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implementation in ANSYS we start the investigation with the static axisymmetric contact problem 
describing the indentation of a smooth rigid ball in a thick plate. The dependence of the plate deflection on 
the force is obtained. We also analyze the case of non-axisymmetric loading. Then we discuss the impact, 
i.e. the case when the ball moves with finite velocity. We consider transient waves and nonlinear 
oscillations of the after impact.   

 
1.  BASIC EQUATIONS OF 3D NON-LINEAR ELASTICITY 
 Following [7] in this section we present the general equations governing a finite homogeneous 
deformation in a compressible elastic material. The Eulerian equilibrium equations of the non-linear body 
are given by the relations  
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where div  is the divergence operator in the actual configuration  , τ  the Cauchy stress tensor, S  the 1 st  

Piola-Kirchhoff stress tensor,   the material density in the actual configuration, r  the position vector in 

the actual configuration, f the body force vector per unit mass, W  the strain-energy function (per unit 
volume), Fdet=J , and rF radG=  is the deformation gradient defined as in [7]. Note that here we use 

the notation aA   and BA   for the second-order tensors A  and B , and a vector a  instead of the 
alternative way Aa , and AB , respectively. Further we assume the isotropic behaviour of the material, so 
we use the constitutive equation in the following form:  
 

 ),,(= 321 IIIWW  (2) 
 

where 1I , 2I , 3I  are the principal invariants of the left Cauchy-Green deformation tensor T= FFb   or the 

right Cauchy-Green deformation tensor FFc T= , defined by 
 

 

2
3

2
2

2
13

2
3

2
1

2
3

2
2

2
2

2
1

2222
2

2
3

2
2

2
11

=det=det=

=]trtr[
2

1
=]trtr[

2

1
=

=tr=tr=







cb

ccbb

cb

I

I

I





 

 

Here 1 , 2 , 3  are the principal stretches, tr  denotes the trace of a second-order tensor, and T)(  

denotes transposed. 1 , 2 , 3  may be also considered as the arguments of the strain function W : 
 

 ),,(= 321 WW  

 For the isotropic material S  and τ  are given by the relations 
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 (3) 

 
where I  is the unit second-order tensor, 0f , 1f , 2f  are functions which may be expressed as combinations 

of the partial derivatives of W  with respect to iI  or i , see [7,9] for details. 
 For the description of the non-linear behaviour of polymeric foams the following constitutive 
equation is widely used [2] 
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where i , i , i  are the elastic moduli ( Ni 1= ). Here  
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denotes the initial shear modulus, while the initial bulk modulus k  is given by  
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The model (4) was originally proposed by Ogden [5,6], see also [2,7] among others, where Ogden's model 
is used. For some special choice of the values i , i , i  and N , Ogden's strain function W  reduces to 
various others models applied in the nonlinear elasticity (neo-Hookean, Varga, Mooney-Rivlin, Blatz-Ko 
constitutive equations, etc.). 

 
2.  NUMERICAL EXAMPLES 
 As an example we present the finite element analysis (FEA) for thick plate made of foam under the 
impact. The geometrical model consists of two parts – the plate and the indented rigid ball. The 20-nodes 
quadratic element SOLID186 is used. The FE model includes 2000 elements and 11000 nodes. Two types 
of loading are considered – the axisymmetric and non-axisymmetric ones. In both cases clamped boundary 
conditions on the lateral surface are assumed. Impact is simulated as a short-time contact with the ball. The 
contact problem is solved with the help the augmented Lagrange method. Free vibrations after impact are 
investigated numerically. For calculations the Newton-Raphson iterative method is used. During the 
solution 33000 equations are solved in each step. We used the following set of the Ogden’s material 
constants:  
 

6
1 1085,1  Pa, 6

2 102,9  Pa, 5,41  , 5,42  , 92,01  , 92,02   
 
The friction coefficient in the case of rubber-steel contact is assumed to be 2,0 . 
 The transient analyses are made for both plates with symmetrical and unsymmetrical impact cases 
(Fig. 1). 
 

Fig. 1 Geometrical models. Axisymmetric problem (on the left) 
and the non-axisymmetric problem (on the right) 



 

 Numerical calculations were made with the use of program package ANSYS. The mesh of thick 
plates presented in Fig. 2. 
 

Fig. 2 Finite element mesh for layered plate for symmetrical and unsymmetrical load case 
 

 All geometrical models include two parts – the plate and the indented rigid ball. The 20-nodes 
quadratic element SOLID186 is used. The FE model includes 2000 elements and 11000 nodes. Two types 
of loading are considered - the axisymmetric and non-axisymmetric ones. In both cases clamped boundary 
conditions are used. Impact is simulated as a short-time contact with the ball. The contact problem is solved 
with the help the augmented Lagrange method. Free vibrations after impact are investigated numerically. 
For calculations the Newton-Raphson iterative method is used. During the solution 33000 equations are 
solved in each step.  
 The same model, but different material constants are using for inner and outer layers. We introduce 
the following set of the Ogden’s material constants for inner layer: 
 

6
1 1085,1 in Pa, 6

2 102,9 in Pa, 5,41 in , 5,42 in , 92,01 in , 92,02 in  

 
for outer layer: 
 

6
1 1085,1 out Pa, 6

2 102,9 out Pa, 5,41 out , 5,42 out , 92,01 out , 92,02 out  

 
The friction coefficient in the case of rubber-steel contact is assumed to be 2,0 . 
 The plate is fixed along lateral surface. Free vibrations of plate after impact by spherical indenter 
have calculated. Initial conditions applied with the using of three load intervals with different action time. 
600% deflection of plate has reached during loading. 
 As the results displacement fields were obtained for both loading cases in dependence on time. The 
graph of displacement 0Y versus time at the central plate’s point is presented in Fig. 3. 

 



 

 

 
Fig. 3 Deflections.  

Axisymmetric impact (on the left) and non-axisymmetric impact (on the right) 
 

 Displacement fields have calculated for plates with symmetrical and unsymmetrical loading cases 
and are illustrated for different time values in fig.4. 

 
CONCLUSIONS 
 We present the results of numerical calculations of the dynamic behaviour of the thick plate made of 
hyperelastic foam. For numerical calculations Ogden’s material model which implemented in ANSYS is 
used. The model can decribe the large deformations of compresible materials, for example, 500-700% in 
the tensile tests. Two circular plates are considered. The first one made of homogeneous material while the 
second one has the sandwich structure. The faces are made of rubber-like material, while the core is made of 
foam.  The impact is modelled by the short action of rigid steel ball and the the nonlinear oscilations are 
investigated. The friction between the ball and plate is taken into account.  
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Fig. 4 Displacement magnitudes 
 

 




