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Among the different methods producing superpixel segmentations of an image, the graph-based approach of Felzenszwalb and Huttenlocher is broadly employed. One of its interesting properties is that the regions are computed in a greedy manner in quasi-linear time by using a minimum spanning tree. The algorithm may be trivially extended to video segmentation by considering a video as a 3D volume, however, this can not be the case for causal segmentation, when subsequent frames are unknown. In a framework exploiting minimum spanning trees all along, we propose an efficient video segmentation approach that computes temporally consistent pixels in a causal manner, filling the need for causal and real time applications.

INTRODUCTION

A segmentation of video into consistent spatio-temporal segments is a largely unsolved problem. While there have been attempts at video segmentation, most methods are non causal and non real-time. This paper proposes a fast method for real time video segmentation, including semantic segmentation as an application.

An large number of approaches in computer vision makes use of superpixels at some point in the process. For example, semantic segmentation [START_REF] Farabet | Learning hierarchical features for scene labeling[END_REF], geometric context identification [START_REF] Hoiem | Geometric context from a single image[END_REF], extraction of support relations between object in scenes [START_REF] Nathan Silberman | Indoor segmentation and support inference from rgbd images[END_REF], etc. Among the most popular approach for superpixel segmentation, two types of methods are distinguishable. Regular shape superpixels may be produced using normalized cuts or graph cuts [START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Veksler | Superpixels and supervoxels in an energy optimization framework[END_REF] for instance. More object -or part of object -shaped superpixels can be generated from watershed based approaches. In particular the method of Felzenswalb and Huttenlocher [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF] produces such results.

It is a real challenge to obtain a decent delineation of objects from a single image. When it comes to real-time data analysis, the problem is even more difficult. However, additional cues can be used to constrain the solution to be temporally consistent, thus helping to achieve better results. Since * Performed most of the work while at New York University many of the underlying algorithms are in general super-linear, there is often a need to reduce the dimensionality of the video. To this end, developing low level vision methods for video segmentation is necessary. Currently, most video processing approaches are non-causal, that is to say, they make use of future frames to segment a given frame, sometimes requiring the entire video [START_REF] Grundmann | Efficient hierarchical graph-based video segmentation[END_REF]. This prevents their use for real-time applications.

Some approaches have been designed to address the causal video segmentation problem [START_REF] Paris | Edge-preserving smoothing and mean-shift segmentation of video streams[END_REF][START_REF] Miksik | Efficient temporal consistency for streaming video scene analysis[END_REF]. [START_REF] Paris | Edge-preserving smoothing and mean-shift segmentation of video streams[END_REF] makes use of the mean shift method [START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF]. As this method works in a feature space, it does not necessary cluster spatially consistent superpixels. A more recent approach, specifically applied for semantic segmentation, is the one of Miksik et al. [START_REF] Miksik | Efficient temporal consistency for streaming video scene analysis[END_REF]. The work of [START_REF] Miksik | Efficient temporal consistency for streaming video scene analysis[END_REF] is employing an optical flow method to enforce the temporal consistency of the semantic segmentation. Our approach is different because it aims to produce superpixels, and possibly uses the produced superpixels for smoothing semantic segmentation results. Furthermore, we do not use any optical flow pre-computation that would prevent us having real time performances on a CPU. Some works use the idea of enforcing some consistency between different segmentations [START_REF] Glasner | Contourbased joint clustering of multiple segmentations[END_REF][START_REF] Lee | Clustering of video objects by graph matching[END_REF][START_REF] Joulin | Multi-class cosegmentation[END_REF][START_REF] Gomila | Graph-based object tracking[END_REF][START_REF] Xu | Streaming hierarchical video segmentation[END_REF]. [START_REF] Glasner | Contourbased joint clustering of multiple segmentations[END_REF] formulates a co-clustering problem as a Quadratic Semi-Assignment Problem. However solving the problem for a pair of images takes about a minute. Alternatively, [START_REF] Lee | Clustering of video objects by graph matching[END_REF] and [START_REF] Gomila | Graph-based object tracking[END_REF] identify the corresponding regions using graph matching techniques. [START_REF] Xu | Streaming hierarchical video segmentation[END_REF] proposes like us to exploit Felzenszwalb et al. superpixels in causal video processing. The complexity of this approach is super-linear because of a hierarchical segmentation, preventing with the current implementation real time applications.

The idea developed in this paper is to perform independent segmentations and match the produced superpixels to define markers. The markers are then used to produce the final segmentation by minimizing a global criterion defined on the image. We show how Minimum Spanning Trees can be used at every step of the process, leading to gains in speed, and real-time performances on a single core CPU.

METHOD

Given a segmentation S t of an image at time t, we wish to compute a segmentation S t+1 of the image at time t+1 which is consistent with the segments of the result at time t.

Independent image segmentation

The superpixels produced by [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF] have been shown to satisfy the global properties of being not too coarse and not too fine according to a particular region comparison function. In order to generate superpixels close to the ones produced by [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF], we first generate independent segmentations of the 2D images using [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF]. We name these segmentations S 1 , ..., S t . The principle of segmentation is fairly simple. We define a graph G t , where the nodes correspond to the image pixels, and the edges link neighboring nodes in 8-connectivity. The edge weights ω ij between nodes i and j are given by a color gradient of the image.

A Minimum Spanning Tree (MST) is build on G t , and regions are merged according to a criterion taking into account the regions sizes and a scale parameter k.

Once an image is independently segmented, resulting in S t+1 , we then face the question of the propagation of the temporal consistency given the non overlapping contours of S t and S t+1 .

Our solution is the development of a cheap graph matching technique to obtain correspondences between segments from S t and these of S t+1 . This first step is described in Section 2.2. We then mine these correspondences to create markers (also called seeds) to compute the final labeling S t+1 by solving a global optimization problem. This second step is detailed in Section 2.3. The basic idea is to use the segmentation S t and segmentation S t+1 to produce markers before a final segmentation of image at time t + 1. Therefore, in the process of computing a new segmentation S t+1 , a graph G is defined. The vertices of G comprises to two sets of vertices: V t that corresponds to the set of regions of S t and V t+1 that corresponds to the set of regions of S t+1 . Edges link regions characterised by a small distance between their centroids. The edges weights between vertex i ∈ V t and j ∈ V t+1 are given by a similarity measure taking into account distance and differences between shape and appearance

Graph matching procedure

w ij = (|r i | + |r j |)d(c i , c j ) |r i ∩ r j | + a ij , (1) 
where |r i | denotes the number of pixels of region r i , |r i ∩ r j | the number of pixels present in r i and r j with aligned centroids, and a ij the appearance difference of regions r i and r j . In our experiments a ij was defined as the difference between mean color intensities of the regions.

The graph matching procedure is illustrated in Figure 1 and produces the following result: For each region of S t+1 , its best corresponding region in image S t is identified. More specifically, each node i of V t is associated with the node j of V t+1 which minimizes w ij . Symmetrically, for each region of S t , its best corresponding region in image S t+1 is identified, that is to say each node i of V t+1 is associated with the node j of V t which minimizes w ij . This step may also be viewed as the construction of two minimum spanning trees, one spanning V t , and the other V t+1 .

Final segmentation procedure

The final segmentation S t+1 is computed using a minimum spanning forest procedure. This seeded segmentation algorithm that produces watershed cuts [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF] is strongly linked to global energy optimization methods such as graph-cuts [START_REF] Allène | Some links between extremum spanning forests, watersheds and min-cuts[END_REF][START_REF] Couprie | Power watershed: A unifying graph-based optimization framework[END_REF] as detailed in Section 2.4. In addition to theoretical guaranties of optimality, this choice of algorithm is motivated by the opportunity to reuse the sorting of edges that is performed in 2.1 and constitutes the main computational effort. Consequently, we reuse here the graph G t+1 (V, E) built for the production of independent segmentation S t+1 .

The minimum spanning forest algorithm is recalled in [START_REF] Couprie | Causal graph-based video segmentation[END_REF]. The seeds, or markers, are defined using the regions correspondences computed in the previous section, according to the procedure detailed below. For each segment s of S t+1 four cases may appear:

1. s has one and only one matching region s in S t : propagate the label l s of region s. All nodes of s are labeled with the label l s of region s.

2. s has several corresponding regions s 1 , ..., s r : propagate seeds from S t . The coordinates of regions s 1 , ..., s r are centered on region s . The labels of regions s 1 , ..., s r whose coordinates are in the range of s are propagated to the nodes of s .

3. s has no matching region : The region is labeled by the label l s itself.

4. If none of the previous cases fulfilled, it means that s is part of a larger region s in S t . If the size of s is small, a new label is created. Otherwise, the label l s is propagated in s as in case 1.

Before applying the minimum spanning forest algorithm, a safety test is performed to check that the map of produced markers does not differ two much from the segmentation S t+1 . If the test shows large differences, an eroded map of S t+1 is used to correct the markers. Independent segmentations S 1 , S 2 and S 3

Temporally consistent segmentations S 1 (= S 1 ), S 2 , and S 3 Fig. 2. Segmentation results on 3 consecutive frames of the NYU-Scene dataset.

Global optimization guaranties

Several graph-based segmentation problems, including minimum spanning forests, graph cuts, random walks and shortest paths have recently been shown to belong to a common energy minimization framework [START_REF] Couprie | Power watershed: A unifying graph-based optimization framework[END_REF]. The considered problem is to find a labeling x * ∈ R |V | defined on the nodes of a graph that minimizes

E(x) = eij ∈E w p ij |x j -x i | q + vi∈V w p i |l i -x i | q , (2) 
where l represents a given configuration and x represents the target configuration. The result of lim p→∞ arg min x E(x) for values of q ≥ 1 produces a cut by maximum (equivalently minimum) spanning forest. The reciprocal is also true if the weights of the graph are all different.

In the case of our application, the pairwise weights w ij is given by an inverse function of the original weights ω ij . The pairwise term thus penalizes any unwanted high-frequency content in x and essentially forces x to vary smoothly within an object, while allowing large changes across the object boundaries. The second term enforces fidelity of x to a specified configuration l, w i being the unary weights enforcing that fidelity.

The enforcement of markers l s as hard constrained may be viewed as follows: A node of label l s is added to the graph, and linked to all nodes i of V that are supposed to be marked. The unary weights ω i,ls are set to arbitrary large values in order to impose the markers.

Applications to optical flow and semantic segmentation

An optical flow map may be easily estimated from two successive segmentations S t and S t+1 . For each region r of S t+1 , if the label of r comes from a label present in a region s of the segmentation S t , the optical flow in r is computed as the distance between the centroid of r and the centroid of s. The optical flow map may be used as a sanity check for region tracking applications. By principle, a video sequence will not contain displacements of objects greater than a certain value.

For each superpixel s of S t+1 , if the label of region s comes from the previous segmentation S t , then the semantic prediction from S t is propagated to S t+1 . Otherwise, in case the label of s is a new label, the semantic prediction is computed using the prediction at time t + 1. As some errors may appear in the regions tracking, labels of regions having inconsistent large values in optical flow maps are not propagated. For the specific task of semantic segmentation, results can be improved by exploiting the contours of the recognized objects. Semantic contours such as for example transition between a building and a tree for instance, might not be present in the gradient of the raw image. Thus, in addition to the pairwise weights ω described in Section 2.1, we add a constant in the presence of a semantic contour.

RESULTS

We now demonstrate the efficiency and versatility of our approach by applying it to simple superpixel segmentation and semantic scene labeling.

Original frames Mean shift results [START_REF] Paris | Edge-preserving smoothing and mean-shift segmentation of video streams[END_REF] Our results Following the implementation of [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF], we pre-process the images using a Gaussian filtering step with a kernel of variance σ is employed. A post-processing step that removes regions of small size, that is to say below a threshold δ is also performed. As in [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF], we denote the scale of observation parameter by k.

Superpixel segmentation

Experiments are performed on different types of videos: videos where the camera is static, and videos where the camera is moving. The robustness of our approach to large variations in the region sizes and large movements of camera is illustrated on Figure 2.

A comparison with the temporal mean shift segmentation of Paris [START_REF] Paris | Edge-preserving smoothing and mean-shift segmentation of video streams[END_REF] is displayed at Figure 3. The superpixels produced by the [START_REF] Paris | Edge-preserving smoothing and mean-shift segmentation of video streams[END_REF] are not spatially consistent as the segmentation is performed in the feature (color) space in their case. Our approach is slower, although qualified for real-time application, but computes only spatially consistent superpixels. 

Semantic scene labeling

We suppose that we are given a noisy semantic labeling for each frame. In this work we used the semantic predictions of [START_REF] Farabet | Learning hierarchical features for scene labeling[END_REF] and [START_REF] Couprie | Indoor semantic segmentation using depth information[END_REF].

On the NYU Depth dataset [START_REF] Nathan Silberman | Indoor segmentation and support inference from rgbd images[END_REF], we compare independent segmentation performances with our temporally smoothed results on four video sequences of indoor scenes. Unless specified, the same choice of parameters was performed in all our comparisons. We also compare our results with the results of [START_REF] Miksik | Efficient temporal consistency for streaming video scene analysis[END_REF] on the NYU-Scene dataset. The dataset consists in a video sequence of 73 frames provided with a dense semantic labeling and ground truths. The provided dense labeling being performed with no temporal exploitation, it suffers from sudden large object appearances and disappearances. As illustrated in Figure 4 our approach reduces this effect, and improves the classification performance of more than 5% as reported in Table 2.

Computation time

The experiments were performed on a laptop with 2.3 GHz Intel core i7-3615QM. Our method is implemented on CPU Table 2. Overall pixel accuracy (%) for the semantic segmentation task on the NYU Scene video. * Note that the reported timing does not take into account the optical flow computation needed by [START_REF] Miksik | Efficient temporal consistency for streaming video scene analysis[END_REF].

only, in C/C++, and makes use of only one core of the processor. Superpixel segmentations take 0.1 seconds per image of size 320 × 240 and 0.4 seconds per image of size 640 × 380, thus demonstrating the scalability of the pipeline. All computations are included in the reported timings. The mean segmentation time using [START_REF] Xu | Streaming hierarchical video segmentation[END_REF] for a frame of size 320 × 240 is 4 seconds. The timings of the temporal smoothing method of Miksik et al. [START_REF] Miksik | Efficient temporal consistency for streaming video scene analysis[END_REF] are reported in Table 2. We note that the processor used for the reported timings of [START_REF] Miksik | Efficient temporal consistency for streaming video scene analysis[END_REF] has similar characteristics as ours. Furthermore, Mistik et al. use an optical flow procedure that takes only 0.02 seconds per frame when implemented on GPU, but takes seconds on CPU. Our approach is thus more adapted to real time applications for instance on embedded devices where a GPU is often not available. The code, as well as some data and video are available at [START_REF][END_REF].

CONCLUSION

The proposed approach demonstrates the ability of minimum spanning trees to fulfill accuracy and competitive timing requirements in a global optimization framework. Unlike many video segmentation techniques, our algorithm is causal and does not require any computation of optical flow. Our experiments on challenging videos show that the obtained superpixels are robust to large camera or objects displacement. Their use in semantic segmentation applications demonstrate that significant gains can be achieved and lead to state-of-the-art results. Furthermore, by being 8 times faster than the competing methods for temporal smoothing of semantic segmentation, and up to 25 times faster if the use of GPU is not available, the proposed approach has by itself a practical interest.
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 1 Fig. 1. Illustration of the graph matching procedure
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 3 Fig. 3. Comparison with the mean-shift segmentation method of Paris [16] on Frame 19 and 20. k = 200, δ = 400, σ = 0.5.
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 4 (a) Independent segmentations with no temporal smoothing (b) Result using the temporal smoothing method of[START_REF] Miksik | Efficient temporal consistency for streaming video scene analysis[END_REF] Comparison with the temporal smoothing method of[START_REF] Miksik | Efficient temporal consistency for streaming video scene analysis[END_REF]. Parameters used: k = 1200, δ = 100, σ = 1.2.
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 1 Overall pixel accuracy (%) for the semantic segmentation task on the NYU Depth dataset. Parameter used: δ = 100, σ = 1.2, k = 800, 1000, 1000, 920.

		Frame by frame Our method
	dining room	63.8		58.5
	living room	65.4		72.1
	classroom	56.5		58.3
	office	56.3		57.4
	mean	60.5		61.6
		Frame	Miksik	Our
		by frame et al.[14] method
	Accuracy	71.11	75.31	76.27
	#Frames/sec		1.33 *	10.5