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ABSTRACT

Many methods relying on the morphological notion of
shapes, (i.e., connected components of level sets) have been
proved to be very useful for pattern analysis and recogni-
tion. Selecting meaningful level lines (boundaries of level
sets) yields to simplify images while preserving salient struc-
tures. Many image simplification and/or segmentation meth-
ods are driven by the optimization of an energy functional,
for instance the Mumford-Shah functional. In this article, we
propose an efficient shape-based morphological filtering that
very quickly compute to a locally (subordinated to the tree of
shapes) optimal solution of the piecewise-constant Mumford-
Shah functional. Experimental results demonstrate the effi-
ciency, usefulness, and robustness of our method, when ap-
plied to image simplification, pre-segmentation, and detection
of affine regions with viewpoint changes.

Index Terms— Level lines, Tree of shapes, Energy mini-
mization, Pre-segmentation, Morphological shaping.

1. INTRODUCTION

In natural images, meaningful contours are usually smooth
and well-contrasted. Recently, many authors claim that sig-
nificant contours of objects in images coincide with segments
of the image level lines [1]. Each connected level line is the
contour of a level set, or shape, a connected set of pixels with-
out holes. The inclusion relationship of level sets allows for
representing an image by a tree, called a tree of shapes [2],
which is invariant to contrast changes. Image simplification
or segmentation can then be defined by selecting meaningful
level lines in that tree. That subject has been investigated in
the past ten years by [3, 4, 5, 6]. In [7] Lu et al. propose also
a tree simplification method for image simplification purpose
using the binary partition tree [8] and a knee function.

Following the seminal work of Mumford and Shah [9],
finding relevant contours is often tackled thanks to an energy-
based approach, as a compromise between some image-
driven force (image contrast along contours, data fidelity, etc.)
and the regularity of contours. Minimizing the Mumford-
Shah functional tends to find a simplified or segmented image
into regions. Curve evolution methods [10, 11] are usually

used to solve such an energy minimization problem. They
have solid theoretical foundations, yet they are often compu-
tational expensive.

In this paper we propose to formalize the piecewise-
constant Mumford-shah functional on an image, subordi-
nated to the tree of shapes of this image. The selection of the
salient level lines corresponds to a meaningful locally optimal
solution of the energy minimization problem. The main con-
tribution is the proposition of an efficient greedy algorithm
which takes into account the meaningfulness of the set of
level lines. Simply put, a level line is easier to remove when
it has a low degree of meaningfulness and when it favors a
great decreasing of energy. Our algorithm drives very fast to
a relevant local optimum in the sense that no more level lines
can be removed while deceasing energy. The reason why we
claim that we reach a relevant optimum is that meaningful
level lines are hard to be removed during the proposed pro-
cess. Note that our method actually belongs to the class of
morphological shapings described in [12].

In [13], the authors proposed an efficient greedy algorithm
to minimize the Mumford-Shah functional on a certain hierar-
chy, which leads to a global optimal segmentation spanned by
that hierarchy. In [14], the authors gave a detailed review of
the tree (including the tree of shapes) filtering strategies. The
works in [15] and [16] are the closest ones to what we pro-
pose here. They both select meaningful level lines for image
simplification and segmentation purpose using the piecewise-
constant Mumford-Shah functional. In [15] the whole im-
age domain is initially considered as a single region; level
lines of the tree of shapes are browsed from root to leaves
and are successively removed until the functional cannot de-
crease anymore. However, this top-down decision is based
upon a non-significant energy variation since it is computed
from the very few pixels lying between a shape and their im-
mediate sub-shapes. Actually, our work is more similar to the
one described in [16], where at each removal step, the level
line which decreases the most the functional is selected. As
a consequence, the iterative process of [16] requires not only
to compute a lot of information to be able to update the func-
tional value after each level line suppression, but also to find
at each step, among all remaining level lines, the one can-
didate to the next removal. Hence [16] is computationally



expensive.
The rest of this paper is organized as follows. Some back-

ground information about the Mumford-Shah functional and
the tree of shapes is provided in Section 2. Our proposed
method is detailed in Section 3. In Section 4, we present
some experimental results. We then conclude and give some
perspectives in Section 5.

2. BACKGROUND

2.1. The Mumford-Shah Functional

According to the Mumford-Shah model [9], an image f :
Ω → R or Z is modeled as a piecewise-smooth function. A
segmentation of f is defined as a pair (R, f̃), where R =
R1 t · · · t Rn, each region Ri is a connected component in
the image domain and ∀i 6= j, Ri ∩ Rj = ∅, f̃ is a regular
function within each Ri. Let ∂R be the union of boundaries
of the set of regions {Ri}, then R t ∂R is the whole image
domain Ω. The segmentation is given by the minimization of
the Mumford-Shah functional E(f, ∂R) defined by:

E(f, ∂R) =

∫∫
R

(f̃−f)2dxdy + µ

∫∫
R

||∇f̃ || dxdy + ν |∂R|,
(1)

where |∂R| represents the total length of the boundaries ∂R,
and µ and ν are two positive parameters.

A special case of Eq. (1) is obtained by restricting the
segmented image f̃ to piecewise-constant functions, i.e.,
f̃ = f̃i = 1

|Ri|
∫∫

f dxdy inside each region Ri, where
|Ri| denotes the area of the region Ri. Then, the simplified
Mumford-Shah functional is given by:

E(f, ∂R) =

∫∫
R

(f̃i − f)2 dxdy + ν |∂R|. (2)

Since it is usually difficult to minimize the energy functional
of Eq. (1), the simplified Mumford-Shah functional given by
Eq. (2) is used instead.

2.2. The Tree of Shapes

For any λ ∈ R or Z, the upper level sets Xλ and lower level
sets X λ of an image f are respectively defined by Xλ(f) =
{p ∈ Ω | f(p) ≥ λ} and X λ(f) = {p ∈ Ω | f(p) ≤
λ}. Both upper and lower level sets have a natural inclusion
structure: ∀λ1 ≤ λ2, Xλ1

⊇ Xλ2
and X λ1 ⊆ X λ2 , which

leads to two distinct and dual representations of an image, the
max-tree and the min-tree [17].

Another tree has been introduced in [2]. A shape is de-
fined as a connected component of an upper or lower level
set where its holes have been filled in. Thanks to the inclu-
sion relationship of both kinds of level sets, the set of shapes
gives a unique tree, called tree of shapes. This tree features
an interesting property: it is invariant to contrast changes. To
put it differently, it is a self-dual, non-redundant, and com-
plete representation of an image. Furthermore, such a tree in-
herently embeds a morphological scale-space (the parent of a
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Fig. 1. An image (left) and its tree of shapes (right).

node/shape is a larger shape). An example on a simple image
is depicted in Fig. 1.

3. PROPOSED METHOD

3.1. About Energy Minimization

The basic idea in our proposed method is to minimize the
simplified Mumford-Shah functional in Eq. (2) subordinated
to the tree of shapes. The segmentation is restricted to the
regions whose boundaries are level lines. Although this is not
the general context for a segmentation, since the meaningful
boundaries of objects may not coincide with full level lines,
but segments of them [1]. However, the main edges of the
image are included in them, and the level lines are contrast
invariant and robust. So still this is very useful as an image
simplification or pre-segmentation tool.

More specifically, for a given tree of shapes T composed
of a set of shapes {τi}, any two successive shapes of T are
related by an edge reflecting the inclusion relationship, also
known as the parenthood between nodes of the tree. Let
∂T = {∂τ | τ ∈ T } be the union of boundaries of all the
shapes of T . The minimization of the energy functional of
Eq. (2) restricted to T is given by:

min
T ′

E(f, ∂T ′), (3)

where T ′ is a simplified version of T by removing some
shapes from T and by updating the parenthood relationship
between the shapes of T ′.

The basic operation of the energy minimization problem
of Eq. (3) is the merging of the element “regions” formed by
the level lines ∂T . For each given shape τ , the induced ele-
ment “region” Rτ is defined as Rτ = {p | p ∈ τ, p /∈ C(τ)},
where C(τ) denotes all the children of the shape τ . Note
that Rτ is not always a spatial connected component due to
the fact that two successive level lines may have some part in
common, this may cause a spatial separation of those pixels
within Rτ . An element “region” Rτ is merged with the el-
ement “region” Rτp induced by its parent τp. This merging
process can also be seen as a level line suppression, which
will cause the update of the “region” R′

τp = Rτp ∪ Rτ . The
parenthood relationship for its children τc1, . . . , τck should
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Fig. 2. Suppressing the node τ makes the “region” Rτ (cov-
ered with red oblique lines) merge with Rτp ; the result (de-
picted in the right image) is a simplified image.

also be updated to τp. Fig. 2 shows an example of a such
merging operation.

Observe that the minimization problem of Eq. (3) is a
combinatorial optimization. The computation of the optimum
has an exponential complexity. Hence we propose to use the
greedy algorithm to compute a local optimum. The remov-
ability of a level line ∂τ is decided by the sign of the sim-
plified functional of Eq. (2) variation ∆Eτ while τ is sup-
pressed. Let S(f,R) be the sum of value of all the pixels
inside region R. Then the functional variation ∆Eτ is given
by

∆Eτ =
S2(f,Rτ )

|Rτ |
+
S2(f,Rτp)

|Rτp |
−
S2(f,R′

τp)

|R′
τp |

−ν|∂τ |. (4)

If ∆Eτ is negative, which means the suppression of τ de-
creases the functional, then remove τ . According to Eq. (4),
the removability of a shape τ depends only on Rτ and Rτp .
As a shape τ suppression triggers the update of Rτp , the re-
moval of τ impacts also the removability of its relatives, i.e.,
its parent, its children and siblings. So the order of level line
removal is critical.

The work in [16] bears a heavy computational update of
∆E for the nodes that are relatives of the suppressed level
line. In addition, after each update, it also requires to find
the new level line with the highest negative functional varia-
tion ∆E. We propose to fix that issue thanks to a reasonable
ordering of level lines based on their meaningfulness. Our
proposed algorithm is described in the following Section.

3.2. Proposed Algorithm

Initialization: The output tree, T ′, will be incrementally sim-
plified. First, it is set to T ′ = T .
Step 1: Sort the set of shapes {τ | τ ∈ T } in the increasing
order O of shape meaningfulness.
Step 2: Propagate the shapes in the order O, for each shape
τ ∈ T ′, compute ∆Eτ . If it is negative, remove τ from
T ′, update R′

τp and update the parenthood relationship for
its children on T ′.

Step 2 may need to be iterated until no shape can be re-
moved. In practice, 2 or 3 propagations are enough, and most
of the level lines are removed in the first propagation. In
consequence, the complexity of the minimization problem of

(a) Input image. (b) Ballester, ν = 1k. (c) Our, ν = 1k.

Fig. 3. Comparison of our approach with the one of Ballester
et al.. (a): E = 1.2433e + 08; (b): E = 1.28113e + 07,
PSNR = 27.3; (c): E = 1.15285e+ 07, PSNR = 28.7.

Eq. (3) is linear w.r.t. the number of shapes of T . The image
reconstructed from the last tree T ′ is a locally optimal solu-
tion of Eq. (3) in the sense that any more level line removal
will increase the simplified Mumford-Shah functional.

Instead of fixing the parameter ν in Eq. (4), a variant of the
algorithm is to compute a νmin(τ) for each level line ∂τ when
∆Eτ = 0. Then, for any ν > νmin(τ), the level line ∂τ will
be removed by solving the minimization problem of Eq. (3).
Consequently, by using this νmin as an attribute function char-
acterizing each shape τ , the proposed method can be seen as
one of the many variant of morphological shapings [12].

4. EXPERIMENTAL RESULTS

For all experiments, the used shape meaningfulness is the av-
erage of gradient’s magnitude along the level line. We have
experienced with some other measurements, including a ran-
dom order between the shapes. All the experiments show the
usefulness of the sorting step using such a meaningfulness.

In Fig. 3, we compare our proposed method with the one
of Ballester et al. on a classic image “house” (256×256) hav-
ing originally 23578 level lines. Qualitatively, the image (b)
and (c) obtained by the two methods using the same parameter
ν = 1000 are very close. The result (Fig. 3 (b)) given by the
method of Ballester retains 30 level lines, and 27 level lines
are selected by our approach. In spite of their strong simpli-
fications, the salient structures are preserved in the simplified
images. The distinct final functional minimized by the two
approaches confirms that they fall into different local mini-
mum. The CPU time for the Ballester method that we im-
plemented and our approach are respectively 4s and 0.2s on a
regular PC station.

Fig. 4 shows a quantitative evolution of our method w.r.t.
increasing noise. The image “house” is corrupted with an
additive Gaussian noise of variance δ2 = 5, 10, 15, 20, 25.
All the results are obtained using the same parameter ν =
400. Qualitatively, the simplification results from (a) to (f)
are very close. They indeed select almost the same amount
of level lines (around 32), and most of them coincide with
the same salient structures in the image. Furthermore, the
similar PSNR of each result also confirms the robustness of
the proposed method w.r.t. noise.



(a) PSNR = 29.1. (b)PSNR = 28.8. (c) PSNR = 28.2.

(d) PSNR = 27.5. (e) PSNR = 26.7. (f) PSNR = 26.3.

Fig. 4. Qualitative behavior of our method w.r.t. increasing
noise. (a): Result applied to original image; (b-f): Results
applied to images with additive Gaussian noise of variance
going from 5 (b) to 25 (f) with a step of 5.
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Fig. 5. Repeatability score (left) and number of correspon-
dences (right) for the “Graffiti” sequence with increasing
viewpoint angles (x-axis); Our method outperforms IBR and
MSER.

We also test the robustness of our proposed method w.r.t.
the viewpoint changes, which is the most difficult type of
transformation to cope with for affine region detectors [18].
In this experiment, all the connected components of the up-
per and lower level sets of the simplified image obtained with
our method, are detected as affine regions. Fig. 5 shows the
quantitative evolution of those regions applied to the “Graf-
fiti” sequence available at [19]. In general, a high repeatabil-
ity and a large number of correspondences are desired. Al-
though the proposed method of salient level lines selection is
not dedicated to general affine regions detection, yet the result
in Fig. 5 (red) compared to two approaches (maximally sta-
ble extremal region (MSER) [20] and intensity extrema-based
region detector (IBR) [21]) bearing some similarity, reflects
that the proposed salient level lines selection method is quite
robust w.r.t. viewpoint changes. In fact, the better result is ob-
tained thanks to the high detection accuracy on those regions
given by the perfectly preserved salient level lines.

In Fig. 6, we test our proposed method to color images
from the Berkeley Segmentation Dataset [22]. The strategy is
to apply individually the proposed method to the red, green,

Fig. 6. Some pre-segmentation results obtained with our pro-
posed method on the Berkeley Segmentation Dataset [22].

and blue channels. In order to obtain a pre-segmentation, a
high parameter value ν = 2500 is used, and a grain filter [2]
is applied to get rid of too tiny shapes. Less than 50 level lines
are selected for each channel of each image, which results
in a ratio of level lines selection around 2300. The regions
formed by the union of those selected salient level lines from
the 3 channels are considered as the pre-segmented regions.
The images shown in Fig. 6 are obtained by taking the aver-
age color inside each region, where the boundaries between
salient regions remain intact. Finding an actual segmentation
becomes a lot easier when such a pre-segmentation is avail-
able.

5. CONCLUSION AND PERSPECTIVES

In this paper, we presented an efficient morphological shaping
to salient level lines selection, based on the minimization of
the piecewise-constant Mumford-Shah functional. Our major
contribution is to rely on a meaningful ordering of level lines
in order to minimize this energy functional on the tree of
shapes. As a consequence, the proposed greedy algorithm
converges to a relevant local optimum very quickly compared
with the similar work of Ballester et al.. We have shown that
the proposed method allows for strongly simplifying images
while preserving their salient structures. We have seen that
a strong property of our proposal is its robustness to noise
and to viewpoint changes. Furthermore simplification results
can be used as pre-segmentations that are suitable for object
recognition, scene analysis, or practical shape matching [23].
The authors are currently investigating some applications of
the proposed simplification method. In addition, a major
perspective of this work is to rely on shape-based morphol-
ogy [12] to make this method hierarchical.
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[4] F. Cao, P. Musé, and F. Sur, “Extracting meaningful
curves from images,” JMIV, vol. 22, pp. 159–181, 2005.

[5] J. Cardelino, G. Randall, M. Bertalmio, and V. Caselles,
“Region based segmentation using the tree of shapes,”
in Proc. of ICIP, 2006, pp. 2421–2424.
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