itself. By the Euler theorem such a transformation can be expressed in terms of the angle of rotation / about the axis of rotation de scribed by the eigenvector e corresponding to the real eigenvalue +1 of Q such that Qe þe; cos / 1 2 ðtrQ 1Þ; sin /e 1 2 axðQ

Q T Þ; ð2Þ 
where tr A is the trace of the second order tensor A, and ax W is the axial vector w of the skew second order tensor W such that W w  I I  w.

In terms of e and / the microrotation tensor Q can be expressed by the [START_REF] Gibbs | Vector Analysis[END_REF] formula, see for example [START_REF] Beatty | Vector analysis of finite rigid rotations[END_REF], [START_REF] Guo | Representations of orthogonal tensors[END_REF] and [START_REF] Pietraszkiewicz | Finite rotations in the description of continuum deformation[END_REF],

Q cos /I þ ð1 cos /Þe e þ sin /e  I: ð3Þ 
In the vectorial parameterization of Q one introduces a scalar func tion pð/Þ generating three components of the finite rotation vector p defined as, see for example [START_REF] Bauchau | The vectorial parameterization of rotation[END_REF],

p pð/Þe: ð4Þ 
The generating function pð/Þ in (4) has to be an odd function of / with the limit behaviour lim /!0 pð/Þ / j, where j is a positive real normalization factor (usually 1 or 1 2 ), and pð0Þ 0. In terms of (4) the tensor Q and its transpose can be represented as

Q cos /I þ 1 cos / p 2 p p þ sin / p p  I; Q T cos /I þ 1 cos / p 2 p p sin / p p  I: ð5Þ 
The finite rotation vector (4) is the generalized vector. The compo sition of two successive rotations Q 3 Q 2 Q 1 , when expressed in terms of the corresponding vectors p 1 ; p 2 ; p 3 with angles of rotation

/ 1 ; / 2 ; / 3 , reads cos / 3 2 cos / 1 2 cos / 2 2 sin / 1 2 sin / 2 2 p 1 p 2 p 1 Á p 2 ; sin / 3 2 p 3 p 3 sin / 1 2 sin / 2 2 p 1 p 2 p 2 cos / 2 2 p 1 þ p 1 cos / 1 2 p 2 p 1 Â p 2 ! : ð6Þ 
Eq. ( 6) 1 is used to compute / 3 , which also gives sin / 3 2 and p 3 pð/ 3 Þ. Then (6) 2 allows one to establish the vector

p 3 . Since Q T Q ; a ðQ T Q ; a Þ T is skew it can be expressed through the axial vector c a , Q T Q ; a c a  I; c a 1 2 : ðQ T Q ; a Þ /; a e þ ½sin /I ð1 cos /Þe  Ie; a : ð7Þ 
The vector c a describes the change of the reference microstructure curvature of the Cosserat continuum along the arc length coordi nate line s a . It is analogous to the vector k j of change of curvature of the curvilinear coordinate line h j in classical continuum mechan ics defined as R T R; j k j  I by [START_REF] Pietraszkiewicz | Finite rotations in the description of continuum deformation[END_REF], where R was the rotation tensor following from the polar decompo sition F RU VR. But in the Cosserat continuum Q is the inde pendent field not related to u and therefore Q -R, in general. Differentiating the vector p in (4) along the coordinate line s a we obtain the transformation relations 

where the generating functions are h 2 tan / 2 , /;sin /, and q tan / 2 , respectively. Within the non linear Cosserat continuum the Cayley Gibbs vector h was used for example by [START_REF] Shkutin | Nonlinear models of deformable momental continua[END_REF], [START_REF] Badur | On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained microrotations[END_REF], [START_REF] Zubov | Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies[END_REF] and [START_REF] Nikitin | Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress[END_REF], while the linear vector / (called also the exponential map) by [START_REF] Kafadar | Micropolar media -I. The classical theory[END_REF], [START_REF] Nistor | Variational principles for Cosserat bodies[END_REF] and [START_REF] Ramezani | Energy pairs in the micropolar continuum[END_REF]. The vector h was used in the non linear the ory of plates, see for example [START_REF] Hodges | A geometrically nonlinear theory of elastic plates[END_REF], and in the non lin ear theory of composite beams by [START_REF] Hodges | Nonlinear Composite Beam Theory[END_REF], where the extensive review of the literature was given. In the non linear theory of Cosserat type shells and the classical continuum mechanics the vectorwas found to be convenient in papers by [START_REF] Pietraszkiewicz | Finite Rotations and Lagrangian Description in the Nonlinear Theory of Shells[END_REF] and [START_REF] Pietraszkiewicz | Finite rotations in the description of continuum deformation[END_REF], while the Rodrigues rotation vector q was willingly used in analytical mechanics of rigid body motion, see for example [START_REF] Pars | A Treatise on Analytical Dynamics[END_REF].

Less popular in the literature till now is the Euler Rodrigues vector r, the Wiener Milenkovic vector l, and the Bauchau 14) and ( 15) into ( 12) and ( 13) and using appropri ate trigonometric identities, after complex but elementary trans formations we obtain the formulae for E and C expressed in terms of the corresponding finite rotation vectors. These formulae are given in Tables 1 and2.

With all the vectorial parameterizations the singularities occur for some values of / following from singularities of the generating functions pð/Þ, when p ! 1, from singularities of the inverse rela tions p pðQ Þ, as well as from singularities of A and A 1 , see [START_REF] Bauchau | The vectorial parameterization of rotation[END_REF]. Hence, we also indicate in Tables 1 and 2 the ranges of validity of / for the analysis to be singular free while using these strain measures in problems of the non linear Cosserat continuum. When in applications there appear arbitrary values of the rotation angle /, one needs at least five independent scalar parameters to parameterize the rotation group SO(3) in the globally one to one and singular free manner, see for example [START_REF] Hopf | Systeme symmetrischer Bilinearformen und euklidische Modelle projektiven Räume[END_REF], [START_REF] Stuelpnagel | On the parametrization of the three-dimensional rotation group[END_REF] and [START_REF] Perelyaev | On the global parameterizations of a group of 3D rotations (in Russian)[END_REF]. For the finite rotation vectors l and b, [START_REF] Bauchau | The vectorial parameterization of rotation[END_REF] described procedures how to handle arbitrary rotations by combin ing appropriate update and rescaling operations.

With the vectors h, q, l, or b the formulae for E, C in Tables 1 and2 do not contain any trigonometric expressions of /. This might sug gest some convenience in further purely algebraic transformations.

With the vectors /, l, or b the formulae for E, C have broader range of singular free behaviour. When j/j < p the values of lð/Þ and bð/Þ are not much different from /, that is lð/Þ % / % bð/Þ. In the limit the sin type generating functions -; r; b converge to / from below, while the tan type ones h, q, l, from above.

When the values of u and / as well as their spatial gradients are infinitesimal kuk ( 1; kGrad uk ( 1; j/j ( 1; kGrad /k ( 1; we also have sin / % /, cos / % 1, and pð/Þ % j/. Then from (3), ( 15) and ( 14) it follows that

p % j#; Q % I þ # Â I;
where # /e is now the infinitesimal rotation vector. Then from ( 12) and ( 13) we obtain

E % e Grad u # Â I; C % c Grad #: ð16Þ 
The infinitesimal strain measures e, c or their transpose were used in many papers and books on the linear theory of the Cosserat con tinuum. Let us mention here the books by [START_REF] Kröner | Mechanics of Generalized Continua[END_REF], [START_REF] Nowacki | Theory of Asymmetric Elasticity[END_REF], [START_REF] Eringen | Microcontinuum Field Theory. I. Foundations and Solids[END_REF] and [START_REF] Dyszlewicz | Micropolar Theory of Elasticity[END_REF], where many refer ences to other papers can be found.

Conclusions

Within the non linear Cosserat continuum, introduction of the finite rotation vector gives the possibility to formulate the bound ary value problem in terms of displacement and finite rotation vectors as the primary unknown variables. In this note the natural Lagrangian stretch and wryness tensors derived by [START_REF] Pietraszkiewicz | On natural strain measures of the nonlinear micropolar continuum[END_REF] have been expressed in terms of the general 

1 1 þ h 2 4 1 À h 2 4 ! I þ 1 2 h h À h  I " # ðI þ Grad uÞ À I / /e ðÀ2p; 2pÞ cos /I þ 1 À cos / / 2 / / À sin / / /  I ðI þ Grad uÞ À I -sin /e ðÀp; pÞ cos /I þ 1 À cos / -2 --À - I ðI þ Grad uÞ À I q tan / 2 e ðÀp; pÞ 1 1 þ q 2 ½ð1 À q 2 ÞI þ 2q q À 2q  IðI þ Grad uÞ À I r 2 sin / 2 e ðÀp; pÞ 1 À 1 2 r 2 I þ 1 2 r r À cos / 2 r  I ðI þ Grad uÞ À I l 4 tan / 4 e ðÀ2p; 2pÞ 1 1 þ l 2 16 2 1 À l 2 16 3 8 À l 2 16 I þ 1 2 l l À ð1 À l 2 16 Þl I ðI þ Grad uÞ À I b 4 sin / 4 e ðÀ2p; 2pÞ 1 À b 2 2 1 À b 2 16 ! " # I þ 1 2 1 À b 2 8 ! b b À 1 À b 2 16 s 1 À b 2 8 ! b  I 8 < : 9 = ; ðI þ Grad uÞ À I Table 2
The natural Lagrangian wryness tensor for different finite rotation vectors.

p / 2 C h 2 tan / 2 e ðÀp; pÞ 1 1 þ h 2 4 I À 1 2 h  I Grad h / /e ðÀ2p; 2pÞ sin / / I þ / À sin / / 3 / / À 1 À cos / / 2 /  I Grad / -sin /e ðÀp; pÞ I þ 1 -2 1 cos / À 1 --À 1 À cos / -2 - I Grad -
q tan / 2 e ðÀp; pÞ 2 1 þ q 2 ðI À q  IÞGrad q r 2 sin / 2 e ðÀp; pÞ finite rotation vector. These expressions have then been special ized for seven different definitions of the rotation vectors known in the literature. Each of the particular forms of the strain measures has some advantages and drawbacks, and each of them may be more convenient than others in specific applications.

  Substituting (5) 2 and (11) into (1), the natural Lagrangian stretch E and wryness C tensors can now be represented in terms of the finite rotation vector p by the general relations

							sin / p	I þ	1 p 2	1 p 0	sin / p	p p	1 cos / p 2	p  I:
											ð11Þ
	E	cos /I þ	1 cos / p 2	p p	sin / p	p  I	ðI þ Grad uÞ I; ð12Þ
	C	sin / p	I þ	1 p 2	1 p 0	sin / p	p p	1 cos / p 2	p  I	Grad p: ð13Þ
	3. Particular finite rotation vectors
		Among definitions of p used most often in the literature let us
	mention the finite rotation vectors defined as
	h 2 tan	/ 2	e; / /e; -sin /e; q tan	/ 2	e;

/; a 1 p 0 p; a ; e; a 1 p 2 p; a p þ 1 p p; a ; p 0 dp d/ ; ð8Þ which introduced into (7) lead to c a 1 p 1 p 0 sin / p p; a p þ sin / p p; a 1 cos / p 2 p  p; a : ð9Þ Taking into account that p p; a pp; a , we have the identities p 1 pp; a ðp pÞp; a ; p; a Ip; a ; p  p; a ðp  IÞp; a ; ð10Þ and the relation (9) can be given in the equivalent form c a Ap; a ; A

Table 1

 1 The natural Lagrangian stretch tensor for different finite rotation vectors.

	p	/ 2	E
	h 2 tan / 2 e	ðÀp; pÞ