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1. Introduction

An increasing interest has recently been paid to anomalous diffusion, i.e. processes whose variances
increase in time in accordance with a power law tγ with γ 6= 1. This is effectively the case in seismology
(see [MTN02]) where power-law function are used to model earthquake interarrival times. One refers
to [BSM07] for other geophysical applications of such power law interarrival times.

One of the model of random processes that demonstrates such a phenomenon is investigated in
[RS00] in which the authors were the first to introduce the so called fractional Poisson process. They
replace, in the differential equations governing the Poisson process, the time derivative with a frac-
tional one (see also [BO09, BO10, Jum01, Las03] for similar approaches). Another point of view, also
proposed in [RS00], consists of considering the characterization of the Poisson process as a sum of
independent non-negative random variables. We assume that these random variables have the Mittag-
Leffler distribution instead of the exponential distribution. This is the so-called renewal approach that
have been studied by [Mai96, MGS04]. This will be the point of view that we adopt in our article. Note,
however, that it has been proved in [MNV11], that fractional Poisson process (defined as a renewal
process) coincides with the fractal time Poisson process which is defined as a the time-changed usual
Poisson process with the right continuous inverse of a standard H−stable subordinator.

The power law that governs the time evolution of the variance is often related to the notion of
long range dependence. The long range dependence is well defined for stationary processes and little
seems to be known about the extension of the long range dependence to non stationary processes.
Such an extension has been proposed in [HY97] and this will be the starting point of a new result
concerning the fractional Poisson process. Indeed we establish the long-range dependence property of
the fractional Poissonian noise (see Proposition 1 below). This is the main result of this work and
it is the subject of Section 3. This property clearly justifies the use of fractional Poisson process in
many concrete models and give some precisions about the intuitive approach using the power decay of
the variance. For practical purposes, we mention that the simulations of waiting times and parameter
estimation for the fractional Poisson process have been carried out in [CUW10, UCS08].

Our main motivation to study the fractional Poisson process is its application in actuarial sciences.
This is strongly motivated by the above comments, especially if we want to model extreme events like

1

mailto:romain.biard@univ-fcomte.fr
mailto:bruno.saussereau@univ-fcomte.fr


R. Biard and B. Saussereau/Fractional Poisson process: long-range dependence and applications in ruin theory 2

earthquake or storm. The long range dependence of the fractional Poisson process, as well as the fact
that the expectation of the interarrival, are other admissible arguments to consider the following model.

We shall work with the renewal risk model in which the surplus process of the insurance company
is modelled by

Rt = u + ct −

NH(t)
∑

i=1

Xi , t ≥ 0 , (1)

where u is the initial capital, c is the constant premium rate and the sequence of independent and iden-
tically distributed random variable (Xi )i≥1 models the sizes of the successive claims. To our knowledge,
there is only the work of [BM13] that deals with a fractional model for insurance. In their work, the
authors established a large deviation principle for the fractional Poisson process and prove asymptotic
results for the ruin probabilities of an insurance model like the one given by (1).

In the second part of our work, we shall make all our possible to give an overview of all the known
results that may be applied to this context. Some of them are easy, but we strength the fact that our
investigations are a first step toward the description of fractional Poisson models of surplus process.
Let us briefly describe the properties we deal with.

In Section 4, we use the duality relation between our model and a compound Poisson model with
arbitrary claim size distribution. This allows us to establish a closed-form formula for the density of
the time to ruin when the claim sizes are exponentially distributed. The ruin probability in finite and
infinite time are also studied.

The ruin probability in the context of heavy tailed size is the topic of Section 5. The properties that
we establish are a consequence of the light tailed distribution of the fractional Poisson process.

At last, a Lundberg’s inequality is proposed in Section 6 in which a bound for the ruin probability is
proposed when the claim sizes have a light-tailed distribution.

Some preliminary results on the fractional Poisson process are gathered in Section 2 and the proof
of a technical inequality is proposed in the Appendix A. We recall that Section 3 is devoted to the
long-range dependence property.

2. Preliminaries on the fractional Poisson process

The fractional Poisson process was first defined in [RS00] as a renewal process with Mittag-Leffler
waiting times. This means that it has independent, and identically distributed waiting times (∆Tk

)k≥1,
with distribution given by

P(∆Tk
> t) = EH(−λtH) (2)

for λ > 0 and 0 < H ≤ 1, where

EH(z) =

∞
∑

k=0

zk

Γ (1 + Hk)

is the Mittag-Leffler function (Γ denotes the Euler’s Gamma function) which is defined for any complex
number z . One can also characterized the distribution of the waiting times by their Laplace transform

LH(ξ) = E(exp(−ξ∆Tk
)) =

λ

λ+ ξH
.

With Tn = ∆T1 + ... + ∆Tn
the time of the nth jump, the process (NH(t))t≥0 defined by

NH(t) = max {n ≥ 0 : Tn ≤ t} =
∑

k≥1

1Tk≤t (3)

is a renewal process with Mittag-Leffler waiting times. It is called a fractional Poisson process of
parameter H. When necessary, we write ∆Tk

= Tk − Tk−1 with the convention Tk−1 = 0 if k = 0
(hence ∆T1

= T1). Of course when H = 1, the Mittag-Leffler function with parameter 1 is the
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exponential function, and the waiting times become exponential. Thus a fractional Poisson process
of parameter H = 1 is the usual Poisson process. As in the classical case, one remarks that we do
not specify the dependence on λ in the notation of the fractional Poisson process NH. This is done
intentionally for reading convenience because the parameter λ plays a minor role in the properties of
the process.

In [RS00], it is proved that there exists a constant C such that

P (∆Tk
> t) ∼t→+∞ Ct−H .

Consequently the inter-arrivals ∆Tk
have heavy tails and infinite mean for 0 < H < 1. We shall use

in the sequel that the fractional Poisson process is light-tailed, that is E(eξNH(t)) < ∞ for any ξ > 0.
This is a consequence of the existence of the moment generating function, whose expression is given
by

E

(

zNH(t)
)

= EH

(

λtH(z − 1)
)

(4)

for any z > 0 (see [CUW10, Jum01, Las03]). The above result has been proved using fractional
differential equations and fractional calculus. One notices that an alternative approach is feasible using
the representation (see [MNV11]) of the fractional Poisson process as fractal time Poisson process
(

N1(EH(t))
)

t≥0
. This process is defined as the time-changed usual Poisson process (N1(t))t≥0 with

(EH(t))t≥0 is the right continuous inverse of a standard H−stable subordinator (DH(t))t≥0. This means
that EH(t) = inf{r > 0 : DH(r) > t} where E

[

e−sDH(t)
]

= exp(−tsH). In the rest of our work, we will
use the renewal approach. Nevertheless we think that it was worth mentioning the fractal time approach
because it is a powerful tool that will be useful for obtaining new properties on both ruin problems and
Poisson process studies. For example, one may deduce diffusion kind approximation of the risk process
by H−stable processes. This will be the subject of further investigations in future works.

3. Long-range dependence

The aim of this section is to prove that the fractional Poissonian noise (XH
j )j≥1 defined for j ≥ 1 by

XH
j = NH(j) − NH(j − 1) ,

has a long-range dependence property. Long-range dependence is frequently understood in terms of
power-law decay of the correlation function and it is standard in theory of stochastic processes to apply
the notion of long range dependence only to stationary processes. It is also the case for a renewal
processes (Nt)t≥0 for which the notion of long-range dependence is defined as

lim sup
t→∞

Var(Nt)

t
= ∞ (5)

when it is assumed that the process is stationary. It is known that the condition (5) is then equivalent
to the infiniteness of the second moment of the inter-arrivals. This is the case for the inter-arrivals ∆Tk

of the process NH. This remark motivates that the fractional Poisson process is quickly said to have the
long-range dependence property. One refers to [Dal99, DV97, DVJ03] for further informations about
long range dependence for stationary point processes.

The stationarity assumption is not always fulfilled in certain areas of application and this is effectively
the case in our study. So the above comments can not justify the long-range dependence property. Thus
the aim of this section is to select the appropriate notion of long range dependence for non stationary
processes. For that sake, it has been suggested in [HY97] to modify existing second-order definitions
of long range dependence to apply to non stationary processes as well. Here is the definition proposed
in the aforementioned work.
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Definition 1. A second order process (Xm)m≥1 (not necessarily stationary) has the property of long-
range dependence if the block mean process

Y
(m)
t =

∑j=tm
j=tm−m+1 Xj

∑j=tm
j=tm−m+1 Var(Xj)

defined for an integer t ≥ 1 satisfies

lim
m→∞





j=tm
∑

j=tm−m+1

Var(Xj)



 Var
(

Y
(m)
t

)

= +∞ . (6)

Remark. If the process (Xm)m≥1 is centered, then it has the long range dependence property if

lim
m→∞





j=tm
∑

j=tm−m+1

E(X 2
j )



 Var
(

Y
(m)
t

)

= +∞

with

Y
(m)
t =

∑j=tm
j=tm−m+1 Xj

∑j=tm
j=tm−m+1 E(X 2

j )
.

Thus we have the formulation proposed in [HY97].

Remark. In the above definition, if the process (Xm)m≥1 is centered and stationary, then (6) implies
that

lim
m→∞

Var
(

∑m
j=1 Xj

)

m
= ∞. (7)

Thus the variance of the sample mean of m consecutive observations grows more slowly asymptotically
than a sequence of independent identically distributed random variables. We recall that a sufficient
condition for (7) is limm→∞

∑m
j=1 Cov(X0,Xj) = ∞. Consequently, the formulation (6) is in accordance

with the heuristic approaches and the usual definitions of the notion of long range dependence. One
refers to the presentation of [HY97] for further discussion about this topic.

Using the notion of long-range dependence stated in Definition 1, we have the following proposition.

Theorem 1. The fractional Poissonian noise (XH
j )j≥1 has the long-range dependence property for any

H ∈ (0;1).

Before proving this result we will use the following tools. Theorem 1 will be proved as soon as the
convergence (6) will hold. So for a fixed integer t ≥ 1, we denote

∆
(m)
t =

Var
(

∑j=tm
j=tm−m+1 XH

j

)

∑j=tm
j=tm−m+1 Var(XH

j )
.

We remark that

∆
(m)
t =

Var (NH(tm) − NH(tm − m))
∑j=tm

j=tm−m+1 Var
(

NH(j) − NH(j − 1)
)
. (8)

Therefore we need the variances of the increments of the fractional Poisson process. These quantities
do not follow easily from the expression of the moment generating functions. Here we use the fact that
the fractional Poisson process is a renewal process and we use the known result about the factorial
moments of a renewal process. We have the following lemma.
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Lemma 2. Let 0 ≤ s ≤ t, we have

E

[

(

NH(t) − NH(s)
)

×
(

NH(t) − NH(s) − 1
)

]

= 2H

(

λ

Γ (1 + H)

)2 ∫ t

s

(t − r)HrH−1dr . (9)

Proof. We use the renewal function

MH(t) = E(NH(t)) =
λtH

Γ (1 + H)
(10)

and Proposition 1 in [Lag05] (see also [Dal99]).

Now we can prove Theorem 1.

Proof. For a fixed integer t ≥ 1, we investigate the asymptotic behaviour of ∆
(m)
t defined in (8) as m

goes to infinity. By (9) and (10), we have

E
(

(NH(j) − NH(j − 1))2
)

= 2H

(

λ

Γ (1 + H)

)2 ∫ j

j−1

(j − r)HrH−1dr +
λ

Γ (1 + H)

(

jH − (j − 1)H
)

.

Since
∫ j

j−1

(j − r)HrH−1dr ≤

∫ j

j−1

rH−1dr =
1

H

(

jH − (j − 1)H
)

,

we deduce that

j=tm
∑

j=tm−m+1

E
(

(NH(j) − NH(j − 1))2
)

≤
λ

Γ (1 + H)

(

2λ

Γ (1 + H)
+ 1

)

[

tH − (t − 1)H
]

mH

≤ tH λ

Γ (1 + H)

(

2λ

Γ (1 + H)
+ 1

)

mH. (11)

Using similar arguments, one has

j=tm
∑

j=tm−m+1

(E(NH(j) − NH(j − 1)))
2

=

j=tm
∑

j=tm−m+1

(

λ

Γ (1 + H)
H

∫ j

j−1

rH−1dr

)2

≥

(

Hλ

Γ (1 + H)

)2 j=tm
∑

j=tm−m+1

j2H−2

≥

(

Hλ

Γ (1 + H)

)2

m × (tm)2H−2

≥

(

Hλ tH−1

Γ (1 + H)

)2

m2H−1 . (12)

and consequently there exists a constant Ct,λ,H such that the denominator of ∆
(m)
t satisfies

j=tm
∑

j=tm−m+1

Var
(

NH(j) − NH(j − 1)
)

≤ tH λ

Γ (1 + H)

(

2λ

Γ (1 + H)
+ 1

)

× mH ×
(

1 − Ct,λ,H mH−1
)

.

(13)

In the same way, by (9) and (10), we also may write that

Var (NH(tm) − NH(tm − m)) = 2H

(

λ

Γ (1 + H)

)2 ∫ tm

tm−m

(tm − r)HrH−1dr

+
λ

Γ (1 + H)

(

(tm)H − (tm − m)H
)

−

{

λ

Γ (1 + H)

(

(tm)H − (tm − m)H
)

}2

.
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Since
∫ tm

tm−m

(tm − r)HrH−1dr = (tm)2H

∫ 1

1−1/t

(1 − u)HuH−1du ≥ (tm)2HB(1 + H, H)

where B denotes the beta function, defined for a > 0 and b > 0 by

B(a, b) =

∫ 1

0

ua−1(1 − u)b−1du =
Γ (a)Γ (b)

Γ (a + b)
,

where we have used the notation Γ for the gamma function. Thus we obtain

Var (NH(tm) − NH(tm − m)) ≥

(

λ

Γ (1 + H)

)2
[

2Ht2HB(1 + H, H) −
{

tH − (t − 1)H
}2
]

m2H

+
λ

Γ (1 + H)

(

tH − (t − 1)H
)

mH

≥

(

λ

Γ (1 + H)

)2

t2H
[

2HB(1 + H, H) − 1
]

m2H

+
λ

Γ (1 + H)

(

tH − (t − 1)H
)

mH (14)

where we have used the inequality (tH− (t−1)H)2 ≤ t2H. For m sufficently big, we inject (13) and(14)
into (8). This yields

∆
(m)
t ≥

{

tH

λ
Γ (1+H)

2 λ
Γ (1+H) + 1

[

2HB(1 + H, H) − 1
]

mH +
1

2 λ
Γ (1+H) + 1

}

1

1 − Ct,λ,H mH−1

≥

{

tHλ

2λ+ Γ (1 + H)

[

2HB(1 + H, H) − 1
]

mH +
Γ (1 + H)

2λ+ Γ (1 + H)

}

1

1 − Ct,λ,H mH−1
.

We shall employ the following technical inequality

2HB(1 + H, H) − 1 > 0 (15)

which is valid for any H ∈ (0,1). Its proof is postponed in the Appendix A. Thus limm→∞ ∆
(m)
t = +∞

and consequently the long-range dependence property holds true.

4. Probability of ruin with exponential claim sizes

In this section, we restrict ourselves to the case of exponential claims. To be more precise, we consider
the model

Rt = u + ct −

NH(t)
∑

i=1

Xi , t ≥ 0 (16)

where u > 0 and the random variables (Xi )i≥1 are non negative, independent and identically distributed
as E(µ) for µ > 0. It is also assumed that the sequence of claim sizes is independent of the fractional
Poisson process NH. We point out the fact that the ruin problem is non trivial in infinite time for any
c > 0 because we have E(X1 − cT1) = −∞.

4.1. Closed-form representation for the distribution of the ruin time

First of all, we derive an explicit formula for the distribution of the ruin time τ defined by

τ = inf{t > 0 : Rt < 0}.
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This formula is a direct application of the main result stated in the paper of Borovkov and Dickson (see
[BD08]) in which the study of the ruin time distribution for a Sparre Andersen process with exponential
claim sizes is investigated.

Proposition 3. Under the above assumptions on the model described by Equation (16), the distribution
of the ruin time τ has a density pτ given by

pτ (t) = e−µ(u+ct)
∞
∑

n=0

µn(u + ct)n−1

n!

(

u +
ct

n + 1

)

f
∗(n+1)
H (t) , (17)

where f ∗n
H denotes the n−fold convolution of the function fH defined by for t ≥ 0 by

fH(t) = utH−1EH,H(−λtH) (18)

where

Eα,β(z) =

∞
∑

k=0

zk

Γ (αk + β)

is the generalized two-parameter Mittag-Leffler function.

Proof. We apply Theorem 1 in [BD08] with the density fH of the inter-arrival ∆Tn
whose expression is

given in [CUW10].

4.2. Ruin probability in finite time

In this short subsection, we are interested in the expression of the Laplace transform of the probability
ψ(u, t) of ruin with finite time 0 < t <∞ defined by

ψ(u, t) = P

(

Rs < 0 , for some s ≤ t
)

.

The result stated hereafter is again a straightforward application of Theorem 1 in [Mal98] (see also
[WL02]). In this paper, the author uses a duality between classical risk process in which the aggregate
claims up to time t is modelled as a compound Poisson process and dual risk process in which the claim
sizes are exponential and the inter-arrival times have another law. One refers to [MR04] for further
precision about this duality. The Laplace transform of ψ(u, t) is given in the following proposition.

Proposition 4. For any x > 0 it holds that

ξ

∫ ∞

0

e−ξtψ(u, t)dt = 1 − y(ξ) exp
{

− uµ
(

1 − y(ξ)
)

}

, ξ > 0

where y(ξ) is the unique solution of the equation

y(ξ) =
λ

λ+
(

ξ + cµ(1 − y(ξ))
)H

, ξ > 0. (19)

Remark. It is well known that Equation (19) has a unique solution. Indeed, since we have denoted
ξ 7→ LH(ξ) = λ/(λ + ξH) the Laplace transform of the waiting times ∆Tk

, solving Equation (19) is
equivalent to the resolution of

LH(ξ + C − Cs) − s = 0

for a fixed ξ > 0 with C = cµ. Since the left hand side is a convex function with a negative value at
s = 1 and a positive value at s = 0, it follows that there exists a unique root y(ξ).

Of course, for practical purpose, the above proposition requires the numerical inversion of the Laplace
transform. Numerical examples of such inversion will not be discussed here.
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4.3. Ruin probability in infinite time

In this subsection, we are interested in the infinite time ruin probability defined by

ψ(u) = P

(

Rs < 0 , for some s ≥ 0
)

.

Since the fractional Poisson process is a renewal process, we are in the framework of Theorem VI.2.2
in [AA10] because µE [∆T1

] = +∞.

Proposition 5. Under the assumptions of this section, we have

ψ(u) =

(

1 −
γ

µ

)

e−γu ,

where γ > 0 is the unique solution of

γH − µγH−1 +
λ

cH
= 0 . (20)

Remark. Equation (20) can be explicitly solved for some H ∈ (0, 1] (e.g. H = 1/2, 1/3 or 2/3) and
easily worked out numerically in the general case. For H = 1, we retrieve the Poisson case γ = µ−λ/c .

5. Ruin probability in the presence of heavy tailed claim sizes

In this section, we are concerned with distributions of the claim sizes (Xi )i≥1 having a heavy right tail
F̄ (t) = 1 − F (t) with F (t) = P(X1 ≤ t). Again, we consider the model

Rt = u + ct −

NH(t)
∑

i=1

Xi , t ≥ 0 (21)

and it is assumed that the distribution of X1 is sub-exponential. We recall that F is a sub-exponential
distribution if it is concentrated on (0,∞) and if limt→∞ F ∗2(t)/F (t) = 2 where F ∗2 is the convolution
square. Since X1 is now heavy tailed, its mean is not necessarily finite. Our result will state an equivalent
of the probability

ψ(u, t) = P

(

Rs < 0 , for some s ≤ t
)

of ruin at time t, as the initial capital u tends to infinity. This will be a consequence of the behaviour
of the tail of a random sum, when the random number of terms is light tailed and with sub-exponential
heavy tailed independent random variables in the sum. This is stated in the next well-known Lemma
which is exactly the Lemma X.2.2 in [AA10]. We recall it for the sake of conciseness.

Lemma 6. Let (Yi )i≥1 be a sequence of independent and identically distributed random variables with
a common sub-exponential distribution F and let K be an independent integer-valued random variable
satisfying E(zK ) <∞ for some z > 1. Then it holds that

P

(

K
∑

i=1

Yi > x

)

∼ E(K ) F (x) as x → ∞. (22)

Now we can state the following proposition.

Proposition 7. Let (Rt)t≥0 be the risk process given by (21). If the distribution F of the claim sizes
is sub-exponential, then

ψ(u, t) ∼ E(NH(t))F (u) (23)

as u goes to +∞.
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We remark that we also have

ψ(u, t) ∼
λtH F (u)

Γ (1 + H)
as u → ∞, (24)

thanks to the explicit expression on the mean of NH(t) given in (10).

Proof. We start from the inequalities

P





NH(t)
∑

i=1

Xi > u + ct



 ≤ ψ(u, t) ≤ P





NH(t)
∑

i=1

Xi > u



 (25)

and we apply Lemma 22 to P(
∑NH(t)

i=1 Xi > x) with x = u or x = u+ct. By (6) we know that E(zNH(t))
is finite for any z > 1 so by Lemma 22 we deduce that

P





NH(t)
∑

i=1

Xi > x



 ∼
x→∞

E(NH(t))F (x).

Moreover it holds that F (u + t) ∼
u→∞

F (u). Therefore (25) yields (23).

An extension of the previous result can be achieved for a k−dimensional risk processes

Rt = u + ct −

NH(t)
∑

i=1

Xi , t ≥ 0 . (26)

In (26), the process (Rt)t≥0 is defined by Rt = (R1
t , ...,Rk

t ), where the processes R j satisfies

R
j
t = uj + c j t −

NH(t)
∑

i=1

X
j
i , t ≥ 0 , 1 ≤ j ≤ k . (27)

Clearly we have denoted u = (u1, ..., uk) the initial capital vector, c = (c1, ..., ck) the premium intensity
vector and the claim vectors Xi are equal to (X 1

i , ...,X k
i ) for i ≥ 1. The sequence (Xn)n≥1 is a sequence

of independent and identically distributed random vectors with a joint distribution that satisfied

F (x1, ..., xk) = P
(

X 1 ≤ x1, ...,X
k ≤ xk

)

=

k
∏

j=1

P
(

X j ≤ xk

)

:=

k
∏

j=1

Fj(xj)

with obvious notations. Since the number of claims NH(t) in the model (26) is light tailed (remind
that E(zNH(t)) <∞ for any z > 0), one may copy line to line the arguments developed in the proof of
Proposition 9.4 in [AA10] in order to state the following result.

Proposition 8. Assume that the distributions of the claim sizes Fj are sub-exponential for 1 ≤ j ≤ k.
For an initial capital vector u, we denote τmax(u) the first time when all the components of R are
negative:

τmax(u) = inf
{

s > 0 : max
{

R1
s , ...,Rk

s

}

< 0
}

then, for any t > 0, it holds that

P

(

τmax(u) ≤ t
)

∼ E

[

(

NH(t)
)k
]

k
∏

j=1

Fj(uj) (28)

when uj → ∞ for any 1 ≤ j ≤ k.
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6. Ruin probability with light-tailed claim sizes

Now, in the model (16), we assume that the common distribution of Xi is light-tailed (hence E(eξX1) <
∞ for any ξ > 0). Since the fractional Poisson process has a light-tailed distribution, we are interested
in the tails of random sums of a light-tailed number of light-tailed terms. Using large deviations for
fractional process, asymptotic results for ruin probabilities of an insurance model with a fractional
Poisson claim number process have been studied in [BM13]. Their result apply in our situation.

The aim of this section is to provide non asymptotic results in the same spirit of the celebrated
Lundberg’s inequality. We denote by (SH(t))t≥0 the compound fractional Poisson process which is
naturally defined as

SH(t) =

NH(t)
∑

i=1

Xi . (29)

The independence of the process NH and the sequence (Xi )i≥1 allows us to calculate the moment
generating function of SH . Indeed, it is proved in [Las03] that for any ξ > 0

E

[

eξSH(t)
]

= EH

(

λtH(g(ξ) − 1)
)

, (30)

where the function g is the Laplace transform of the random variables Xi defined by g(ξ) = E(eξX1)
for any ξ > 0. We have the following bound on the ruin probability in finite time.

Proposition 9. Let (Rt)t≥0 be the risk process given by (21). Then for any t > 0, there exists
ξ0(t, H,λ) such that for any u ≥ 0 we have

ψ(u, t) ≤ 1.3 e−ξ0(t,H,λ)u (31)

Remark. The constant ξ0(t, H,λ) is explicitly given by (33). Of course (31) is meaningless unless

u ≥ u0 := ln(1.3)/ξ0(t, H,λ) ≥ 1/(4ξ0(t, H,λ)).

Proof. By (25), we only have to estimate P(
∑NH(t)

i=1 Xi > u). Using the Chebyshev exponential inequal-
ity and (30), we deduce that for any ξ > 0,

P





NH(t)
∑

i=1

Xi > u



 = P
(

exp(ξSH(t) > eξu
)

≤ e−ξuEH

(

λtH(g(ξ) − 1)
)

. (32)

Now we prove an upper bound for the Mittag-Leffler function. We recall that

EH(x) =

∞
∑

k=0

xk

Γ (1 + Hk)
.

The minimum value of x 7→ Γ (x) is achieved for positive values in a point denoted by x0 (which
is approximatively equal to 1.462). We have Γ (x0) ≃ 0.8856. Thus, if g is the function defined for
H ∈ (0,1) by g(H) = Γ (1 + Hk), we have g ′(H) = kΓ ′(1 + Hk). Hence g has a minimum in
H0 = (x0 − 1)/k. Thus

g(H) ≥ g

(

x0 − 1

k

)

≥ Γ

(

1 +
x0 − 1

k
× k

)

= Γ (x0)

and we obtain that for any x ≥ 0,

EH(x) ≤
1

Γ (x0)

∞
∑

k=0

xk =
1

Γ (x0)(1 − x)
.
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So we define ξ0(t, H,λ) as the unique positive real such that

g(ξ0) = 1 +
2Γ (x0) − 1

λtHΓ (x0)
. (33)

We deduce from (32) that

P





NH(t)
∑

i=1

Xi > u



 ≤
e−ξ0(t,H,λ)u

Γ (x0)
(

1 − λtH(g(ξ0(t, H,λ)) − 1)
) ≤

e−ξ0(t,H,λ)u

2Γ (x0) − 1
≤ 1.3 × e−ξ0(t,H,λ)u

and (31) is proved.

Remark. We notice that the estimation (32) is more accurate. For example, one may use it by plotting
the function ξ 7→ e−ξuEH(λtH(g(ξ) − 1)) for small values of ξ and check numerically the eventual
minimum. Such procedure is feasible since the Mittag-Leffler function is now implemented on scientific
software.

Appendix A: Proof of Inequality (15)

We denote f the function defined by x 7→ ln
(

2xB(1 + x , x)
)

for x ∈ (0,1). We follow some technical
trick used in [Sau12]. The inequality (15) will be a consequence of the positivity of f on the interval
(0,1). Since xΓ (x) = Γ (x + 1), we have

2xB(1 + x , x) =
2xΓ (x)Γ (x + 1)

Γ (2x + 1)
=

2Γ (x + 1)2

Γ (2x + 1)
,

and consequently

f (x) = ln(2) + 2 ln Γ (x + 1) − ln Γ (2x + 1) .

We denote Ψ the function (ln Γ )′ = Γ ′/Γ (usually called the digamma function). We obtain that

f ′(x) = 2
(

Ψ(x + 1) − Ψ(2x + 1)
)

.

Since Ψ ′(x) =
∑∞

k=0
1

(x+k)2 (see [AAR99, page 13]), we deduce that

f ′′(x) = 2
(

Ψ ′(x + 1) − 2Ψ ′(2x + 1)
)

= 2

∞
∑

k=0

1

(x + 1 + k)2
−

1

2(x + (k + 1)/2)2

=

∞
∑

k=0

1

(x + 1 + k)2
+

∞
∑

k=0

1

(x + 1 + k)2
−

1

(x + (k + 1)/2)2

=

∞
∑

k=0

1

(x + 1 + k)2
+

∞
∑

j=0

−
1

(x + (2j + 1)/2)2

=

∞
∑

k=0

1

(x + 1 + k)2
+

∞
∑

k=0

−
1

(x + k + 1/2)2

= Ψ ′(x + 1) − Ψ ′(x + 1/2) .

Moreover, Ψ ′ is a decreasing function because Ψ ′′(x) = −2
∑∞

k=0(x + k)−3. It follows that f ′′ ≤ 0 on
(0,1). As a decreasing function, f ′ satisfies f ′(x) ≤ f ′(0) = 0 and consequently f is itself a decreasing
function. Finally, we deduce that

f (x) ≥ f (1) = ln

(

2Γ (2)2

Γ (3)

)

= 0 ,

and the proof is complete.
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