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Abstract 

This paper presents a survey of two techniques intended for improving the performance of 
conventional turbo codes (TCs). The first part of this work is dedicated to explore a hybrid 
concatenation structure combining both parallel and serial concatenation based on a three-
dimensional (3D) code. The 3D structure, recently introduced by Berrou et al., is able to 
ensure large asymptotic gains at very low error rates at the expense of an increase in 
complexity and a loss in the convergence threshold. In order to reduce the loss in the 
convergence threshold, the authors consider first a time-varying construction of the post-
encoded parity. Then, they investigate the association of the 3D TC with high-order 
modulations according to the bit-interleaved coded modulation approach. The second part of 
this study deals with irregular TCs. In contrast to 3D TCs, although irregular TCs can achieve 
performance closer to capacity, their asymptotic performance is very poor. Therefore, the 
authors propose irregular turbo coding schemes with suitable interleavers in order to improve 
their distance properties. Finally, a modified encoding procedure, inspired from the 3D TC, 
makes it possible to obtain irregular TCs which perform better than the corresponding regular 
codes in both the waterfall and the error floor regions. 
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1. Introduction 

In 1971, the whole community of coding and information theory was in phase with the 
famous speech of Professor Robert McEliece: “Too many equations had been generated with 
too few consequences… Coding theorist professors had begotten more coding theory Ph.D.'s 
in their own image… no one else cared; it was time to see this perversion for what it was. 
Give up this fantasy and take up a useful occupation… Coding is dead.” This assertion was 
contradicted 20 years later by the invention of turbo codes (TCs) [1], which was a revival for 
the channel coding research community. Their near-capacity performance and their suitability 
for practical implementation explain the adoption of TCs in various communication standards 
as early as the late 1990s. However, TCs suffer from a flattening effect when the error rate 
reaches a limit and stops improving. In future system generations, low error rates will be 
required to open the way to real-time and demanding applications, such as TV broadcasting 
or videoconferencing. The minimum Hamming distance (MHD) of state-of-the-art TCs may 
not be sufficient to ensure large asymptotic gains at very low error rates. Therefore, they are 
no longer suitable for these kinds of applications, and more powerful coding schemes are 
required. At the same time, a reasonable level of complexity should be preserved. 

In [2,3], a three-dimensional (3D) TC was introduced, combining both parallel and serial 
concatenation. It is simply derived from the classical TC by concatenating a rate-1 post-
encoder at its output, which encodes only a fraction � of the parity bits from the upper and 
lower constituent encoders. The fraction 1-� of parity bits which are not re-encoded is directly 
sent to the channel or punctured to achieve the desired code rate. The 3D TC improves 
performance in the error floor compared to the TC, at the expense of a loss in the 
convergence threshold and an increase in complexity. 

In this paper, the authors investigate this hybrid concatenated coding scheme. Afterwards, 
their interests go towards irregular TCs [4]. In our work, we focused on the improvement of 
the 3GPP2 code used in the third-generation (3G) cdma2000 mobile phone communication 
systems [5]. Then, the two constituent encoders are eight-state recursive systematic 
convolutional (RSC) encoders with feedback polynomial 1 + D2 + D3 and parity generator 
polynomial 1 + D + D3. 

This paper is a review paper that enriches our survey on 3D TCs reported in [6-10] and brings 
new results. In particular, transmissions over independent and identically distributed Rayleigh 
fast-fading channels are investigated, whereas transmissions over Gaussian channels were 
mainly considered in [6-8]. Furthermore, several examples of MHD values obtained with this 
code for different block sizes and coding rates are newly presented in Table 1. Tables 2 and 3 
also show new results with respect to the convergence threshold of 3D TCs. Finally, another 
contribution of this paper lies in sections 4.3 and 4.4, where the design of permutation and 
post-encoder for irregular TCs is explored (some of the results are already available in 
[9,10]). 

  



Table 1 MHD values for 3GPP2 TC and corresponding 3D code for different coding and 
block sizes 
 R = 1/3 R = 1/2 R = 2/3 R = 4/5 
k = 570 bits     
3GPP2 TC 17 10 6 4 
3D-TC, � = 1/4 29 17 13 N/A 
3D-TC, � = 1/8 27 17 9 4 
3D-TC, � = 1/16 25 15 8 4 
k = 762 bits     
3GPP2 TC 19 11 6 4 
3D-TC, � = 1/4 39 23 9 N/A 
3D-TC, � = 1/8 30 18 8 4 
3D-TC, � = 1/16 21 14 6 4 
k = 1,530 bits     
3GPP2 TC 28 14 8 5 
3D-TC, � = 1/8 36 18 8 5 
k = 6,138 bits     
3GPP2 TC 30 15 9 5 
3D-TC, � = 1/8 38 30 10 5 
N/A, not applicable. 

Table 2 Different convergence thresholds of 3GGP2 3D TCs over the AWGN channel 
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Table 3 Convergence thresholds of 3GGP2 3D TCs over Rayleigh fading channel and 
comparison with Gaussian channel 
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This paper is organised as follows. In section 2, we present the 3D TC structure and its 
different parameters. Section 3 deals with performance improvement of 3D TCs. We 
introduce a method to optimize 3D TCs in order to increase the MHD even more. 



Furthermore, we discuss convergence issues in the same section and introduce time-varying 
three-dimensional TCs as an alternative to reduce the loss in the convergence threshold. We 
also analyse the association of the 3D TC with high-order modulations, taking into account 
the different protection levels of the constellation. Section 4 is dedicated to irregular TCs. 
First of all, the degree profile is selected by means of extrinsic information transfer (EXIT) 
diagrams. Then, the design of powerful permutations suited for such code structures is 
considered. Graph-based permutations using Dijkstra's algorithm and an estimation of the 
minimum distance improve the distance properties of these codes. To take advantage of the 
results using both 3D TCs and irregular TCs, the two techniques are combined and a new 
modified structure is proposed. The association of irregular TCs with the same post-encoder 
used for 3D TCs results in irregular turbo coding schemes which perform better than regular 
TCs at low and high signal-to-noise ratios (SNRs) at the same time. Finally, section 5 draws 
some conclusions. 

2. Exploring three-dimensional turbo codes 

2.1 Properties of three-dimensional turbo codes 

A block diagram of the 3D turbo encoder is depicted in Figure 1. A fraction � of the parity 
bits from the upper and lower constituent encoders is grouped by a parallel/serial multiplexer, 
interleaved by a permutation �� and encoded by an encoder of unity rate whose output is 
denoted w. In [2,3], � is referred to as the permeability rate. Usually, very simple regular 

permeability patterns are applied. For instance, if � � �� , the bits to be post-encoded are 

chosen in a regular basis {1000} for both the upper and the lower encoders. Then, 1 bit out of 
4 is regularly picked from each of the parity streams starting with the first bit from each 
stream. Note that the permeability rate has an effect on the performance of the 3D TC similar 
to the doping ratio concept of [11]. The error rate curves of a turbo code can be divided into 
two regions: the waterfall region, where the error rate decreases rapidly, and the region of 
error floor, where a change in the curve slope appears when the code reaches its asymptotic 
gain. The value of � can be used to trade off performance in the waterfall region with 
performance in the error floor region. Given �, and without puncturing information bits, the 

highest achievable code rate is ���� � �
�	AB , since the overall code rate of the 3D TC is 

given by 

( )
Data bits 1

,
Systematicbits + Post-encoded parity bits + Other parity bits 1 2 2 1

=
× − ×

R =
+ + � �λ  

 

Figure 1 3D turbo encoder structure. 

where 0 � � � 1 is the fraction of the surviving bits in y1 and y2 after puncturing. In fact, we 
have k systematic bits, P = 2 × � × k post-encoded parity bits and 2 × (1 − �) × � × k surviving 

parity bits after puncturing. For example, if the overall coding rate is � � �C , then it is 

necessary to have a permeability rate � D �E . Moreover, the authors in [2] show that the 

probability of error at each decoder intrinsic input has risen by a factor 
�	F�	B��
�	�  , inducing a 

loss in convergence. In fact, the more redundancies are post-encoded, the less redundant 
information at the first iteration the decoder will have, then causing more errors at its output. 



On the other hand, a large value of � means a higher MHD. Therefore, � is a key parameter to 
choose the compromise between distance and convergence. 

The choice of the post-encoder influences also the performance in both the waterfall and error 
floor regions. It has to meet different requirements already detailed in [2,3,6]. In [7], we 
justified the choice of the post-encoder by means of EXIT analysis. A four-state binary 
convolutional encoder is used in practice. The RSC code with feedback polynomial 1 + D2 
and parity generator polynomial 1 has been selected to be the post-encoder in different 
simulations of the 3D TC. 

The 3D TC is characterized by two permutations denoted by � and ��, as shown in Figure 1. � 
is the internal permutation of the TC, and �� is used to spread a fraction � of the parity bits 
before feeding them to the post-encoder. Let i and j be the address in the natural order and in 
the permuted order, respectively. For the regular permutation, we assume �� to be defined by 
the following congruence relation: i = � ' (j) = (P0j + i0) P, where i0 is the starting index, and 
P0 is an integer relatively prime with P. For each block length, these parameters have to be 
carefully chosen to guarantee a large spread. It was observed through the different 
simulations that the important property is the spread. In the sequel, �� corresponds to the 
regular permutation achieving a spread of ��� [12], where P is the size of the frame to be 
post-encoded. The 3D TC performs better with regular �� than with a random interleaver in 
terms of MHD and convergence. Details are available in [7]. 

2.2 Performance of 3GPP2 three-dimensional turbo codes 

We have investigated the distance gain and the effect on TC convergence threshold for 
different block sizes, coding rates and permeability rates. Similar to the case of double-binary 
codes in [2,3], we have observed that the addition of the post-encoder improves the 
asymptotical behaviour of the 3GPP2 TC in many cases. Table 1 presents examples of MHD 
values obtained with this code for different block sizes and coding rates, using the all-zero 
iterative decoding algorithm [13]. We can observe that the direct application of the third 
coding dimension to the existing code leads to an increase of its minimum distance, except in 
the case of high coding rates. The authors in [14] analyzed the asymptotic weight distribution 
of 3D TCs and showed that their typical minimum distance may, depending on certain 
parameters, asymptotically grow linearly with the block length. Table 1 shows that it is 
attractive to increase �, since larger minimum distances are obtained. However, this will be 
paid in terms of loss in convergence threshold, as explained above. Also, the increase in 
complexity is not negligible. In [2,3], the computational complexity increase was estimated to 
be less than 10% with respect to classical two-dimensional TC. This first estimation of the 
complexity increase was optimistic. In fact, 3D TC hardware implementation issues have 
been thoroughly investigated in [8]. We proposed an appropriate hardware architecture of a 
3D turbo decoder and the corresponding complexity analysis. When high throughputs are 
required for a given application, several processors can be placed in parallel, thus decreasing 
the relative additional complexity of the 3D coding scheme. For example, the computational 
complexity increase is 36% when only two processors are placed in parallel, for k = 1,530 

bits, � � �A  and � � �E . It is 25% with four processors. An increase of less than 10% in the 

memory requirements is also necessary for 3D TCs. 



3. Improving three-dimensional turbo codes 

Two different study directions have been investigated in order to improve 3D TCs. First, we 
have observed that, for the 3GPP2 TC, the error patterns with weight MHD often have very 
low multiplicities. Then, the first step involves eliminating these codewords by means of the 
adoption of a non-regular post-encoding pattern. This optimization method is detailed in [6], 
and different results show that modifying a few addresses in the pattern of post-encoding 
produces an improvement in the distance properties. 

Second, the current post-encoder has been replaced by a time-varying (TV) trellis-based 
encoder in order to reduce the loss of the convergence threshold. The association of 3D TCs 
with high-order constellations has been investigated for the same purpose. The next 
subsections deal with the improvement of the convergence threshold of 3D TCs for 
transmissions over Rayleigh fading channels. More details are available in [6-8] where 
transmissions over Gaussian channels were considered. 

3.1 Convergence threshold of three-dimensional turbo codes 

The convergence thresholds of 3GPP2 3D TCs are estimated through an EXIT chart analysis 
[15] on the additive white Gaussian noise (AWGN) channel and on the Rayleigh fading 
channel as well. To generate the EXIT chart of a TC, we have to consider the transfer 
characteristics of the extrinsic information for each soft-input soft-output (SISO) decoder. In 
the case of 3D TC, the two SISO decoders exchange extrinsic information about the 
systematic part of the received codeword, like for classical turbo decoding. However, both of 
them exchange also extrinsic information about the post-encoded parity bits with the four-
state SISO predecoder, and we have to take into account in the EXIT chart that the extrinsic 
information about these parity bits is changing from an iteration to the other. Consequently, 
the curves of mutual information exchange between the two decoders change every iteration. 
The convergence threshold of the code is the minimum SNR where the only intersection 
point between the two transfer characteristics curves is the point (1,1). Different convergence 
thresholds of 3GPP2 3D TCs, for several code rates and values of �, are given in Table 2. For 
a fixed code rate R, the best convergence threshold is achieved by the classical TC (� = 0). 
The loss in the convergence threshold increases with �. In Table 3, we compare the loss in 
convergence due to the use of 3D TCs for transmissions over the Rayleigh fading channel 

and over the AWGN channel at coding rate � � �A  and � � �E . Table 3 shows that the loss of 

convergence is more significant over the Rayleigh fading channel. This result represents a 
drawback of 3D TCs. In fact, for applications such as the terrestrial mobile radio 
communications where the simulations are carried out over fading channels, the loss of 
convergence can be significant. However, the 3D TCs proved to be suited to transmissions 
over Gaussian channels. Thus, they can be used in applications such as fixed satellite 
communications. In the following subsections, we propose two techniques to remedy these 
convergence issues. 

3.2 Time-varying three-dimensional turbo codes 

So far, we have only considered fixed or time-invariant (TI) convolutional codes. TV 
convolutional encoders have generator polynomials which periodically vary with time. The 
idea appeared for the first time in the paper of Costello [16]. The author conjectured that TV 
convolutional codes have larger free distances, dfree, than fixed convolutional codes with the 



same rate and constraint length. This conjecture led to the search for periodic TV 
convolutional codes that are better than TI convolutional codes with respect to dfree. We have 
investigated a simple time-varying post-encoder in order to increase locally its minimum 
distance. This improves the level of the extrinsic information provided by the predecoder to 
the two SISO decoders, which reduces the loss of convergence threshold for 3D TCs. The 
proposed TV encoding technique consists in alternating two redundancy polynomials in time, 
instead of having only one. In the case of the four-state selected post-encoder, the octal 
polynomials W1 = 4 and W2 = 7 are alternated for the parity. Also, we replace some 
redundancies W1 = 4 by other redundancies W2 = 7. The replacement period is denoted by L. 
In Figure 2, time-varying 3GPP2 3D TCs have been simulated over a Rayleigh fading 
channel. Figure 2 shows the bit error rate (BER) performance for blocks of 2,298 bits at code 

rate � � ��  and � � �E . In this case, the loss of convergence due to the hybrid structure is 

reduced by 35% from 0.23 to 0.15 dB. Even if the Rayleigh fading simulation in Figure 2 
appears to show that the classical TC performance is the best, this is not the case at high error 
rates since the minimum distance of the 3D TC is higher: dmin = 36 compared to dmin = 25 for 
the classical TC. 

Figure 2 BER performance of the time-varying 3GPP2 3D TC. BER performance of the 

time-varying 3GPP2 3D TC with � � �E  for k = 2,298 bits, � � ��  and comparison with the 

corresponding 3D TC and the classical TC. All simulations use the Max-Log-MAP algorithm 
with 10 iterations (QPSK modulation). 

Among all the simulations carried out, it was observed that the time-varying parity 
construction reduces the loss of convergence by 10% to 50% of the value expressed in 
decibels. We have systematically checked that the asymptotic performance is not degraded. 
In fact, the choice of the post-encoder does not influence a lot the minimum distance of the 
3D TC for a fixed code memory and for a given permeability rate �. For the time-varying 
post-encoder, there is no reason to improve or degrade the asymptotic performance since we 
introduce few local modifications. However, the higher the local minimum distance of the 
post-encoder, the better the level of the extrinsic information which the predecoder supplies 
to the two SISO decoders. Therefore, the TV technique acts as a convergence accelerator of 
the 3D TC. In addition, we have observed that the EXIT of a time-varying 3D TC changes 
with the value of L. This tool can be used to choose an optimal value of L. The selected value 
can be the L that produces the lowest convergence threshold. 

3.3 Three-dimensional turbo codes for high spectral efficiency transmissions 

We have also investigated the association of the 3D TC with high-order modulations. This 
structure is used for applications where high data throughputs are required such as the 
transmission of high-definition television (HD TV). In the most recent transmission systems, 
high bit rates require using high-order modulations, such as 16-QAM for 3GPP2, 64-QAM 
for LTE and 256-QAM for DVB-NGH. 

We consider a coded modulation scheme based on the so-called pragmatic or bit-interleaved 
coded modulation approach [17]: a turbo encoder and a modulator that follows an interleaver 
and a Gray mapper. It is known that among the bits forming a Gray-labelled symbol in M-
QAM or M-PSK modulations for M > 4, the average probability of error is not the same for 
all the bits [18]. Therefore, three constellation mappings, all compliant with Gray labelling, 
were investigated. First, the mapping is uniformly distributed on the entire constellation. In a 



second configuration, the systematic bits are mapped to better protected places as a priority, 
and all the other bits are uniformly distributed. For the third mapping, the systematic bits are 
first mapped to better protected places as a priority. Then, if it is possible, the post-encoded 
parity bits are better protected by the considered modulation than the other non-re-encoded 
parity bits. This choice is made because the systematic bits as well as the post-encoded parity 
bits are used by both decoders during the decoding process. Thus, protecting them is expected 
to reduce the loss of convergence. At the receiver side, the demapper computes the log 
likelihood ratio (LLR) related to each bit of the information sequence. This symbol-to-bit 
LLR calculation is followed by a 3D turbo decoder using the MAP algorithm. The 
application of the proposed transmission scheme in two particular cases of the 3GPP2 3D 
code is presented below. In both cases, we consider a transmission over a Rayleigh fading 
channel that has been shown to be a challenging type of channel for 3D TCs. 

3.3.1 Example 1: 3D TCs associated with a 16-QAM modulator 

Among the four bits forming a symbol with Gray labelling in 16-QAM, the average 
probability of error is smaller for the first and the third bits than for the second and fourth 
bits. To explore this property, frame error rate (FER) performance of 3GPP2 3D TCs has 

been simulated with � � �E  at code rate � � ��  for k = 2,298 bits, as shown in Figure 3. It was 

observed through these simulations that the use of the 16-QAM modulation, where the 
systematic bits as well as the post-encoded parity bits are more protected than the other non-
re-encoded parity bits, allows the loss of convergence of the 3D 3GPP2 TC to be reduced and 
even be transformed into a gain in the waterfall region compared with the 3GPP2 
standardized TC. 

Figure 3 3D TC associated with a 16-QAM modulator. FER performance of the 3GPP2 

3D TC with � � �E  for k = 2,298 bits, � � ��  and comparison with the 3GPP2 TC. All 

simulations use the MAP algorithm with 10 decoding iterations and 16-QAM modulation 
(transmission in a Rayleigh fading channel). 

3.3.2 Example 2: 3D TCs associated with an 8-PSK modulator 

Among the three bits forming a symbol with Gray labelling in 8-PSK, the average probability 
of error is smaller for the first and the second bits than for the third bit. We have simulated 

the FER performance of 3D TCs with � � �E  at code rate � � �C  for k = 1,146 bits. For this 

coding rate, the third configuration cannot be adopted, and we are obliged to implement the 
second configuration. Simulations in Figure 4 show that the use of an 8-PSK modulation, 
where the systematic bits are protected as a priority, allows a significant gain in the waterfall 
region of 0.5 dB compared with the 3GPP2 standardized TC. This gain is more significant 
than the one obtained in Figure 3. 

Figure 4 3D TC associated with an 8-PSK modulator. FER performance of the 3GPP2 3D 

TC with � � �E  for k = 1,146 bits, � � �C  and comparison with the 3GPP2 TC. All simulations 

use the MAP algorithm with 10 decoding iterations and 8-PSK modulation (transmission in a 
Rayleigh fading channel). 

The investigation of the previous three Gray mappings allows some rules of conception to be 
defined. In fact, a loss of convergence is still observed when the bits in a symbol are 



uniformly distributed on the entire constellation. However, when the second configuration or 
the last one is used, the loss in the convergence threshold disappears and a gain in the 
waterfall region is observed. When these both configurations can be implemented, the 
configuration 3 must be used as far as possible. Otherwise, it is necessary to implement at 
least the configuration 2, as in the example presented above for the 8-PSK. When the 
systematic bits are first protected as a priority and, if possible, the post-encoded bits, a 
significant gain is obtained. The technique is all the more interesting as the coding rates are 
higher for the same value of �, even for transmissions over fading channels. In other words, 
the problem related to the loss in the convergence threshold of 3D TCs can be solved. 

To conclude, we notice that the notion of irregularity plays a major role to build 3D TCs 
having good performance at low and high SNRs. In fact, the optimization method, first 
presented in [6], is based on the use of a non-regular pattern of post-encoding and allows 
increasing the minimum distance. Besides, the time-varying post-encoder with a little 
irregularity and also the association of the 3D TC with high-order modulations, where both 
the systematic bits and the post-encoded parity bits are more protected than the other parity 
bits, create a sort of irregularity in the Gray mapping. Both represent a success in reducing or 
even eliminating the problem of convergence loss. The next step of the study concerns the 
investigation of irregular TCs. The aim is to obtain an irregular TC which performs well in 
both the waterfall and the error floor regions. 

4. Irregular turbo codes 

4.1 Another representation of turbo codes 

In most cases, the two (or more) constituent RSC encoders of a parallel TC are identical. For 
this reason, the authors in [19] proposed a ‘self-concatenated’ turbo encoder, depicted in 
Figure 5. It consists of the concatenation of a repetition code and an RSC code separated by 
an interleaver. In fact, it is possible to merge the two trellis encoders and replace the initial 
interleaver with a double-sized interleaver preceded by a twofold repetition (d-fold repetition 
in general). The interest of this second equivalent encoding structure of a classical TC lies in 
its simplicity and in the opportunity of introducing an irregular structure. By adopting the 
terminology used for the low density parity check (LDPC) codes, a regular TC is related to 
the use of a uniform repetition in the equivalent encoding structure (see Figure 5). On the 
other side, when the repetition degree d is not the same for all the information bits, the TC is 
said to be irregular. Note that the irregular TC implemented in Figure 5 is a generalization of 
repeat-accumulate codes presented in [20]. 

Figure 5 Equivalent encoding structure for a regular turbo encoder. 

The performance of the self-concatenated regular TC is identical to the one we get using the 
standard turbo encoder when the interleaver length is sufficiently high. For short and medium 
block sizes, a few additional iterations are necessary to achieve the same performance. This is 
due to the decoding process because no extrinsic information is available at the first iteration. 
It is possible to implement a shuffled iterative decoding [21,22] in order to achieve the same 
performance as for the classical turbo encoder and avoid adding iterations in practice. In 
shuffled decoding, the decoder updates the extrinsic information as soon as possible, without 
waiting for all the copies of a given data to be processed. In other words, the decoder does not 
wait until the next iteration to send extrinsic messages. However, as it does not represent a 



major problem, we have chosen to increase the number of iterations in our simulations by two 
additional iterations for the classical sequential decoding. 

For instance, the BER performance of the 3GPP2 TC has been simulated for blocks of 2,298 

bits at coding rate � � �� . Figure 6 shows that the use of the equivalent encoding structure for 

a regular TC requires two additional iterations (i.e. 12 instead of 10) to reach the performance 
of the classical parallel TC. 

Figure 6 BER performance of two equivalent encoding structures for a regular 3GPP2 
TC. All simulations use the Max-Log-MAP algorithm for blocks of 2,298 bits and coding 

rate � � �� . 

An irregular TC consists of the concatenation of a non-uniform repetition, an interleaver and 
a RSC code. In fact, the introduced irregularity makes it possible to improve the performance 
of a TC by inserting some bits inside the RSC trellis with a degree d > 2. These high-degree 
bits are commonly called pilot bits: they have reliable forward and backward metrics in the 
decoding process, and they propagate on both directions and influence the other bits with 
degree d = 2. However, making the code irregular leads to an increase in the rate of the 
constituent codes. Therefore, for usual coding rate values, only a small fraction of 
information bits is repeated d > 2 times. Thanks to their higher degree, the pilot bits include d 
extrinsics instead of two and are thus extremely well protected. 

4.2 Selecting the degree profile 

For irregular TCs, the information bits are divided into classes, each class j having a specific 
degree dj = j. The fraction of bits of degree dj in a class j is denoted by fj, where fj � [0, 1]. A 
degree profile consists of all the degrees dj and their corresponding non-zero fractions fj. In 
the sequel, we represent a degree profile by the vector (f2, f3,…, fmax) or the vector (2, 3,…, 

max). The average information bit degree is �������� � �!"!
���

!#A
 . We keep the minimum 

degree equal to 2 in order to refer to the classical TC. The maximum degree is dmax. 

The convergence threshold as well as the asymptotic performance of an irregular TC strongly 
depends on its degree profile. The best profile depends on the interleaver and the generator 
polynomials of the RSC code. For codes with very large block lengths, the optimization of 
the previous parameters can be done using the density evolution method developed by 
Richardson and Urbranke [23,24]. Using this approach, irregular LDPC codes with 
performance at 0.0045 dB from the capacity were obtained [25]. The Gaussian approximation 
can be used to speed up the search for good parameters. This sub-optimal method leads to 
quite accurate results and was defined in several different ways [26-29]. Although the density 
evolution method and the Gaussian approximation approach can be used to select a good 
degree profile for codes with large block sizes, Monte Carlo simulations of the bit error 
probability are carried on for finite length. The main drawback is that they are time-
consuming, and only profiles with two non-zero fractions can be considered. In fact, the 
method consists in fixing a degree dIrreg and varying its fraction fIrreg. A fraction that achieves 
the best performance can be found. The next step involves changing the degree dIrreg, while 
the fraction fIrreg is fixed to the value already selected. We can then find optimal values for 
both dIrreg and fIrreg. However, this profile is not automatically the best one, since the 
optimization does not take into account all the possible combinations (dIrreg, fIrreg). Also, better 



performance may be attained when the profile is not restricted to two non-zero fractions. A 
simple method, based on the EXIT diagrams to select a good profile without resorting to 
extensive and long simulations, was introduced in [9]. This method allows many degree 
profiles to be compared at the same time. Comparisons between different degree profiles in 
terms of convergence behaviour as well as asymptotic behaviour are made, and the selection 
of the best degree profiles can be progressively refined. 

The application of this technique led to the choice of two degree values d = 2 and d = 8 with 

the following degree profile: $"A � C% & "E �
�
%' . For reasons of simplicity, only two degrees 

have been considered, and d = 2 is fixed with reference to the classical TC. In the sequel, we 
adopt this profile as working assumption. In fact, compared to the regular TC, the irregular 
TC with degree profile (f2, f8) offers a significant gain in the waterfall region of 0.3 dB. 
However, this code has a poor performance in the floor. The following subsections focus on 
the improvement of performance at high SNRs. 

4.3 Design of suitable permutations for irregular turbo codes 

The first intuitive idea investigated was to design an interleaver where all the groups of eight 
bits are uniformly distributed. The objective is that they spread their reliable forward and 
backward metrics along the frame. On the other hand, the spread between the pilot groups 
should be large enough to avoid correlation between them. High correlation may dramatically 
degrade error correction performance and even ruin the possible gain due to a large minimum 
distance. An empirical value for the spread is to be at least equal to 2 × (� + 1), where v is the 
memory length of the simulated code. The condition on the spread between the pilot groups 
imposes a constraint on the fraction f8 (fmax in general) of the pilot bits: 

"��� D ()*
A+(,)-+F.	��/

�
0 , where dav is the average information bit degree and k is the total 

number of information bits. For usual block size values, the term 
�
0  is negligible, and the 

constraint above is a relation between fmax, dmax and v that can be expressed as follows: 

"��� D ()*
A+(,)-+F.	�� . For "E � �% , dav = 3 and � = 3, this condition can never be satisfied. 

In the cases where this condition is not satisfied, we proposed an algorithm in order to jointly 
spread the groups of eight bits along the frame and maximize the MHD [10]. This idea was 
inspired by a procedure described in [30] where the author focuses on the optimization of TC 
permutation design with the so-called almost regular permutation model. In [31], Kraidy et al. 
used a progressive edge growth-based interleaver for irregular TCs to lower the floor in the 
case of binary erasure channels. The algorithm we proposed is based on Dijkstra's algorithm 
[32] and on the estimation of the minimum distance for each permutation. To apply Dijkstra's 
algorithm in our specific context, we first represent the interleaver by a graph. At the 
beginning, the graph exists and it is empty. As we consider a tail-biting code, the graph has 
the form of a ring. The nodes, empty at first, are connected two by two in the ring. Thus, each 
node vi is connected to only a predecessor and a successor vj in the graph. The weight of each 
connection wi,j is equal to 1. The purpose of the algorithm is to put addresses in the nodes. 
Before interleaving, an appropriate repetition is applied to each bit among the k bits 
stemming from the source. The addresses that appear progressively in the graph are the 
interleaved addresses corresponding to the output of the interleaver. For each bit with 
repetition degree d, we choose a random interleaved address �(j) for the first copy. Then, we 
compute the distances from �(j) for any vertex in the actual graph by Dijkstra's algorithm. 
The interleaved address of the second copy is chosen at random such that the score for �(j) is 



greater than � times the best possible value. Then, a connection must appear in the graph 
between v�(j) and v�(j+1), represented by a crossbar of weight equal to 0: w�(j),�(j+1) = 0. 

The algorithm constructs the graph progressively. At the end, 
(+F(1��
A  connections are added 

to the graph for every bit with degree d. These crossbars, of weight equal to 0, connect 
different interleaved data of the same information bit. Besides, the parameter 0 < � � 1 is 
used to implement a random variation in the selection. The value � = 1 corresponds to the 
original Dijkstra's algorithm. We noticed that if we fix � = 1 in our algorithm, the obtained 
interleavers produce high values of girths but sometimes unacceptable values of minimum 
distances. The girth is the length of a shortest cycle contained in the graph. This criterion of 
selection was a priority for the author of [30]. In fact, his first purpose was to maximize the 
correlation girth while keeping an acceptable minimum Hamming distance. However, the 
minimum Hamming distance is our most important criterion of selection in order to improve 
the distance properties of irregular TCs. If the pilot bits are highly correlated, they may 
dramatically degrade error performance and even ruin the possible gain due to a large 
minimum distance. In order to reduce the auto-correlation effect, the interleaver should 
spread the pilot bits by increasing the correlation girth. However, the minimum distance can 
suffer since a long cycle has more probability to contain parity bits of the same data bit. Thus, 
we do not look for maximizing this criterion but only increasing the correlation girth and 
searching for higher minimum distances. Therefore, different values were tested for the 
parameter a, and we finally set a to 0.85, giving a reasonable space of search. Every time an 
interleaver is found, we estimate the minimum Hamming distance of the irregular TC using 
the all-zero iterative decoding algorithm [13]. Only interleavers that improve the asymptotic 
performance of irregular TCs are memorized. 

The proposed algorithm allows suitable permutations to be designed that increase the 
minimum distance of irregular TCs. The pilot bits are now distributed along the frame in a 
way that they guarantee a good spread between the different groups, and the correlation effect 
between the pilot groups is reduced. This algorithm works very well for short block sizes 
[10]. For medium sizes and large blocks, the algorithm leads to a systematic search for an 
optimized interleaver in a wide domain of parameter values, due to the random selection 
introduced by parameter a. When the block size is some thousand bits, the algorithm may 
take an unacceptable computational time to find good interleavers, and we cannot be sure of 
detecting all the possible cases. 

This algorithm was run for blocks of 1,146 bits with degree profile (f2, f8). As the average 
degree is dav = 3, the interleaver length is equal to 3,438. Figure 7 compares the FER 
performance of the code under both random and optimized interleaving. A gain of two orders 
of magnitude in the error floor is observed, in favor of the optimal interleaver. Nevertheless, 
like for random interleavers, one additional drawback of this family of interleavers is the 
necessity to store the interleaved addresses as no equations are available for the permutation. 

Figure 7 FER performance of irregular TCs under both random and optimized 
interleaving. For blocks of 1,146 bits at coding rate � � �� . The degree profile is (f2, f8). All 

simulations use the MAP algorithm with eight decoding iterations. 



4.4 Adding a post-encoder to irregular turbo codes 

The proposed algorithm in section 4.3 is only practicable for short to medium blocks. It is 
possible to investigate the interleavers provided by the proposed algorithm and explore them 
in detail in order to find structured interleavers, having similar properties, which can be 
described in an analytical way. However, as previously explained, devising permutations for 
turbo codes is not an easy task. In order to ensure large asymptotic gain at very low error 
rates, even with non-optimized internal permutation, we propose an irregular TC inspired by 
our work about 3D TCs in order to improve the distance properties of these codes [9]. A 
fraction 0 � � � 1 of the parity bits are post-encoded by a rate-1 post-encoder. For the regular 
3D TC, the increase in minimum distance is significant at the expense of a loss in 
convergence threshold and an increase in complexity. The same kind of behaviour is 
expected for irregular TCs. 

Figure 8 shows the BER and FER performance of regular and irregular TCs for blocks of 

2,046 bits and code rate � � �� . Thus, the interleaver length is equal to 6,138. Compared with 

irregular TCs, the gain at high SNRs is nearly two orders of magnitude when the post-
encoding is performed. Other simulations show that a gain of nearly 2.5 orders of magnitude 
can be observed for longer interleavers. Note that, unlike the method described in section 4.3, 
there is no limitation on the block size. The great advantage is that irregular TCs with post-
encoding perform better than the regular TCs in both the waterfall and the error floor regions. 
It is possible to increase even more the minimum distance by the search of an adapted pattern 
of post-encoding. Here, the post-encoding is regular. However, it is possible to postcode only 
the pilot bits, or only the bits with the lowest degree, or to find a balance between both of 
them. This perspective is expected to give better results and will be investigated in a future 
work. 

Figure 8 BER and FER performance of 3GPP2 irregular TCs and comparison with the 
corresponding regular TCs. For blocks of 2,046 bits at coding rate � � �� . The degree 

profile is (f2, f8). All simulations use the MAP algorithm with 10 decoding iterations 
(transmission in a Gaussian channel). 

5. Conclusions 

In this paper, the authors have explored a hybrid structure combining both parallel and serial 
concatenation based on a three-dimensional code, simply derived from the classical TC by 
concatenating a rate-1 post-encoder at its output. Several techniques are proposed to improve 
3D TCs. A first optimization method makes it possible to increase the MHD of the 3D TC 
even more by searching for irregular patterns of post-encoding. Then, the use of a time-
varying post-encoder reduces the loss of convergence threshold for 3D TCs. When the 3D 
code is associated with high-order modulations, a specific Gray mapping allows the loss in 
convergence to be transformed into a gain at all SNRs. Thus, it is possible to build 3D TCs 
which have good performance in both regions. 

In this paper, we also explore various aspects of irregular TCs. A method based on EXIT 
charts in order to select a good profile of degrees is presented. Afterwards, we discuss the 
design of powerful permutations suited for such code structures and propose an algorithm. 
Graph-based permutations built from a combination of Dijkstra's algorithm with an 



estimation of the minimum distance significantly improve the distance properties of irregular 
TCs. Finally, to take advantage of the results in the previous analysis of 3D TCs and in order 
to combine both studies, a new modified structure has been proposed: the association of 
irregular TCs with the same post-encoder used for 3D TCs results in irregular turbo coding 
schemes which perform better than regular TCs in both the waterfall and error floor regions. 

Competing interests 

The authors declare that they have no competing interests. 

References 

1. C Berrou, A Glavieux, P Thitimajshima, Near Shannon limit error-correcting coding and 
decoding: turbo-codes, in Proc. ICC'93 (Geneva, 1993), pp. 1064–1070 

2. C Berrou, A Graell-i-Amat, Y Ould-Cheikh-Mouhamedou, C Douillard, Y Saouter, 
Adding a rate-1 third dimension to turbo codes, in Proc. IEEE Inform. Theory Workshop 
(Lake Tahoe, 2007), pp. 156–161 

3. C Berrou, A Graell-i-Amat, Y Ould-Cheikh-Mouhamedou, Y Saouter, Improving the 
distance properties of turbo codes using a third component code: 3D turbo codes. IEEE Trans 
Commun 57(9), 2505–2509 (2009) 

4. J Boutros, G Caire, E Viterbo, H Sawaya, S Vialle, Turbo code at 0.03 dB from capacity 
limit, in IEEE Int. Symp. Inf. Theory, Palais de Beaulieu (Lausanne, Switzerland, 30 June to 
5 July 2002) 

5. Third Generation Partnership Project 2 (3GPP2), Physical layer standard for cdma2000 
spread spectrum systems, Release F, December 2012, 3GPP2 C.S0002-F, Version 1.0. 
http://www.3gpp2.org/public_html/specs/C.S0002-
F_v1.0_cdma2000_1x_PHY_20121210.pdf 

6. D Kbaier Ben Ismail, C Douillard, S Kerouédan, Improving 3-dimensional turbo codes 
using 3GPP2 interleavers, in ComNet'09: 1st Int. Conference on Communications and 
Networking (Hammamet, 2009) 

7. D Kbaier Ben Ismail, C Douillard, S Kerouédan, Reducing the convergence loss of 3-
dimensional turbo codes, in 6th Int. Symp. Turbo Codes and Related Topics, Brest, 2010, pp. 
146–150 

8. D Kbaier Ben Ismail, C Douillard, S Kerouédan, Analysis of 3-dimensional turbo codes. 
Ann Telecommun 65(7), 257–268 (2011) 

9. D Kbaier Ben Ismail, C Douillard, S Kerouédan, Improving irregular turbo codes. Electron 
Lett 47(21), 1184–1186 (2011) 

10. D Kbaier Ben Ismail, C Douillard, S Kerouédan, Design of suitable permutations for 
irregular turbo codes. Electron Lett 47(13), 748–749 (2011) 



11. S ten Brink, Code doping for triggering iterative decoding convergence in Proc IEEE Int 
(Symp. Inf. Theory, Washington, DC, Jun, 2001), p. 235 

12. E Boutillon, D Gnaeding, Maximum spread of D-dimensional multiple turbo codes. IEEE 
Trans Commun 53(8), 1237–1242 (2005) 

13. R Garello, A Casado, The all-zero iterative decoding algorithm for turbo code minimum 
distance computation, in Proc. ICC'2004 (Paris, 2004), pp. 361–364 

14. GI Amat, E Rosnes, Analysis of 3-dimensional turbo code ensembles, in IEEE Inform. 
Theory Workshop (ITW) (Dublin, 30 August to 3 September 2010), pp. 46–50 

15. S Ten Brink, Convergence behaviour of iteratively decoded parallel concatenated codes. 
IEEE Trans Commun 49(10), 1727–1737 (2001) 

16. D Costello Jr, Free distance bounds for convolutional codes. IEEE Trans. Inform. Theory 
20(3), 356–365 (1974) 

17. G Caire, G Taricco, E Biglieri, Bit-interleaved coded modulation. IEEE Trans. Inform. 
Theory 44(3), 927–946 (1998) 

18. JG Proakis, M Salehi, Digital modulation schemes in Digital Communications, vol. 3, 5th 
edn. (McGraw-Hill, Colombus, 2008) 

19. J Boutros, Asymptotic behavior study of irregular turbo codes, in 7th International 
Workshop on DSP Tech. for Space Communications (Sésimbra, 2001) 

20. D Divsalar, H Jin, R McEliece, Coding theorems for "turbo-like" codes, in Proc. 36th 
Allerton Conference on Communications, Control, and Computing (Allerton House, 
Monticello, Illinois, 23–25 September 1998), pp. 201–210 

21. O Muller, A Baghdadi, M Jézéquel, On the parallelism of convolutional turbo decoding 
and interleaving interference, in Proc. ICC'2006 (San Francisco, 2006) 

22. J Zhang, M Fossorier, Shuffled iterative decoding. IEEE Trans Commun 53(2), 209–213 
(2005) 

23. T Richardson, R Urbanke, The capacity of low-density parity-check codes under 
message-passing decoding. IEEE Trans. Inform. Theory 47(2), 599–618 (2001) 

24. T Richardson, R Urbanke, Efficient encoding of low-density parity-check codes. IEEE 
Trans. Inform. Theory 47(2), 638–656 (2001) 

25. S Chung, G Forney Jr, T Richardson, R Urbanke, On the design of low-density parity-
check codes within 0.0045 dB of the Shannon limit. IEEE Commun Lett 5(2), 58–60 (2001) 

26. S Chung, T Richardson, R Urbanke, Analysis of sum-product decoding of low-density 
parity-check codes using a Gaussian approximation. IEEE Trans. Inform. Theory 47(2), 657–
670 (2001) 



27. H El Gamal, AR Hammons Jr, Analyzing the turbo decoder using the Gaussian 
approximation. IEEE Trans. Inform. Theory 47(2), 671–686 (2001) 

28. H Sawaya, S Vialle, J Boutros, G Zémor, Performance limits of compound codes with 
symbol-based iterative decoding. Electronic Notes in Discrete Mathematics 6, 433–443 
(2001) 

29. S ten Brink, Iterative decoding trajectories of parallel concatenated codes, in 3rd 
IEEE/ITG Conf Source and Channel Coding (Munich, Germany, 17–19 January 2000), pp. 
75–80 

30. Selection procedure of turbocode parameters by combinatorial optimization, in 6th 
International Symposium on Turbo Codes and Iterative Information Processing (ISTC) 
(Brest, Sept 2010), pp. 156–160 

31. GM Kraidy, V Savin, Capacity-approaching irregular turbo codes for the binary erasure 
channel. IEEE Trans. Com. 58(9), 2516–2524 (2010) 

32. E Dijkstra, A note on two problems in connexion with graphs. Numer Math 1(1), 269–
271 (1959) 



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8


	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

