define the P -null set as

N =
{
ω ∈ Ω : ω ∈

⋂
n∈N
{τεn ≤ T}

}
.

Then, the complement of N is of the form

N c =
{
ω ∈ Ω : ω ∈

⋃
n∈N
{τεn > T}

}
.

Then, for ∀ω ∈ N c there exists ε0 such that τε0 =∞. Then, for ∀εn < ε0, it
follows that τεn ≥ τε0 , that proves that a sequence of stopping times (τεn) is
increasing to infinity as n→∞. Hence, (τε) is a localising sequence. Then,
by Ito formula we have:

(22) lnZT∧τε = lnZ0 +

∫ T∧τε

0

1

Zs−
dZs −

1

2

∫ T∧τε

0

1

(Zs−)2
d < Zc >s

+
∑

0<s≤T∧τε

(
lnZs − lnZs− −

1

Zs−
∆Zs

)
,
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where ∆Zs = Zs − Zs− and < Zc >s is a predictable variation of the

continuous martingale part of Z. We remark that
(∫ T∧τε

0
1

Zs−
dZs

)
t∈[0,T ]

is

a (P,F)-martingale started from zero, since it is a stochastic integral with
respect to (P,F)-martingale Z (see [23] Chapter I.4d) and since Zs− ≥ ε > 0
on the stochastic interval [0, T ∧ τε] .

Let us introduce F (x, s) =
(

ln
(

1 + x
Zs−

)
− 1− x

Zs−

)
, then by Theorem 1.8

in [23] we get

EP

∫ T∧τε

0

∫
R
F (x, s)µZ(ds, dx) = EP

∫ T∧τε

0

∫
R
F (x, s)νZ(ds, dx),

where µZ and νZ are measure of jumps and its compensator of Z.

Finally, taking the expectation in (22) and using the fact that Z0 = 1, we
have:

(23) EP [− lnZT∧τε ] = EP

[
1

2

∫ T∧τε

0

1

(Zs−)2
d < Zc >s

−
∫ T∧τε

0

∫
R

(
ln

(
1 +

x

Zs−

)
− 1− x

Zs−

)
νZ(ds, dx)

]
.

Since Z = E(M), where M is defined in (17), then dZt = Zt−dMt, and
in particular dZct = ZtdM

c
t and ∆Zt = Zt−∆Mt. In addition, (17) implies

that for ∀t ∈ [0, T ], M c
t =

∫ t
0 βσdWs and ∆Mt = (Y (∆Lt)− 1). Hence,

< Zc >t= (Zt−)2(βσ)2dt and ∆Zt = Zt− (Y (∆Lt)− 1) . Then,

(24)

EP [− lnZT∧τε ] = EP [T ∧ τε]
(

1

2
(βσ)2 −

∫
R

(lnY (x)− Y (x) + 1) ν(dx)

)
.

Since 1
2(βσ)2−

∫
R (lnY (x)− Y (x) + 1) ν(dx) ≥ 0 and T ∧ τε ≤ T , using the

Lebesgue dominated convergence theorem, we can pass to the limit on the
right hand side of (23).

It remains to prove

lim
ε→0

EP lnZT∧τε = EP lnZT .

We can write

EP lnZT∧τε = EP lnZT + EP
[
lnZτε1{τε<T}

]
− EP

[
lnZT 1{τε<T}

]
.(25)
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We show that two last terms in (25) tend to zero as ε → 0. Let, Ẑt = 1
Zt

for all t ∈ [0, T ] and the process Ẑ is a Q-martingale. Then, by maximal
inequalities for positive martingales

Q (τε < T ) ≤ Q

(
sup Ẑt
0≤t≤T

≥ 1

ε

)
≤ EQẐT · ε = ε.

Finally,

(26) P (τε < T ) = EQ

(
ẐT 1{

sup Ẑt
0≤t≤T

≥ 1
ε

})→ 0,

as ε→ 0 since EQẐT = 1. Since lnZT is P -integrable, using (26) we obtain
that

lim
ε→0

EP
[
lnZT 1{τε<T}

]
= 0.

Since Zτε ≤ ε for ε < 1 we get

EP
[
lnZτε1{τε<T}

]
≤ 0,

and from concavity lnx, x > 0

EP
[
lnZτε1{τε<T}

]
≥ EP

[
lnZT 1{τε<T}

]
.

Hence,

lim
ε→0

EP
[
lnZτε1{τε<T}

]
= 0,

as ε→ 0. Thus,

lim
ε→0

EP lnZT∧τε = EP lnZT .

We remark that from (24) it is clear that the process lnZ is integrable if and
only if

∫
R (lnY (x)− Y (x)) ν(dx) exists. Thus, we have proved the equality

(21).

From Definition 3, we have that

I(PT |Q∗T ) = inf
(β,Y )∈K̄

EP [− lnZT (β, Y )] .
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Next, we prove that the Girsanov’s parameters (β∗, Y ∗) ∈ K̄, defined by
(19) is the minimal point of convex function

G(β, Y ) =
1

2
(βσ)2 −

∫
R

(lnY (x)− Y (x) + 1)ν(dx).

Since we minimise the function G(β, Y ) over all (β, Y ) ∈ K̄, then such (β, Y )
should satisfy the martingale condition:

(27) b+ βσ2 +

∫
R

(Y (x)− 1)h(x)ν(dx) = 0,

as well as the optimal parameters (β∗, Y ∗):

(28) b+ β∗σ2 +

∫
R

(Y ∗(x)− 1)h(x)ν(dx) = 0.

We assume that

(29) 1− 1

Y ∗(x)
= β∗h(x).

We want to prove that

(30) G(β, Y ) ≥ G(β∗, Y ∗).

We remark, that G is a convex function with respect to β and Y . Then,

G(β, Y )−G(β∗, Y ∗)

≥ β∗σ2(β − β∗) +

∫
R

(
1− 1

Y ∗(x)

)
(Y (x)− Y ∗(x))ν(dx)

= β∗σ2(β − β∗) +

∫
R
β∗h(x)(Y (x)− Y ∗(x))ν(dx)

= 0,

where we use the convexity of G for the inequality, the assumption (29) for
the first equality and the last equality follows from (27) and (28). Thus,
we have proved (30). The uniqueness of (β∗, Y ∗) follows from the strong
convexity of function G(β, Y ) when σ2 > 0, and in the case σ2 = 0, directly
from martingale conditions (27) and (28).

2
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Proposition 5. Let fγ(x) = x lnx. We suppose that there exists the solu-
tion (β∗, Y ∗) ∈ K̄ to the equation (18) with

(31) Y ∗(x) = eβ
∗h(x).

Then there exists f -divergence minimal equivalent martingale measure Q∗

and the corresponding information process is of the form:

(32) I(Q∗T |PT ) = T

{
1

2
(β∗σ)2 +

∫
R

[
eβ
∗h(x)(β∗h(x)− 1) + 1

]
ν(dx)

}
.

The integral in the right hand side is well defined.

Proof:

We continue in the framework of Proposition 4 to prove the equality (32).
We start from the proof of an equality

(33) EP [ZT lnZT ] = T

{
1

2
(βσ)2ds+

∫
R

(Y (x) lnY (x)− Y (x) + 1) ν(dx)

}
.

The density process Z is a positive local martingale. For ε > 0 we put
τε = inf{0 ≤ t ≤ T |Zt ≤ ε or Zt ≥ 1

ε} with inf{∅} = +∞. The sequence
of stopping times (τε) is increasing to infinity as ε → 0. Hence, (τε) is a
localising sequence. Then, by Ito formula we have:

ZT∧τε lnZT∧τε = Z0 lnZ0+

∫ T∧τε

0
(lnZs− + 1) dZs+

1

2

∫ T∧τε

0

1

(Zs−)2
d < Zc >s

+

∫ T∧τε

0

∫
R

((Zs− + x) ln (Zs− + x)− Zs− lnZs− − (lnZs− + 1)x)µZ(ds, dx).

We remark that
(∫ T∧τε

0 (lnZs− + 1) dZs

)
t∈[0,T ]

is a (P,F)-martingale started

from zero, since it is stochastic integral with respect to (P,F)-martingale Z
(see [23] Chapter I.4d) and since Zs− ≥ ε or Zs− ≤ 1

ε on the stochastic
interval [0, T ∧ τε] .

Let us introduce the function

F (x, s) = ((Zs− + x) ln (Zs− + x)− Zs− lnZs− − (lnZs− + 1)x) .

Then, by Theorem 2.1.8 in [23] we get

(34) EP

∫ T∧τε

0

∫
R
F (x, s)µZ(ds, dx) = EP

∫ T∧τε

0

∫
R
F (x, s)νZ(ds, dx),
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where µZ and νZ are measure of jumps of process Z and its compensator .

Finally, taking the expectation of ZT∧τε lnZT∧τε and using the fact that
Z0 = 1, we have:

EP [ZT∧τε lnZT∧τε ] = EP

[
1

2

∫ T∧τε

0

1

(Zs−)
d < Zc >s

+

∫ T∧τε

0

∫
R

((Zs− + x) ln (Zs− + x)− Zs− lnZs− − (lnZs− + 1)x) νZ(ds, dx)

]
.

Since Z = E(M), where M is defined in (17), then < Zc >t= Zt−(βσ)2dt
and ∆Zt = Zt− (Y (∆Lt)− 1) . Then,

(35) EP [ZT∧τε lnZT∧τε ] = EP

[
1

2

∫ T∧τε

0
Zs−(βσ)2ds

+

∫ T∧τε

0

∫
R
Zs− (Y (x) lnY (x)− Y (x) + 1) ν(dx)

]
.

Since τε → ∞ as ε → 0 and x lnx − x + 1 ≥ 0 for all x > 0, by Lebesgue’s
monotone convergence theorem we can pass to the limit on the right-hand
side of (35).

It remains to prove

lim
ε→0

EP [ZT∧τε lnZT∧τε ] = EP [ZT lnZT ] .

We can write

EP [ZT∧τε lnZT∧τε ] = EP [ZT lnZT ] + EP
[
Zτε lnZτε1{τε<T}

]
− EP

[
ZT lnZT 1{τε<T}

]
.(36)

We show that two last terms in (36) tend to zero as ε→ 0.

Since ZT lnZT is P -integrable and lim
ε→0

P (τε < T ) = 0, we get that

lim
ε→0

EP
[
ZT lnZT 1{τε<T}

]
= 0.

Using the inequality x lnx ≥ 1
e for all x ∈ R+, we have for 0 ≤ ε ≤ 1

e

−1

e
· P (τε < T ) ≤ EP

[
Zτε lnZτε1{τε<T}

]
≤ 0.

Hence,
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lim
ε→0

EP
[
Zτε lnZτε1{τε<T}

]
= 0

and the equality (33) holds.

From Definition 3 we have that

I(Q∗T |PT ) = inf
(β,Y )∈K̄

EP [ZT (β, Y ) lnZT (β, Y )] .

Next, we prove that the Girsanov’s parameters (β∗, Y ∗) ∈ K̄, defined by
(31) is the minimal point of convex function

G(β, Y ) =
1

2
(βσ)2 +

∫
R

(Y (x) lnY (x)− Y (x) + 1)ν(dx).

Since we minimise the function G(β, Y ) over all (β, Y ) ∈ K̄, then such (β, Y )
should satisfy the martingale conditions (27) and (28).

We assume that

(37) Y ∗(x) = eβ
∗h(x).

We remark, that G is a convex function with respect to β and Y . Then,

G(β, Y )−G(β∗, Y ∗)

≥ β∗σ2(β − β∗) +

∫
R

(lnY ∗(x)(Y (x)− Y ∗(x))) ν(dx)

= β∗σ2(β − β∗) +

∫
R

(β∗h(x)(Y (x)− Y ∗(x))) ν(dx)

= 0,

where we use the convexity of G for the inequality, the assumption (37) for
the first equality and the last equality follows from (27) and (28). Thus, we
have proved that G(β, Y ) ≥ G(β∗, Y ∗). The uniqueness of (β∗, Y ∗) follows
from the strong convexity of function G(β, Y ) when σ2 > 0, and in the case
σ2 = 0, directly from martingale conditions (27) and (28).

2

Proposition 6. Let f(x) = −1
qx

q, q ∈ (−∞, 0) ∪ (0, 1). We suppose that

there exists the solution (β∗, Y ∗) ∈ K̄ to the equation (18) with

(38)

Y ∗(x) = (1 + (q − 1)β∗h(x))
1
q−1 such that 1 + (q − 1)β∗h(x) > 0 ν−a.s.
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Then, there exists f -divergence minimal equivalent martingale measure Q∗

and the corresponding Hellinger type process is of the form:

(39) H
(q∗)
T = 1 + T

{
1

2
q(q − 1) (β∗σ)2 +

∫
R

(
(1 + (q − 1)β∗h(x))

q
q−1

+q (1 + (q − 1)β∗h(x))
1
q−1 − 1

)
ν(dx)

}
.

The integral in the right-hand side is well-defined.

Proof: We continue in the framework of Proposition 4 to prove the equality
(39) and we start from the proof of an equality

(40) EPZ
q
T = 1+T

{
1

2
q(q−1)(βσ)2+

∫
R

(Y q(x)− q(Y (x)− 1)− 1) ν(dx)

}
.

The density process Z is a positive local martingale. For ε > 0 we put
τε = inf{0 ≤ t ≤ T |Zt ≤ ε} with inf{∅} = +∞. The sequence of stopping
times (τε) is increasing to infinity as ε → 0. Hence, (τε) is a localising
sequence. Then, by Ito formula we have:

(41) ZqT∧τε = 1 + q

∫ T∧τε

0
Zq−1
s− dZs +

1

2
q(q − 1)

∫ T∧τε

0
(Zs−)q−2d < Zc >s

+

∫ T∧τε

0

∫
R

[
Zs−

((
1 +

x

Zs−

)q
− 1

)]
µZ(ds, dx).

We remark that
(∫ T∧τε

0 (Zs−)q−1 dZs

)
t∈[0,T ]

is a (P,F)-martingale started

from zero. Let us introduce the function

F (x, s) = ((Zs− + x) ln (Zs− + x)− Zs− lnZs− − (lnZs− + 1)x) .

Then, by the projection theorem ( Theorem 2.1.8 in [23]) we get

EP

∫ T∧τε

0

∫
R
F (x, s)µZ(ds, dx) = EP

∫ T∧τε

0

∫
R
F (x, s)νZ(ds, dx),

where µZ and νZ are measure of jumps of process Z and its compensator .

Finally, taking the expectation in (41) we have:

EPZ
q
T∧τε = 1 + EP

[
1

2
q(q − 1)

∫ T∧τε

0
(Zs−)q−2d < Zc >s

+

∫ T∧τε

0

∫
R

[
Zs−

((
1 +

x

Zs−

)q
− 1

)]
νZ(ds, dx)

]
.
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Using the relation between Z = E(M), where M is defined in (17) and the
Levy process L, we get

(42) EPZ
q
T∧τε = 1 + EP

[
1

2
q(q − 1)

∫ T∧τε

0
Zqs−(βσ)2ds

+

∫ T∧τε

0

∫
R
Zqs− [Y q(x)− q(Y (x)− 1)− 1] νz(ds, dx)

]
.

We remark that τε →∞ as ε→ 0. Since for q ∈ (0, 1), q(q−1) < 0 and xq−
qx−1 ≤ 0 and for q ∈ (−∞, 0), q(q−1) > 0 and xq−qx−1 ≥ 0, we conclude
that the right hand side of the above expression contains the integral of some
negative function. Then, by Lebesgue’s monotone convergence theorem we
can pass to the limit on the right-hand side of (42). It remains to show that
the left-hand side of (42) converges to EZqT .

We can write

(43) EPZ
q
T∧τε = EPZ

q
T + EP

[
Zqτε1{τε<T}

]
− EP

[
ZqT 1{τε<T}

]
.

We show that two last terms in (43) tend to zero as ε→ 0.

Since ZqT is P -integrable and lim
ε→0

P (τε < T ) = 0, we get that

lim
ε→0

EP
[
ZqT 1{τε<T}

]
= 0.

For the second term we distinguish two cases:

q ∈ (−∞, 0) and q ∈ (0, 1).

For q ∈ (0, 1) we have:

EP
[
Zqτε1{τε<T}

]
≤ εq · P (τε < T )→ 0

as ε→ 0. In the case q ∈ (−∞, 0) we have:

EP
[
Zqτε1{τε<T}

]
≤ EQ

[
Ẑ1−q
τε 1{τε<T}

]
,

where Ẑτε = 1
Zτε

. From maximal inequalities for the martingales we have:

EQ

[
sup Ẑt
0≤t≤T

]1−q

≤ c(q)EQ
[
Ẑ1−q
T

]
= c(q)EP

[
ZqT
]
<∞,

where c(q) is a constant. In addition, lim
ε→0

Q (τε < T ) = 0, then
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lim
ε→0

EQ

[
Ẑ1−q
τε 1{τε<T}

]
= 0.

And we have proved, that

lim
ε→0

EPZ
q
T∧τε = EPZ

q
T .

Next, we prove that the Girsanov’s parameters (β∗, Y ∗) ∈ K̄, defined by
(38) is the minimal point of convex function

G(β, Y ) =
1

2
q(q−1)(βσ)2 +

∫
R

(Y q(x)−q(Y (x)−1)−1)ν(dx), q ∈ (−∞, 0),

and the minimal point of the convex function −G(β, Y ) if q ∈ (0, 1). In this
proof we consider the case when q ∈ (−∞, 0) and we minimise the convex
function G(β, Y ) over all (β, Y ) ∈ K̄. Then such (β, Y ) should satisfy the
martingale conditions (27) and (28).

We assume that

(44) Y ∗q−1(x)− 1 = (q − 1)β∗h(x).

Since G is a convex function with respect to β and Y , then,

G(β, Y ) − G(β∗, Y ∗)

≥ q(q − 1)β∗σ2(β − β∗) +

∫
R

(
q
(
Y q−1(x)− 1

))
(Y (x)− Y ∗(x))ν(dx)

= q(q − 1)β∗σ2(β − β∗) +

∫
R
q(q − 1)β∗h(x)(Y (x)− Y ∗(x))ν(dx)

= 0,

where we use the convexity of G for the inequality, the assumption (44) for
the first equality and the last equality follows from (27) and (28). Thus,
we have proved that G(β, Y ) ≥ G(β∗, Y ∗). The uniqueness of (β∗, Y ∗)
follows from the strong convexity of the functions G(β, Y ), q ∈ (−∞, 0) and
−G(β, Y ), q ∈ (0, 1) when σ2 > 0, and in the case σ2 = 0, directly from
martingale conditions (27) and (28).

2
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3.2. f-divergence minimal martingale measures on initially enlarged
filtration. In this section we consider the standard f -divergences and we
prove that the density process Z∗(ξ) of the f -minimal equivalent martin-
gale measure on the initially enlarged filtration coincides with the density
process Z∗ of the f -minimal equivalent martingale measure on the refer-
ence filtration F up to the random factor which is σ(ξ)-measurable random
variable Z0(ξ). The next auxiliary lemma establishes that the minimal mar-
tingale measure for the conditional dual problem to the utility maximisation
problem on the enlarged filtration, coincides with Q∗.

Lemma 2. Let Z∗ be the f -divergence minimal equivalent martingale mea-
sure for the geometric Levy process S = E(L) defined in Definition 3. Then

(45) inf
Q∈M(G)

E
[
f(Z̃(ξ))

]
= inf

Z0

E [f(Z0(ξ)Z∗T )] .

Proof: Since the process SZ̃T (u) is (P,F)-martingale, then the measure

Qu given by the density process Z̃(u) belongs to the set M(F). Then the
following inequality holds:

(46) EP

[
f
(
Z̃T (u)

)]
≥ EP [f (Z∗T )] .

Using the fact that we consider the f -divergences which are invariant under
scaling and (46) we get that

EP

[
f
(
Z0(u)Z̃T (u)

)]
≥ EP [f (Z0(u)Z∗T )] .

Integrating with respect to µ we get that

inf
Q∈M(G)

E
[
f
(
Z0(ξ)Z̃T (ξ)

)]
≥ inf

Z0

E [f (Z0(ξ)Z∗T )] .

From the other side, if a measure Q ∈ M(F) then the price process S is
a (Q,F)-martingale, then by immersion property (see [24]) S is a (Q,G)-
martingale, where Q (A×B) = Q(A) for A ∈ F and B ∈ σ(ξ). Then
Q ∈M(G). And we can conclude that

inf
Q∈M(G)

E
[
f
(
Z0(ξ)Z̃T (ξ)

)]
≤ inf

Z0

E [f (Z0(ξ)Z∗T )] .

Hence, the relation (45) has been proved.

2

It follows from the definition of the density process of Q ∈ M(G) that

Z(ξ) = Z0(ξ)Z̃(ξ), where the random variable Z0(ξ) is such that EµZ0(ξ) =
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1. By the Definition 1, Proposition 4 and Lemma 2 we should minimise the
function

F (λ, Z0, Z̃T ) =

∫
R+

EP

[
f
(
λZ0(u)Z̃T (u)

)
+ λZ0(u)(x+ g(u))

]
dµ(u).

In next proposition we find the solution to the minimisation problem F in
the cases of the special f -divergences.

Proposition 7. Let Z∗T be a density process of the minimal f -divergence
equivalent martingale measure Q∗ ∈ M(F). We assume that f is a strictly
convex function and for all λ > 0 and t ∈ [0, T ] we have that function

Z∗t f
′
(λZ∗t ) is integrable P− a.s. Then, if the f -minimal equivalent measure

Q∗ exists, it is unique and it has the following structure:

(47)
dQ∗|GT
dP|GT

= Z0(ξ)Z∗T ,

where Z0(ξ) is a G-measurable random variable, such that

(48) EµZ0(ξ) = 1

Let us denote by λ̃(u) := λZ0(u). Then for any random initial capital x +

g(ξ) ∈ (x,∞) there exists unique λ̃∗(u) > 0 such that for any u ∈ supp(µ)
defined uniquely from the equation

(49) EP

[
−Z∗T f

′
(
λ̃∗(u)Z∗T

)]
= x+ g(u).

Moreover, for any u ∈ supp(µ), Z∗0 (u) verify:

(50) Z∗0 (u) =
λ̃∗(u)

Eµλ̃∗(ξ)
.

In particular, if f
′
(x) = 1

γ (lnx− ln γ), for γ > 0 then

(51) Z∗0 (u) =
exp (−γg(u))

Eµ [exp (−γg(ξ))]
,

and for f
′
(x) = −x

1
p−1 , for p < 1 we get

(52) Z∗0 (u) =
(x+ g(u))p−1

Eµ [(x+ g(ξ))p−1]
.

Proof:
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We want to minimise function F (λ, Z0(u)) subject to (48). We consider the
unconstrained optimisation problem such that to minimise function

(53) F (λ̃) =

∫
R
EP

[
f
(
λ̃(u)Z∗T

)
+ λ̃(u)(x+ g(u))

]
dµ(u)

over all measurable functions λ̃ : R+ → R+.

Let us assume that the minimiser λ∗ of function F (λ̃) satisfies to the follow-
ing equation:

(54) EP

[
−Z∗T f

′
(
λ̃(u)Z∗T

)]
= x+ g(u), µ− a.s..

Since EP

[
f
′
(
λ̃(u)Z∗T

)]
<∞ for all λ̃(u) > 0, one can conclude that func-

tion EP

[
−f ′

(
λ̃(u)Z∗T

)]
is a continuous, monotonically decreasing function

of λ̃(u) with values in (x,∞) . This guaranties the existence of λ̃∗.

We set

F (λ̃) =

∫
R
EP

[
f
(
λ̃(u)Z∗T

)
+ λ̃(u)(x+ g(u))

]
dµ(u),

F (λ̃∗) =

∫
R
EP

[
f
(
λ̃∗(u)Z∗T

)
+ λ̃∗(u)(x+ g(u))

]
dµ(u).

We have to prove for ∀λ̃ > 0 that

(55) F (λ̃) ≥ F (λ̃∗).

We remark that we consider the standard f -divergences, which are strictly
convex with respect to λ̃, then F is a convex function. So, we obtain

F (λ̃)− F (λ̃∗)

≥
∫
R

(
EP

[
f
′
(
λ̃∗(u)Z∗T

)
Z∗T

]
+ x+ g(u)

)
(λ(u)− λ∗(u)) dµ(u)

= 0,

where we use the convexity of F (λ̃) for the inequality and the assumption

that x + g(u) = EP

[
−Z∗T f

′
(
λ̃∗(u)Z∗T

)]
for the equality. Since (55) is

proved, λ̃∗ defined from (54) is a minimiser of (53). Moreover, under the
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condition (14) on the initial capital x, the standard f -divergence functions

are strongly convex. Therefore, the uniqueness of λ̃∗ follows from the strong
convexity of F (λ).

Now, λ∗Z∗0 (u) = λ̃∗(u) and since EµZ
∗
0 (ξ) = 1, the equality (50) follows.

In particular, in the case of f
′
(x) = 1

γ (lnx− ln γ) we get

(56) λ̃∗(u) = γ exp (−γ(x+ g(u))− EP [Z∗T lnZ∗T ]) ,

and then (51). And for f
′
(x) = −x

1
p−1 , p < 1

(57) λ̃∗(u) =
(x+ g(u))p−1(
EP
[
Z∗T
] p
p−1

)p−1 ,

and then (52) follows.

2

4. Solution to utility maximisation problem and indifference
prices formulas

We consider the filtered probability space (Ω×R,FT ⊗B(R+),G,P), where
Gt =

⋂
s>t (Fs ⊗ σ (ξ)). (For more accurate description of the enlarged prob-

ability space see Section 2.) Let x be an initial endowment, GT = g(ξ) be a
payoff function of the European type option, g is a positive Borel function
and Π(G) be the set of the admissible and self-financing portfolios.

Proposition 8. Let V (x, g) is defined by (11) and let the conditions of
Proposition 7 are satisfied.

(i) Then,

(58) V (x, g) =

∫
R
EP

[
U(−f ′(λ̃∗(u)Z∗T )

]
dµ(u),

and for any initial capital x+ g(u) ∈ (x̄,∞), λ̃∗(u) is unique solution of the
equation (49).

(ii) In particular, in the case of exponential utility U(x) = 1− e−γx, we get
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(59) V (x, g) = 1− exp

{
− γx− T

{
1

2
(β∗σ)2

+

∫
R

[
eβ
∗h(x)(β∗h(x)− 1) + 1

]
ν(dx)

}}
×
∫
R

exp{−γg(u)}dµ(u),

where (β∗ is solution to the equation (18) with Y ∗(x) = eβ
∗h(x).

For logarithmic utility U(x) = lnx,

(60) V (x, g) =

∫
R

ln(x+ g(u))dµ(u) + T

{
1

2
(β∗σ)2

+

∫
R

(
ln (1− β∗h(x)) +

1

1− β∗h(x)
− 1

)
ν(dx)

}
,

where β∗ is solution to the equation (18) with Y ∗(x) = 1
1−β∗h(x) .

And for power utility U(x) = xp

p , p ∈ (−∞, 0) ∪ (0, 1),

(61) V (x, g) =
1

p

∫
R

(x+ g(u))p
(

1 + T

{
1

2
q(q − 1) (β∗σ)2

+

∫
R

(
(1 + (q − 1)β∗h(x))

q
q−1 + q (1 + (q − 1)β∗h(x))

1
q−1 − 1

)
ν(dx)

})1−p
dµ(u),

where q = p
p−1and β∗ is a solution to the equation (18) with Y ∗(x) =

(1 + (q − 1)β∗h(x))
1
q−1 such that 1 + (q − 1)β∗h(x) > 0 ν−a.s.

Proof:

According to Proposition 3 the utility optimisation problem on initially en-
larged filtration can be written in a following dual form:

(62) V (x, g) = inf
λ>0

inf
Q∈K̃

{
E
[
f

(
λ
dQ|T
dP|T

)
+ λZ0(ξ)(x+ g(ξ))

]}
.

From Proposition 7 we know that

inf
Q∈K̃

E
[
f

(
λ
dQ|T
dP|T

)]
= E [f (λZ0(ξ)Z∗T )] ,
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where λZ0(ξ) = λ̃(ξ). Since we consider the standard f -divergences which
are invariant under scaling, we obtain the value function V (x, g) on the
initially enlarged filtration in the following dual form:

(63) V (x, g) = E
[
f
(
λ̃∗(ξ)Z∗T

)
+ λ̃∗(ξ)(x+ g(ξ))

]
,

where λ̃∗(u) is uniquely defined from (49). Then, the equality (58) follows
from (ii) of Proposition 2 .

Then, using (i), in the case of exponential utility U(x) = 1 − e−γx with

f
′
(x) = 1

γ (lnx− ln γ), γ > 0, we get

(64) V (x, g) = 1− exp{−EP [Z∗T lnZ∗T ]− γx}
∫
R

exp{−γg(u)}dµ(u).

Using Proposition 5 and that EP [Z∗T lnZ∗T ] = I(Q∗T |PT ) we obtain the for-
mulae (59) for the value function V in the case of exponential utility.

For logarithmic utility U(x) = lnx with f
′
(x) = − 1

x ,

(65) V (x, g) =

∫
R

ln(x+ g(u))dµ(u)− EP lnZ∗T .

Then, from Proposition 4 and using that −EP lnZ∗T = I(PT |Q∗T ) we get
(60).

And for power utility U(x) = xp

p with f
′
(x) = −x

1
p−1 , p < 1,

(66) V (x, g) =
1

p

∫
R

(x+ g(u))p
(
E [Z∗T ]

p
p−1

)1−p
dµ(u).

From Proposition 6 and EP [Z∗T ]
p
p−1 = H

(q∗)
T we get (61).

2

We remind that a buyer’s indifference price pbT is the solution to

(67) VT (x, 0) = VT (x− pbT , g).

and a seller’s indifference price psT is defined from

(68) VT (x, 0) = VT (x+ psT ,−g).
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Next, we apply the results of Proposition 8 to calculate the indifference
prices in the cases of the logarithmic, exponential and power utilities. Then,
we show that the corresponding seller’s indifference prices psT (g) satisfy the
properties of the convex risk measures, such that convexity, monotonicity
and translation invariance property with respect to the claims.

Proposition 9. Let V (x, g) is defined by (11) and let the conditions of
Proposition 7 are satisfied. If ln g(ξ), ln (x− g(ξ)) are integrable functions
and g(u) ∈ (0, x), (µ−a.s.), then the buyer’s and seller’s indifference prices
for logarithmic utility function U(x) = lnx, x > 0 are defined respectively
from

(69)

∫
R

ln

[
1−

pbT
x

+
g(u)

x

]
dµ(u) = 0

and

(70)

∫
R

ln

[
1 +

psT
x
− g(u)

x

]
dµ(u) = 0.

Moreover, then there exists the unique solutions pbT , p
s
T ∈ [0, x] of the equa-

tions (69) and (70).

Moreover, pbT (g) is concave, increasing functional and psT (g) is convex, de-
creasing functional, which both satisfy the translation invariance property:
∀ m ∈ R

pb,sT (g +m) = pb,sT (g)−m.

Proof:

To solve the indifference pricing problems (67) and (68) for the logarithmic
utility we use Proposition 7. The values of the left hand sides of (67) and
(68) coincide and can be obtained by taking g = 0 in (65). To calculate the
right hand side of (67) we substitute x by x − pbT . The value function on
the right hand side of (68) corresponds to the situation of the selling the
option and, hence, g is replaced by −g and x is substituted by x + psT in
(65). Therefore, from (67) and (65) we have

∫
R

[
ln
(
x− pbT + g(u)

)
+ I (PT |Q∗T )− lnx− I (PT |Q∗T )

]
dµ(u) = 0,

and hence we obtain (69). Formula (70) is obtained from the relation

pbT (g) = −psT (−g).
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Let us denote by F (y) the function on [0, x] of the form:

F (y) =

∫
R

ln

[
1− y

x
+
g(u)

x

]
dµ(u), y ∈ [0, x] .

Function ln
[
1− y

x + g(u)
x

]
is a well-defined decreasing function of y on [0, x]

if g(u) ∈ (0, x) and

g(u)

x
≤ 1− y

x
+
g(u)

x
≤ 1 +

g(u)

x

and

ln
g(u)

x
≤ ln

[
1− y

x
+
g(u)

x

]
≤ ln

[
1 +

g(u)

x

]
.

Then, if ln g(u), u ∈ R is integrable function with respect to µ, then function
F (y) is a well-defined on [0, x] and by Lebesque theorem F (y) is continuous
function on [0, x]. Since F (x) ≤ 0 and 0 ≤ F (0) < ∞, then a solution to
equation F (y) = 0 exists by the mean-value theorem.

Next, the uniqueness of solution of F (y) = 0 follows from the fact that

F (y) is a strictly decreasing function. In fact, let us denote by f̃(y, u),
(y, u) ∈ [0, x]× R the integrable with respect to µ function of the form:

f̃(y, u) = ln

[
1− y

x
+
g(u)

x

]
.

The function f̃(y, u) is continuous in y and u on [0, x]×R and its derivative

f̃y(y, u) = − 1

x− y + g(u)

is also continuous on [0, x]× R.

Moreover, if g(u) ∈ (0, x), then x− y + g(u) > 0 and f̃y(y, u) < 0 for all
(y, u) ∈ [0, x]× R. Additionally, for x > 0:

f̃y(y, u) < − 1

2x
< 0.

Then,
∂

∂y
F (y) =

∫
R
f̃y(y, u)dµ(u)

and for x > 0:
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∂

∂y
F (y) ≤ − 1

2x
< 0.

Hence, F (y) is a strictly decreasing function of y on [0, x]. In the case of the
sellers indifference price, we denote

F (y) =

∫
R

ln

[
1 +

y

x
− g(u)

x

]
dµ(u), y ∈ [0, x] .

Since ln
[
1 + y

x −
g(u)
x

]
is a well-defined increasing function on [0, x], the

condition ∫
R

ln (x− g(u)) dµ(u) <∞

implies that function F (y) is a well-defined continuous function on [0, x].
Since F (0) ≤ 0 and F (x) ≥ 0, a solution to equation F (y) = 0 exists by the
mean-value theorem. The uniqueness of solution follows from the fact that
F (y) is a strictly increasing function.

For seller’s utility indifference price the translation invariance property is

evident since function Fu(g, psT ) = 1 +
psT
x −

g(u)
x has a property

Fu(g +m, psT −m) = Fu(g, pbT ), ∀m ∈ R.

The convexity of psT (g) can be deduced from the following. Let us consider

that g(1), g(2) are B(R+)-measurable functions and p
(1)
T , p

(2)
T are the corre-

sponding sellers’s indifference prices. Then,

∫
R

ln

(
1 +

αp
(1)
T − (1− α)p

(2)
T

x
+
αg1(u)− (1− α)g2(u)

x

)
dµ(u)

≤ α
∫
R

ln

(
1 +

p
(1)
T

x
− g1(u)

x

)
dµ(u)+(1−α)

∫
R

ln

(
1 +

p
(2)
T

x
− g2(u)

x

)
dµ(u),

and it follows that

pbT (αg1 + (1− α)g2) ≤ αpbT (g1) + (1− α)pbT (g2),

and psT (g) is a convex functional. Finally, let g1(u) ≤ g2(u), u ∈ R. Then
we have for the seller’s prices psT (g1) and psT (g2) that∫

R
ln

(
1 +

psT (g1)

x
− g1(u)

x

)
dµ(u) ≥

∫
R

ln

(
1 +

psT (g1)

x
− g2(u)

x

)
dµ(u).
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Since the left hand side of the inequality is equal to 0, and the function

F (y) =

∫
R

ln

(
1 +

y

x
− g2(u)

x

)
dµ(u)

is increasing function, we conclude that psT (g1) ≥ psT (g2),

The concavity, monotonicity and translation invariance property of the buyer’s
indifference price pbT can be proved using the same arguments as for psT .

2

Proposition 10. Let V (x, g) is defined by (11) and let the conditions of
Proposition 7 are satisfied. If

∫
R (x− g(u))p dµ <∞,

∫
R(g(u))pdµ <∞ for

p < 0 and g(u) ∈ (0, x), (µ− a.s.), then the buyer’s and seller’s indifference
prices for the power utility U(x) = xp

p , p ∈ (−∞, 0) ∪ (0, 1) are respectively

defined from

(71)

∫
R

[(
1−

pbT
x

+
g(u)

x

)p
− 1

]
dµ(u) = 0

and

(72)

∫
R

[(
1 +

psT
x
− g(u)

x

)p
− 1

]
dµ(u) = 0.

The equations (71) and (72) have the unique solutions.

Moreover, pbT (g) is concave, increasing functional and psT (g) is convex, de-
creasing functional, which both satisfy the translation invariance property:
∀ m ∈ R

pb,sT (g +m) = pb,sT (g)−m.

Proof:

To solve the indifference pricing problems (67) and (68) when the investor’s
preferences are described by power utility we use Proposition 8. The values
of the left hand sides of (67) and (68) coincide and can be obtained by taking
g = 0 in (66). To calculate the right hand side of (67) we substitute x by
x − pbT . The value function on the right hand side of (68) corresponds to
the situation of the selling the option and, hence, g is replaced by −g and x
is substituted by x+ psT in (66). Therefore, from (67) and (66) we have

∫
R

(
x− pbT + g(u)

H
(q∗)
T

)p
H

(q∗)
T dµ(u) =

∫
R

(
x

H
(q∗)
T

)p
H

(q∗)
T dµ(u).
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This equation is equivalent to (71). Formula (72) can be obtained from the
relation

pbT (g) = −psT (−g).

Let us denote by F (y) the function on [0, x] of the form:

F (y) =

∫
R

[(
1− y

x
+
g(u)

x

)p
− 1

]
dµ(u), y ∈ [0, x] .

The function
(

1− y
x + g(u)

x

)p
is a well-defined decreasing for p ∈ (0, 1) (

increasing for p < 0 ) function of y on [0, x] if g(u) ∈ (0, x). Hence,

g(u)

x
≤ 1− y

x
+
g(u)

x
≤ 1 +

g(u)

x
,

(
g(u)

x

)p
≤
(

[1− y

x
+
g(u)

x

)p
≤
(

1 +
g(u)

x

)p
, p ∈ (0, 1),

(
g(u)

x

)p
≥
(

[1− y

x
+
g(u)

x

)p
≥
(

1 +
g(u)

x

)p
, p < 0.

We can verify that under the condition
∫
R (g(u))p dµ(u) < ∞, for p < 0,

the function F (y) is a well-defined continuous function on [0, x] for p ∈
(−∞, 0) ∪ (0, 1).

Since F (0) ≥ 0, 0 ≤ F (0) < ∞ for p ∈ (0, 1) and F (0) ≤ 0, 0 ≤ F (x) < ∞
for p < 0, then, by the mean-value theorem there exists a solution on [0, x]
for (71) .

Next, we prove the uniqueness of solution of the equation F (y) = 0. The
uniqueness follows from the fact that F (y) is a strictly decreasing function
if p ∈ (0, 1) and is a strictly increasing if p < 0 .

We denote by f̃(y, u), (y, u) ∈ [0, x] × R the integrable with respect to µ
function of the form:

f̃(y, u) =

(
1− y

x
+
g(u)

x

)p
− 1.

The function f̃(y, u) is continuous in y and u on [0, x]×R and its derivative

f̃y(y, u) = −p
x

(
1− y

x
+
g(u)

x

)p−1

is also continuous on [0, x]× R.
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In fact, if g(u) ∈ (0, x), then 1− y
x + g(u)

x > 0 and for p ∈ (0, 1), f̃y(y, u) < 0

and for p < 0, f̃y(y, u) > 0 for all (y, u) ∈ [0, x] × R. Moreover, for all
p ∈ (0, 1), x > 0, (y, u) ∈ [0, x]× R:

f̃y(y, u) < −p
x

2p−1 < 0,

and for all p < 0, x > 0, (y, u) ∈ [0, x]× R:

f̃y(y, u) > −p
x

2p−1 > 0.

Then,

∂

∂y
F (y) =

∫
R
f̃y(y, u)dµ(u)

and for p ∈ (0, 1):
∂

∂y
F (y) ≤ −p

x
2p−1 < 0,

and for p < 0:
∂

∂y
F (y) ≥ −p

x
2p−1 > 0.

Therefore, F (y) is a strictly decreasing function for p ∈ (0, 1) and is a strictly
increasing function for p < 0 on [0, x].

In the case of the seller’s indifference price, we denote

F (y) =

∫
R

[(
1 +

y

x
− g(u)

x

)p
− 1

]
dµ(u), y ∈ [0, x] .

We see that F (y) is increasing function for p ∈ (0, 1) and decreasing function
for p < 0 on [0, x] for g(u) ∈ (0, x). If

∫
R (x− g(u))p dµ < ∞ for p < 0,

then the function F (y) is well defined continuous function on [0, x] for p ∈
(−∞, 0)∪ (0, 1). Since F (0) ≤ 0, 0 ≤ F (x) <∞ for p ∈ (0, 1) and F (x) ≤ 0,
0 ≤ F (0) < ∞ for p < 0, then, by the same arguments as in the case of
buyer’s price, the equation (72) has a a unique solution on [0, x].

For seller’s utility indifference price the translation invariance property is

justified by the fact that function Fu(g, psT ) = 1 +
psT
x −

g(u)
x has a property

Fu(g +m, psT −m) = Fu(g, pbT ), ∀m ∈ R.

Let us take g(1), g(2) which are B(R+)-measurable functions and let p
(1)
T , p

(2)
T

be the corresponding sellers’s indifference prices. If p(p− 1) > 0, then
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∫
R

((
1 +

αp
(1)
T − (1− α)p

(2)
T

x
+
αg1(u)− (1− α)g2(u)

x

)p
− 1

)
dµ(u)

≤ α
∫
R

((
1 +

p
(1)
T

x
− g1(u)

x

)p
− 1

)
dµ(u)+(1−α)

∫
R

((
1 +

p
(2)
T

x
− g2(u)

x

)p
− 1

)
dµ(u),

and it follows that

pbT (αg1 + (1− α)g2) ≤ αpbT (g1) + (1− α)pbT (g2),

and psT (g) is a convex functional.

Let g1(u) ≤ g2(u), u ∈ R. Then we have for the sellers’s prices psT (g1) and
psT (g2) that∫
R

((
1 +

psT (g1)

x
− g1(u)

x

)p
− 1

)
dµ(u) ≥

∫
R

((
1 +

psT (g1)

x
− g2(u)

x

)p
− 1

)
dµ(u).

Since the left hand side of the inequality is equal to 0 and

F (y) =

∫
R

((
1 +

y

x
− g2(u)

x

)p
− 1

)
dµ(u)

is increasing function, we conclude that psT (g1) ≥ psT (g2).

The concavity and monotonicity of the buyer’s indifference price pbT can be
proved using the same arguments as for psT . The case of p ∈ (0, 1) can be
considered in the similar way.

2

Proposition 11. Let V (x, g) is defined by (11) and let the conditions of
Proposition 7 are satisfied. If V (x, 0) < ∞ and V (x, g) < ∞, then the
buyer’s and seller’s indifference prices in the case of the exponential utility
U(x) = 1− e−γx, γ > 0 are given by

(73) pbT = −1

γ
ln

[∫
R

exp
{
− γg(u)

}
dµ

]
and

(74) psT =
1

γ
ln

[∫
R

exp
{
γg(u)

}
dµ

]
.
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Moreover, pbT (g) is concave, monotone increasing functional and psT (g) is
convex, monotone decreasing functional, which both satisfy the translation
invariance property: ∀ m ∈ R

pb,sT (g +m) = pb,sT (g)−m.

Proof:

In the case of the exponential utility −f ′(y) = − 1
γ (ln y− ln γ), and we have

VT (x− pbT , g) =

∫
R
EP

[
U
(
−f ′

(
λ̃∗(u)Z∗T

))]
dµ(u)

= 1− 1

γ

∫
R
λ̃∗(u)dµ(u)

and

VT (x, 0) = 1− λ̃∗

γ
,

where λ̃∗(u) is given by (56) and λ̃∗ can be obtain by putting g = 0 in (56).

Thus, taking into account that EP [Z∗T lnZ∗T ] = I(Q∗T |PT ) we obtain the

following formula for the indifference price pbT in the case of the exponential
utility:

∫
R

exp

{
−γ
(
x− pbT + g(u)

)
−I(Q∗T |PT )

}
dµ(u) = exp

{
−γx−I(Q∗T |PT )

}
.

This equation is equivalent to (73) and the seller’s indifference price (74) we
can obtain using relation

pbT (g) = −psT (−g).

Evidently, the translation invariance and monotonicity properties are veri-
fied for the buyer’s and seller’s exponential indifference prices. Let us take
g(u) = αg1(u) + (1 − α)g2(u), α ∈ (0, 1), then by Holder inequality with
p = 1

α and q = 1
1−α we obtain:

∫
R

exp
{
γg(u)

}
dµ(u) ≤

(∫
R

exp
{
γg1(u)

}
dµ(u)

)α
×
(∫

R
exp

{
γg2(u)

}
dµ(u)

)1−α
,
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that proves the convexity of psT defined by (74). The concavity of pbT defined
by (73) can be proved using the same arguments.

2

Remark 1. From Proposition 9, Proposition 10 and Proposition 11, we
conclude that in the case when the Levy process L and random variable ξ
are independent, the formulae of the logarithmic, exponential, and power
utility indifference prices are independent on the available strong insider
information about a random variable ξ on the considered market. (For the
details see Section 2).

5. Application to defaultable Geometric Brownian Motion
model

We fix T as maturity time of the option. Let (Ω,FTP ) be a probability space

on which we define two-dimensional Brownian motionW = (W
(1)
t ,W (2))0≤t≤T .

We endow (Ω,FT , P ) with a filtration F(1) = (F (1)
t )0≤t≤T generated by

W (1).

We consider the model which supports one traded asset S(1) and defaultable
bond S(2). The assets S(1) and S(2) are two independent geometric Brownian
motions such that

S
(1)
t = S

(1)
0 exp

{(
µ(1) −

σ2
(1)

2

)
t+ σ(1)W

(1)
t

}

S
(2)
t = S

(2)
0 exp

{(
µ(2) −

σ2
(2)

2

)
t+ σ(2)W

(2)
t

}
,

where µ(·) and σ(·) are the drift and diffusion coefficients respectively and
W (·) is a Wiener process.

Finally, we define a random variable τ as a default time, i.e. a first time
when the stock price process S(2) hits a barrier a ∈ (0, 1):

τ = inf
{
t ∈ [0, T ] : S2

t ≤ a
}
.

Then,the distribution of τ is

Fτ (t) = Φ

 ln a− (µ(2) −
σ2
(2)

2 )t

σ(2)

√
t

+ a
2
µ(2)

σ2
(2)

−1

Φ

 ln a+ (µ(2) −
σ2
(2)

2 )t

σ(2)

√
t

 .



INDIFFERENCE PRICING OF THE EXPONENTIAL LEVY MODELS 43

Then the information available to the insider at time t is represented by

sigma-algebra Gt =
⋂
s>t

(
F (1)
t ⊗ σ(τ)

)
. (For more details about the model

and the distribution see [28])

We suppose that investor who buys the bond will receive a payment b at
time T if and only if default has occurred before time T , i.e. the payoff
function of the bond is g

(
I{τ≤T}

)
= bI{τ≤T}. For simplicity of calculations

we assume that S
(·)
0 = 1, µ(·) = 0 and σ(·) = 1, then the distribution of τ

is

(75) Fτ (t) = Φ

(
ln a+ t

2√
t

)
+

1

a
Φ

(
ln a− t

2√
t

)
.

We assume the initial capital x be equal to 1. Then according to Proposition
8 and Proposition 9, for the existence of solutions in the equations (69),
(70), (71) and (72), in the case of the logarithmical and power utilities the
monetary value b must not exceed 1.

Next, using the formula (75) we calculate the distributions of τ in the dif-
ferent cases of the barrie a and for different maturity time T .

Table 1. Distribution of τ Fτ (T )

Case T = 1 T = 1.5 T = 2 T = 2.5 T = 3

a = 0.1 0.06107412‘ 0.16589305‘ 0.27615169‘ 0.37604460‘ 0.46221476‘
a = 0.2 0.22088765‘ 0.37653772‘ 0.49579569‘ 0.58641865‘ 0.65635072‘
a = 0.3 0.38803513‘ 0.53980954‘ 0.64120586‘ 0.71270390‘ 0.76533803‘
a = 0.4 0.53446163‘ 0.66308077‘ 0.74286328‘ 0.79690473‘ 0.83569574‘
a = 0.5 0.65623355‘ 0.7571794‘ 0.81710178‘ 0.85673907‘ 0.88477023‘

5.1. Exponential indifference prices. To calculate the exponential buyer’s
indifference price we use the formula (73) from Proposition 11:

pbT = −1

γ
ln

[∫
R

exp
{
− γg (u)

}
dµ(u)

]
,

where γ > 0.

Then, in the situation of the considered defaultable market driven by the
geometric Brownian motion, where the random variable τ is defined on
([0, T ] ,B ([0, T ])), we obtain the following expression for the exponential
indifference price:
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pbT = −1

γ
ln

[∫ T

0
exp

{
− γg

(
I{τ≤T}

) }
dP{τ≤T}

]
= −1

γ
ln

[∫ T

0
exp{−γb}dP{τ≤T} +

∫ T

0
dP{τ>T}

]
= −1

γ
ln [exp{−γb}Fτ (T ) + 1− Fτ (T )] .

Then, we can calculate the exponential buyer’s indifference prices. For com-
parison, we take two different premiums b = 0.2 and b = 0.6, which investor
receive in the case if default has occurred before time T . We use the graph
to demonstrate the result for exponential buyer’s indifference prices plotted
for different initial data.

1

2

3

4

5

T

1

2

3

4

5

a

0.0

0.2

0.4

pb

The exponential utility indifference prices for γ ∈ (0.1, 2).

The corresponding values of the axes T and a are from the grid [5× 5] of Table 1.The dark

sheets corresponds to the case of b = 0.2 and the light sheets to b = 0.6. The different layers of

the sheets correspond to the different coefficient of risk aversion γ > 0.
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On the next graph we observe the section of the previous graph taken with
respect to different values of the hitting barrier a.

1.0 1.5 2.0 2.5 3.0
T0.00

0.05

0.10

0.15

0.20

pb

The exponential utility indifference prices in the case γ = 1.

The lines on the graph from the bottom to the top correspond to the values of a equal to 0.1,

0.2, 0.3, 0.4 and 0.5 respectively.

From these two graphs we can conclude that the exponential buyer’s indif-
ference prices increase with the growth of the value of the hitting barrier a
and with the growth of the terminal time T .

5.2. Numerical result for the logarithmic and power indifference
prices. To obtain the equation for the logarithmic buyer’s indifference price
we use the equation (69) from Proposition 9:

∫
R

ln

[
1−

pbT
x

+
g(u)

x

]
dµ(u) = 0.

Then, in the situation of the considered defaultable market driven by the
geometric Brownian motion, where the random variable τ is defined on
([0, T ] ,B ([0, T ])) and x = 1, using (69) we get:

0 =

∫ T

0
ln
[
1− pbT + g

(
I{τ≤T}

)]
dP{τ≤T}

=

∫ T

0
ln
[
1− pbT + b

]
dP{τ≤T} +

∫ T

0
ln
[
1− pbT

]
dP{τ>T}

= ln
[
1− pbT + k

]
Fτ (T ) + ln

[
1− pbT

]
(1− Fτ (T )) .

Thus, the logarithmic buyer’s indifference price pbT is a solution of the equa-
tion

(76) ln
[
1− pbT + b

]
Fτ (T ) + ln

[
1− pbT

]
(1− Fτ (T )) = 0.
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For the power byuer’s indifference price in the case p < 1, p 6= 0 we use the
equation (71) from Proposition 9 and we get:

0 =

∫ T

0

[(
1− pbT + g

(
I{τ≤T}

))p
− 1
]
dP{τ≤T}

=

∫ T

0

[(
1− pbT + b

)p
− 1
]
dP{τ≤T} +

∫ T

0

[(
1− pbT

)p
− 1
]
dP{τ>T}

=
((

1− pbT + k
)p
− 1
)
Fτ (T )− 1

2
+
((

1− pbT
)p
− 1
)

(1− Fτ (T )) .

Then the power buyer’s indifference price pbT is the solution of the equa-
tion

(77)
((

1− pbT + k
)p
− 1
)
Fτ (T )− 1

2
+
((

1− pbT
)p
− 1
)

(1− Fτ (T )) = 0.

We have only the numerical result for the equations (76) and (77). The
following numerical result was obtained with using of the command NSolve
in MathematicaWolfram. The logarithmic buyer’s indifference prices and the
power ( p = −1/2 and p = 1/2) buyer’s indifference prices calculated for the
hitting barrier a = 0.1, the premium b = 0.2 and the different maturity times
T are shown in the Table 2. The corresponding values of the exponential
buyer’s indifference prices are displayed for the comparison.

Table 2. Buyer’s indifference prices

Case a = 0.1, b = 0.2 pb,expT , γ = 1 pb,logT p
b,1/2
T p

b,−1/2
T

T = 1 0.0111326 0.0111871 0.0107143 0.00984339
T = 1.5 0.0305353 0.0306383 0.0294511 0.0272343
T = 2 0.0513541 0.0514628 0.0496708 0.0462718
T = 2.5 0.0705999 0.0706757 0.0684823 0.0642565
T = 3 0.0875046 0.087533 0.0851196 0.0804011

We can see from Table 2 that for our example of the defaultable geometric
brownian motion model, the highest buyer’s indifference prices was obtained
in the case when the preferences of the investor was modelled with using of
logarithmic utility. In the case of the exponential utility, we considered the
risk aversion coefficient equal to 1, however the more risk-averse investor
with γ < 1 will pay higher indifference price and the risk-loving investor
with γ > 1 will pay less. In the case of power utility, from right hand side
of formula (71) we can see that the power indifference price pbT increases



INDIFFERENCE PRICING OF THE EXPONENTIAL LEVY MODELS 47

when the power p decreases in the case p ∈ (0, 1) and vice versa in the case
p < 0.

However, in our example, the relative difference between the considered
types of the utility indifference prices not grater than 9% (Table 2). The
analysis of the results over other types of utilities gives that the relative
difference between the indifference prices will highly increase with the in-
creasing of the risk averse factor γ and with decreasing of p < 0.
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