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The dynamic of many epidemiological models for infectious diseases that spread in the sexually active population present a crucial period: the period of the influx or recruitment of susceptible. In this paper we assume that the recruitment of susceptible is done among the juvenile group. We propose a dynamical system to modelize the disease spread and we study the dynamical behavior of this system. Then, the controllability of the system is studied. We prove that the survival rate allows to control the dynamic of the system. Numerical simulations are given to illustrate the results.

INTRODUCTION

In recent years several authors have described interesting dynamical behavior of SIR epidemiological models in which the population can be portioned into two age structured classes: immature individuals and mature ones (see for example [START_REF] Derrick | Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population, Discrete and continuous dynamic systems-series[END_REF]). The HIV disease belongs to the class of diseases which spread essentially among sexually active individuals. Thus, it is meaningful to consider stage structure in epidemiological models. The population is initially divided into two compartments: those, who are mature individuals or adults and those who are in youthful age or immature individuals. All population groups are subject to the risk of dying from AIDS. We denote by:

• J(t) the density of the immature individuals;

• M(t) the density of the mature individuals;

• r 1 the survival rate of the immature individuals;

• r 2 the survival rate of the mature individuals;

• B(t) the birth density in the population;

• m the rate of immature individuals becoming mature individuals.

Then the discrete single population model with stage structure reads:

   J(t + 1) = B(t) + r 1 J(t) -r 1 mJ(t), M(t + 1) = r 1 mJ(t) + r 2 M(t) N(t) = J(t) + M(t).
(1.1)

For describing the disease transmission, a traditional SIR model is introduced. Each member of the population is considered to belong to one of the three classes: Susceptible individuals (denoted by S), Infected individuals (denoted by I) and Removed individuals (denoted by R). Each individual begins in the class S, only to move to the class I after coming into contact with an infected person. Infected individuals eventually recover from the disease due to a medical treatment and then move to the class R and are unable to be infected one again. The disease is fueled by supply of new susceptibles issued from the compartment J. The size of the population is denoted by N(t) and can be expressed as the following sum

(1.2) N(t) = S(t) + I(t) + R(t) + J(t).
The SIR model reads:

               dS dt = r 1 m(1 -τ)J(t) -F i (I,t)S + r 2 S dI dt = F i (I,t)S -r 3 (σ + α)I dR dt = r 3 σI -µR (1.3) 
where:

• F i (I,t) is the incidence function which may vary periodically. It is usual to take F i (I,t) = Ω(t)I in which Ω(t) is the transmission rate; it is either constant, or a periodic modulation about a constant value, for example Ω(t) = Ω 0 (1+Ω 1 sin(ωt)); • r 3 is the survival rate of the infected mature individuals and recovered with the probability σ; • α is the rate of death due to the disease; • τ is the rate of transmission from mother to child; • µ is the rate of death due to other causes.

The aim of this work is to provide simple conditions for the parameters of the SIR model (1.3) that makes possible to control the infected individuals. By using the notion of the exterior contingent cone to a convex subset C of R 2 , we prove that the system (1.3) is controllable with three of its parameters. Whatever the initial conditions are, the system (1.3) reaches the subset C and remains in C. The paper is organized as follows: the introduction ends with an existence and uniqueness result. In sections 2 the controllability of the system (1.3) is studied and several numerical results are presented in connection with available data concerning Mali.

The dynamic behavior of (1.3) is determined by the variation of I and R . According to (1.2) the suceptibles compartment is expressed as

S(t) = N(t) -I(t) -R(t) -J(t), thus (1.3) is reduced to:          dI dt = F i (I,t)[N(t) -J(t) -R(t) -I(t)] -r 3 (σ + α)I dR dt = r 3 σI -µR. (1.4) Since µ > 0 a new timescale t ′ = µt is introduced. System (1.4) becomes:          dI dt ′ = Ω(t ′ )I(N -J -R -I) -r ′ 3 (σ + α)I dR dt ′ = r ′ 3 σI -R.
(1.5)

We assume that ∆ = N(t)-J(t)-R(t) is constant. Defining γ = r ′ 3 σ, and omitting the prime notations, the system (1.5) becomes:

         dI dt = Ω(t)I(∆ -I) -γI - γα σ I dR dt = γI -R.
(1.6)

Theorem 1.1. Assume Ω to be C 1 (R + ; R) function a primitive of which is bounded. For every initial condition

(I * , R * ) ∈ R 2 + , the solution (I(•), R(•)) : R + → R 2 + to (1.6) belongs to K a compact subset of R 2 + . Proof. Set Θ = γ(1 + α σ
), by integrating the first equation of (1.6) we have

I(t) = I 0 e t 0 (Ω(τ)∆-Θ) dτ 1 + t 0 I 0 e t 0 (Ω(τ)∆-Θ) dτ ds .
Let M be a bound from below of a primitive of Ω, we have: ≤ R 0 e -t + γ e -t (e t -1)

0 ≤ I(t) < I 0 e M∆t
I < R 0 e -t γ I = R.
So the Poincaré-Bendixson's theorem [START_REF] Guckenheimer | Nonlinear oscillation, dynamical system, and bifurcation of vector fields[END_REF] claims : either the solution (I, R) to the system (1.6) tends to or is a critical point when time goes to infinity, or it tends to or it is a periodic solution.

A complete bifurcation analysis is beyond the scoop of this paper. For a precise study of the orbits the reader is refereed to [START_REF] Han | Bifurcation analysis on an unfolding of the Takens Bogdanov singularity[END_REF] or [START_REF] Wolf | Modélisation et analyse mathématique de la propagation d'un micro-parasite dans une population structurée en environnement hétérogène[END_REF] for example.

CONTROLABILITY OF THE MODEL WITH ITS COEFFICIENTS

The question we address in this section reads: do exist parameters which allow the system (1.6) to evolve towards a fixed region C of the plan (I, R) whatever the initial conditions are. For 0 < x 1 fixed, we define the convex domain C of the plan and its associated truncated cylinder C T by:

(2.1)

C = {(x 1 , x 2 ) ∈ R 2 + ; x 1 ≤ x 1 ; and 3 4 x 1 ≤ x 2 }; C T = {(t, x 1 , x 2 ) ∈ R 3 + ; 0 ≤ t ≤ T ; x 1 ≤ x 1 ; and 3 4 x 1 ≤ x 2 }
Definition 2.1. ( contingent and exterior contingent cone). The contingent cone to C T at x T C T (x) is constituted by vectors v ∈ R 3 verifying:

lim h→0 + inf d C T (x + hv,C T ) h = 0,
where d C T denotes the distance to the subset C T . The exterior contingent cone T C T (x) is constituted by vectors v ∈ R 3 verifying:

lim h→0 + inf d C T (x + hv,C T ) -d C T (x) h ≤ 0,
When a point x belongs to the boundary of C T the definition of exterior contingent cone is equivalent to the definition of the contingent cone. We have the following result [START_REF] Picq | Résolution de l'équation du transport sous contraintes[END_REF] (Theorem 3.4.1 p. 102).

Lemma 2.2. The exterior contingent cone to C T at point x is constituted by vectors v ∈ R 3 verifying:

(x -P C T x, v) ≤ 0;
where (•, •) denotes the Euclidean inner product, and P C T stands for the orthogonal projection on C T .

Before stating the result of controllability, we give some technicalities. Set

(2.2)

F(t, x 1 , x 2 ) =    1 Ω(t)x 1 (∆ -x 1 ) -x 1 γ(1 + α σ ) γx 1 -x 2    , we have: Lemma 2.3. Let X ∈ {(t, x 1 ,
x 2 ), 0 < t < T ; 0 < x 1 ; 0 < x 2 } ∩C c T be fixed. Then X -P C T X is the outward normal to C T whenever it exists, and for 0 ≤ s ≤ 1 is given by : X

-P C T X =   0 1 -4 3 s   .
Furthermore, a sufficient condition for the vector F(X) to belong to the exterior contingent cone T C T reads:

(2.3)

x 1 Ω(t)(∆ -x 1 ) -γ(1 + α σ ) + 1) ≤ 0.
Proof. From the definition of the exterior contingent cone T C T we have:

(2.4) ∀s ∈ [0, 1], -Ω(t)x 2 1 + x 1 Ω(t)∆ -γ(1 + α σ ) - 4s 3 ≤ 4s 3 x 2 .
A sufficient condition independent of s for condition (2.4) to be satisfied is obtained when

x 2 ≤ 3 4
x 1 with 0 ≤ x 1 and reads:

(2.5)

-Ω(t)x 2 1 + x 1 Ω(t)∆ -γ(1 + α σ ) ≤ -x 1 .

FIGURE 1. Exterior contingent cone

Theorem 2.4. Let be 0 ≤ max 0≤t Ω(t) = Ω, and let parameters α, 0 < x 1 < ∆, σ be fixed. Whatever (I 0 , R 0 ) ∈ R 2 are, choose r ′ 3 in such a way that γ = r ′ 3 σ verifies:

(2.6) 0 < (γ - 3 4 ); Ω ∆ -x 1 -γ 1 + α σ + 1 ≤ 0.
Then, there exists 0 ≤ T r such that for all time t greater or equal than T r , the solution (I(t), R(t)) to problem (1.6) belongs to the subset C.

Proof. Set Y = (t, I(t), R(t)), then Problem (1.6) is expressed as the following autonomous system:

dY (t) dt = F(Y (t)); 0 < t Y (0) = (0, I 0 , R 0 ).
(2.7)

Define the function G(t, I) by:

G(t, I) = Ω(t)(∆ -I) -γ(1 + α σ ) + 1.
Function G is a decreasing function with respect to I for all time. Thus if G(t, x 1 ) ≤ 0, it will be negative for all I > x 1 . Condition (2.6) implies that F 2 (t, I, R) is negative and F 3 (t, I, R) is positive for all 0 < t; x 1 < I; 0 ≤ R. Theorem 1.1 asserts the existence of (I(t), R(t)) for all time t. A simple continuity argument implies that the subset C defined in (2.1) is reached for a time T r by the trajectory starting at the point (I 0 , R 0 ). Fix T > T r , Lemma 2.2 claims that condition (2.6) is a sufficient condition for F(Y ) ∈ T C T (Y ) when Y belongs to the boundary of C T . Nagumo's theorem applies for Equation (2.7) with initial conditions (T r , I(t r ), R(T r )), and we get that (I(t), R(t)) ∈ C for T r ≤ t ([1] Theorem 1 P. 27).

As consequence of Theorem 2.4 the SIR models allow to evaluate medical policies with precise aims. The sufficient condition (2.6) characterizes the treatment effort through the survival rate r 3 of the infected mature individuals recovered with the probability σ. Let us end this section with numerical examples. By using available data from Mali, we ). In FIGURE 2 we have considered the case (a) with Ω = 4.3 10 -8 ; σ = 0.5. The sufficient condition (2.6) is not satisfied, nevertheless, it can be checked that after a long time the computed solution (I(t), R(t)) represented with aa green point has a first component less or equal than x 1 . In case (b), we have Ω = 4.6 10 -8 ; σ = 0.8;

The sufficient condition (2.6) is not satisfied. Here all the trajectories are outside of the cone C T . The cone C T , roughly speaking, characterizes the treatment effort. The sufficient condition (2.6) is basically governed by tow parameters: the transmission rate, and the survival rate r 3 of the infected mature individuals recovered with the probability σ. In the following examples, keeping the same values for parameters as in Case (a) except for r 3 . For r 3 = 0.85, The sufficient condition (2.6) is not satisfied, and we have in Figure 3 left all the trajectories outside of C T . For r 3 = 2, The sufficient condition (2.6) is satisfied, and the trajectories are concentrated in a neighborhood of the disease-free equilibrium (0, 0) see Figure 3 right.

In this paper, it is shown that by using the exterior contingent cone and a viability theorem, simple convex subsets are reachable with a SIR model by adjusting some coefficients. Thus, it will be possible to predict with a certain accuracy the evolution level of the disease by changing one or another of parameters. In our example, it is attractive to see that, if the survival rate r 3 attains 2%, the disease almost goes back at a level disease-free equilibrium. 
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