
HAL Id: hal-00830799
https://hal.science/hal-00830799

Submitted on 14 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Authoritative linked data descriptions of debian source
packages using ADMS.SW

Olivier Berger, Christian Bac

To cite this version:
Olivier Berger, Christian Bac. Authoritative linked data descriptions of debian source packages using
ADMS.SW. 9th Open Source Software (OSS), Jun 2013, Koper-Capodistria, Slovenia. pp.168-181,
�10.1007/978-3-642-38928-3_12�. �hal-00830799�

https://hal.science/hal-00830799
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Authoritative Linked Data descriptions of
Debian source packages using ADMS.SW

Olivier Berger1,2 and Christian Bac1

1 Telecom SudParis, Évry, France
{olivier.berger,christian.bac}@telecom-sudparis.eu

2 Debian project
obergix@debian.org

Abstract. The Debian Package Tracking System is a Web dashboard
for Debian contributors and advanced users. This central tool publishes
the status of subsequent releases of source packages in the Debian dis-
tribution.
It has been improved to generate RDF meta-data documenting the
source packages, their releases and links to other packaging artifacts, us-
ing the ADMS.SW 1.0 model. This constitutes an authoritative source
of machine-readable Debian “facts” and proposes a reference URI nam-
ing scheme for Linked Data resources about Debian packages.
This should enable the interlinking of these Debian package descrip-
tions with other ADMS.SW or DOAP descriptions of FLOSS projects
available on the Semantic Web also using Linked Data principles. This
will be particularly interesting for traceability with upstream projects
whose releases are packaged in Debian, derivative distributions reusing
Debian source packages, or with other FLOSS distributions.

Key words: ADMS.SW, Debian, Linked Data, package, Semantic
Web, standard, interoperability, Open Source, Free Software, RDF,
DOAP, PTS, FLOSS

1 Introduction

Asset Description Metadata Schema for Software (ADMS.SW) is a novel
ontology developped for describing software packages, releases and projects,
which can be applied to describe packages in a Free, Libre and Open Source
Software (FLOSS) distribution, using Semantic Web techniques. We consider it
is a foundational component that will allow to conduct future Quality Assurance
or other large scale FLOSS studies across the Linked Open Data cloud [5].

FLOSS software ecosystems are composed of many different actors collabo-
rating around single programs, from original upstream authors to downstream

This is a revised version of a previous paper [2] which was initially accepted at the 8th Interna-
tional Workshop on Semantic Web Enabled Software Engineering (SWESE 2012), but that the
authors weren’t able to present physically at the workshop.

2 Olivier Berger and Christian Bac

packagers in distributions like Debian. Descriptions of FLOSS development ar-
tifacts made with standardized and semantic formats like ADMS.SW can help
trace some of the process which generally happen in various venues across the
ecosystem.

1.1 The Need for Linked Data Descriptions of FLOSS

Constructing models of interactions happening along the FLOSS production
lines can be interesting, both for researchers and practitioners. Research in
empirical software engineering can for instance involve studies conducted by
modeling properties and relations between FLOSS production artifacts and
actors.

The Semantic Web techniques bring key benefits in terms of semantic inter-
operability : using a W3C standard like RDF [16] which is natively extensible
helps integrate potentially incoherent data, which fits quite well large scale
problems. The size of the communities and diversity of actors and tools present
in large FLOSS ecosystems qualify well for such an approach [13].

The Linked Data approach [5], can be very convenient to interlink resources
representing actors or artifacts belonging to different projects described with
RDF. It will allow researchers to integrate in the same “triple store” database,
description of FLOSS artifacts or actors with variable structures, still relying
on common semantics and a harmonized URI nomenclature that reflects the
origin of these resources.

But for FLOSS developers alike, these semantic Web Techniques should
offer potential interesting applications, in particular to create new global ser-
vices that need to interconnect different heterogenous project tools [4]. As an
illustration, we can imagine a new “global bug tracking system” that aims at
correlating similar bug reports filed in different Linux distributions. It can be
helpful to offer better support responses, allowing navigation between reports
which may have been related to each-other previously. Such a system will re-
quire to interface to lots of different bugtracker APIs. Whereas standards like
Open Services for Lifecycle Collaboration (OSLC) [3] (which rely on extensi-
ble semantic formats based on RDF and REST1 APIs) can help solve some
concrete interoperability issues, they only address parts of the problems (and
their deployment is not yet spectacular among FLOSS project). Actually, even
once semantically compatible data has been collected, it must be integrated
in a coherent data store. And therefore, nomenclature, freshness and accuracy
issues still represent interesting challenges. Addressing them is a foundational
requirement for large scale applications described above.
1 REpresentational State Transfer

1 Introduction 3

1.2 Authoritative Linked Data Descriptors Produced by FLOSS
Projects

We postulate that there are higher chances that meta-data is more accurate and
up-to-date when it is produced closest to the very heart of the FLOSS projects,
than obtained after a series of collection and conversion activities conducted
by third parties. Thus, with the Linked Data principles in mind2, significant
artifacts produced by FLOSS projects ought to be complemented with meta-
data available at the very same Web domains, as a minimal set of authoritative
RDF resources. URIs naming these resources can then be rooted at the project’s
domain name, and serve to identify its artifacts unambiguously.

As an illustration, Semantic Web resources describing projects from the
Apache foundation would be downloaded from RDF documents available on
http://projects.apache.org/ which would identify them for instance with
URIs like <http://PROJNAME.apache.org/> (or a variant, like
<http://PROJNAME.apache.org/doap#project>)3. Thus, in the description
of the Debian packaging the Apache geronimo program, we could reference
its upstream project (from Debian’s point of view) as the RDF resource
<http://geronimo.apache.org/>.

Our initiative, coupled with other previous and current efforts, will hopefully
help achieve a state when almost every FLOSS project are able to publish on
their Web sites or development forges, even minimal, but authoritative Linked
Data descriptions of the project or its software artifacts, either as Descriptions
Of A Project (DOAP) [7] or ADMS.SW.

1.3 Goal and Structure of this Paper

This paper will introduce a Linked Data interface based on ADMS.SW, which
was deployed on the Debian Package Tracking System (PTS), that produces au-
thoritative meta-data descriptions for the core artifacts produced by the Debian
project: source packages.

Due to Debian’s respected position in the FLOSS ecosystem, such a deploy-
ment already covers a great percentage of all FLOSS programs, and can thus
be inspirational for many FLOSS projects.

In section 2, we introduce the ADMS.SW specification. Then a brief intro-
duction to the structure of Debian source packages is provided in section 3.
Section 4 documents the choices adopted for generating Linked Data represen-
tations of Debian source packages and related FLOSS artifacts in the Debian
PTS. Section 5 presents a quick review of similar and complementary initia-
tives, while section 6 illustrates how a trivial project matching can be made
with collected Linked Data descriptions.
2 http://www.w3.org/DesignIssues/LinkedData.html
3 There’s actually a DOAP description for Geronimo, linked from http://projects.
apache.org/projects/geronimo.html — see 5.1

http://www.w3.org/DesignIssues/LinkedData.html
http://projects.apache.org/projects/geronimo.html
http://projects.apache.org/projects/geronimo.html

4 Olivier Berger and Christian Bac

2 The ADMS.SW Specification

The Asset Description Metadata Schema for Software (ADMS.SW) specifica-
tion4 is described as : “[. . .] a metadata vocabulary to describe software making
it possible to more easily explore, find, and link software on the Web.”

It is an outcome of the ISA programme (Interoperability Solutions for Eu-
ropean Public Administrations) of the European Commission, elaborated by a
working group of software catalogues and forges experts5. Although it is not
specifically covering FLOSS software only, ADMS.SW has nevertheless been
geared at addressing meta-data of FLOSS projects hosted in public development
forges to facilitate their identification and reuse by Public Administrations.

ADMS.SW specifications are published with a complementary OWL ontol-
ogy, referenced as http://purl.org/adms/sw/, to allow the publishing of such
meta-data as RDF.

As illustrated in Figure 1, it provides three main entities : Software Project,
Software Release, and Software Package to model meta-data about software
programs, their versions, and the distribution archives of these.

But it also contains various elements related to Software Repositories de-
scriptions in order to facilitate the maintenance of data managed by software
catalogues (provenance, timestamping, etc.), based on the RADion common
model of ADMS, which describes generic semantic assets.

ADMS.SW 1.0 reuses existing specifications and standards, such as Dublin
Core [19], DOAP [7], SPDX™ [9], ISO 19770-2 [8], ADMS [10], and the “Source-
forge Trove software map”6. As DOAP is already widely used in practice,
ADMS.SW reuses much of its properties. ADMS.SW is also interoperable with
the SPDX specification, whose main object, to date, is the description of copy-
right and license conditions applying to particular software packages or source
files.

3 Debian Source Packages

The Debian project7 creates a Free Software distribution, which contains thou-
sands of FLOSS binary packages ready to be installed on various computer
architectures. Several versions of the Debian distribution are maintained in
parallel, in three main suites : ‘stable’, ‘testing’ and ‘unstable’.

Debian has been studied by many authors, as it represents a good proxy for
the entire FLOSS ecosystem, due to the high number of packages it contains, and
since its development and Quality Assurance (QA) infrastructure is generally
open or easily accessible to researchers in empirical software engineering (see
for instance [11] or [6]).
4 https://joinup.ec.europa.eu/asset/adms_foss/release/release100
5 one of the authors was an active member of the working group.
6 http://sourceforge.net/apps/trac/sourceforge/wiki/Software Map and
Trove

7 http://debian.org/

https://joinup.ec.europa.eu/asset/adms_foss/release/release100
http://sourceforge.net/apps/trac/sourceforge/wiki/Software Map and Trove
http://sourceforge.net/apps/trac/sourceforge/wiki/Software Map and Trove
http://debian.org/

3 Debian Source Packages 5

Fig. 1. Simplified UML diagram of the main ADMS.SW entities

3.1 Structure of Debian Source Packages

Each binary package is actually built from a particular Debian source package.
Source packages contain “Makefiles” for package generation, control files con-
taining different meta-data like versions or package dependency descriptions,
and other scripts necessary for installation, configuration, upgrade or removal
of the binary packages [15]. In addition, it is quite common to include patches
applying to the source code of the packaged program, to adjust it to Debian
specificities or to include security fixes backported from later upstream releases.

Each revision of a Debian source package is then generally composed of two
file archives : one for the source code of the upstream version of the packaged
program (ending in .orig.tar.gz), complemented by another one for these De-
bian specific files (ending in .debian.tar.gz)8. Only the latter Debian specific
files archive, and associate meta-data descriptors change between subsequent
revisions of Debian source packages of the same version of an upstream pro-
gram.

3.2 The Debian Package Tracking System

For every Debian source package, the Debian Package Tracking System (PTS)
provides a Web dashboard (see a screenshot9 in Figure 2) which displays almost
all there is to know about the status of that package [17].

However, its HTML pages are not really exploitable by machines in a direct
form, should anyone need to interface the Debian QA system with other services.
One such need seems quite obvious for derivative distributions constructed from
8 as an exception to this general rule, some packages, which are called “native pack-
ages”, don’t have a corresponding upstream project outside Debian and only have
Debian specific files.

9 taken from http://packages.qa.debian.org/a/apache2.html

http://packages.qa.debian.org/a/apache2.html

6 Olivier Berger and Christian Bac

Fig. 2. Apache 2 source package status in the Debian PTS

Debian, like Ubuntu. Therefore, the PTS provides a custom SOAP interface10,
but the lack of standard representation of data retrieved from this API may
require another ad-hoc converter to be added to every application wishing to
interface with it.

As an alternative, we have started implementing a Linked Data [5] interface
for the Debian PTS, using the ADMS.SW ontology to represent Debian source
package facts with the standard, thus interoperable, RDF model.

4 Linked Data Representation of Debian Source Packages

We have improved the Debian PTS to add the generation of RDF descriptions
for all Debian source packages.

Every Debian source package, which used to have an HTML page accessible
at a URL like http://packages.qa.debian.org/apache2, now has a corre-
sponding RDF document available at the same URL, either as Turtle [1] or
RDF/XML format. Applying a common Linked Data pattern, HTTP clients
will be redirected automatically to the proper HTML or RDF document de-
pending on the content-type that is requested by the HTTP client, so that the
same URL can be used to represent both the human-readable HTML pages or
the machine-processable RDF document.

Thus, each package in Debian can be identified on the Semantic Web with
a unique URI like http://packages.qa.debian.org/SRC-PKG-NAME, which is
dereferenceable as an RDF document.
10 http://wiki.debian.org/qa.debian.org/pts/SoapInterface

http://wiki.debian.org/qa.debian.org/pts/SoapInterface

4 Linked Data Representation of Debian Source Packages 7

<ht tp : //p . q . d . o/apache2#apache2_2 .2.22−12>
a admssw:SoftwareRelease ;
rdfs : labe l "apache2␣2.2.22−12" ;
dcterms:description "Debian␣apache2␣source␣package␣ vers ion␣

2.2.22−12" ;
doap:revision "2.2.22−12" ;
dcterms:publisher <ht tp : // debian . org /> ;
admssw:status <ht tp : //p . q . d . o/#r e l e a s ed> ;
admssw:project <ht tp : //p . q . d . o/apache2#pro j e c t> ;
admssw:includedAsset <ht tp : //p . q . d . o/apache2#upstreamsrc_2 . 2 . 2 2> ;
admssw:includedAsset <ht tp : //p . q . d . o/apache2#debiansrc_2 .2.22−12>;
admssw:package <ht tp : //p . q . d . o/apache2#apache2_2 .2 .22−12. dsc> ;
dcterms:relation <ht tp s : // launchpad . net /ubuntu/+source /apache2

/2.2.22−6 ubuntu4> .

Listing 1. RDF description available at
http://packages.qa.debian.org/a/apache2.ttl of revision 12 of the source package for
apache2 version 2.2.22

The example in Listing 1 is an excerpt of such an RDF description, in
Turtle, of a particular revision of the Debian source package for apache2.
Note that URIs based on http://packages.qa.debian.org/ are converted
to http://p.q.d.o/ for brievity in the rest of this section.

4.1 Modelling Debian Source Packages with ADMS.SW

This section presents the modelling choices adopted so that every Debian source
package can be modeled as interlinked RDF resources. The version numbers
reflected in the resource URIs or file names below respect the Debian package
versions numbering convention11.

Figure 3 represents the main resources produced by the PTS for a particular
release of the apache2 Debian source package, as found in
http://packages.qa.debian.org/a/apache2.ttl (in grey, the “upstream”-
related resources).

Every source package has a corresponding source packaging project
SoftwareProject resource, named <http://p.q.d.o/SRC-PKG-NAME#project>.
The different resource URIs which will be expressed below will be frag-
ments to this base URI. Revisions of this source package have corresponding
SoftwareRelease resources, named as <#SRC-PKG-NAME_DEB-PKG-VERS>. Only
one of these (the “latest” one known by the PTS) is fully described as containing
(includedAsset) two sub SoftwareReleases :

– one sub SoftwareRelease for the upstream program’s version, named
<#upstreamsrc_UPSTR-VERS>. It comes with additional resources for all
archive files of the upstream sources as SoftwarePackages (typically named
like <#SRC-PKG-NAME_UPSTR-VERS.orig.tar.gz>);

11 as a short rule, the Debian package revision M of version N of an upstream program
P is identified in file names as P_N-M.

8 Olivier Berger and Christian Bac

Fig. 3. Relations between resources produced for release 2.2.22-11 of the Debian
apache2 source package

– one for the set of Debian packaging files, as <#debiansrc_DEB-PKG-VERS>,
with resources for all files comprising the Debian package source archive (typ-
ically named like <#SRC-PKG-NAME_DEB-PKG-VERS.debian.tar.gz>).

– An additional SoftwarePackage resource is generated for its
SRC-PKG-NAME_UPSTR-VERS.dsc file at a URI like
<#SRC-PKG-NAME_DEB-PKG-VERS.dsc>.

Also produced is one SoftwareProject resource for the upstream project,
named <#upstream> whith its doap:homepage, if it’s known by the PTS (which
means it has been documented by the Debian packager appropriately).

Additional complementary resources are produced, and all resources have
RDF properties (as mandated in ADMS.SW, mainly reused from DOAP or
Dublin Core), all of which it is useless to describe here in detail.

4.2 Deployment on debian.org

The authors have deployed the XSLT stylesheets generating these RDF docu-
ments on the PTS service of the Debian project12. Alongside the HTML pages
of the PTS, the RDF descriptions of Debian source packages are thus refreshed
every time new revisions will appear in the Debian archive.

A full RDF dump of all the meta-data is also available to Debian project
members13. It contains around 2.1 million triples at the time of writing.
12 see : http://packages.qa.debian.org/common/RDF.html
13 on packages.qa.debian.org:/srv/packages.qa.debian.org/www/web/full-dump.rdf

http://packages.qa.debian.org/common/RDF.html

5 Complementary Efforts 9

@prefix doap: <ht tp : // u s e f u l i n c . com/ns/doap#> .

<ht tp : // geronimo . apache . org />
a doap :Pro jec t .
doap:name "Apache␣Geronimo"@en ;
doap:shortdesc "Java␣EE␣Appl icat ion␣Server"@en ;
doap:description "Apache␣Geronimo␣ i s ␣an␣open␣source␣ server ␣runtime␣

[. . .] . "@en ;
doap:homepage <ht tp : // geronimo . apache . org> ;
doap:license <ht tp : // u s e f u l i n c . com/doap/ l i c e n s e s / a s l 20> ;

Listing 2. Excerpt from the RDF description of the Apache geronimo project

5 Complementary Efforts

In this section, we present a few complementary initiatives which describe soft-
ware packages with RDF vocabularies, using DOAP or ADMS.SW and which
could be interesting for interoperability with the Debian PTS.

5.1 DOAP Published by FLOSS Directories

A number of projects maintain public DOAP descriptions of their programs,
or other RDF descriptions of meta-data about the releases they produce. They
may be interested in complementing descriptions with ADMS.SW, or could offer
sources of descriptions that could be interlinked with the ones produced by the
Debian PTS.

A quick survey conducted by the authors showed the following sources14 :

– Gnome project
– Apache project
– PyPI (Python Package Index) directory
– CPAN (Comprehensive Perl Archive Network) directory

Listing 2 shows an excerpt of the DOAP description of the Apache Geronimo
project as published by this project15, and converted to Turtle for readability.

A quick review of samples from these sources showed a lack of consensus
on the use of certain meta-data, and that URIs adopted to reference the same
projects or programs tend to vary, even for doap:homepage URLs (a great
portion of these documents are manually crafted, or projects may have various
pages that can be considered their homepage, in particular when the project is
not hosted on its own top level domain).
14 these are maintained in https://github.com/edumbill/doap/wiki/Sites
15 downloaded from http://svn.apache.org/repos/asf/geronimo/site/trunk/

doap_Geronimo.rdf

https://github.com/edumbill/doap/wiki/Sites
http://svn.apache.org/repos/asf/geronimo/site/trunk/doap_Geronimo.rdf
http://svn.apache.org/repos/asf/geronimo/site/trunk/doap_Geronimo.rdf

10 Olivier Berger and Christian Bac

5.2 Projects Hosted on FusionForge Forges

An ADMS.SW plugin for the FusionForge 5.2 software development forge has
also been created by one of the authors16, in order to allow the description of
projects hosted on FusionForge based development forges. It may be comple-
mented by another FusionForge plugin providing FOAF profiles [12] for project
participants, which can enrich the Linked Data representations.

The plugin is still under active development, and targetted at a post 5.2
release of FusionForge, so it will take a certain time until it is deployed on
public forges hosting FLOSS projects17.

5.3 Consuming ADMS.SW in the Joinup Portal

The Joinup portal18 of the ISA programme aims at integrating in a single portal
FLOSS descriptions available from different Public Administration forges, by
harvesting descriptions of projects directly in their development project spaces,
as ADMS.SW descriptions19.

Whereas the current version of Joinup doesn’t rely on Semantic Web tech-
niques for collection of the projects descriptions, it is expected to be improved to
evolve towards ADMS.SW consuming in the future. FLOSS Project descriptions
would then complement other Semantic Assets (standards, documentation) cat-
alogued and made available on the reference portal at Joinup as semantic assets
expressed with the ADMS vocabulary.

5.4 Interlinked Developer Profiles

Project descriptions aren’t the only resources that can be interlinked across
the FLOSS ecosystem. Iqbal shows in [14] how developer profiles can also be
converted to RDF and interlinked to create a more comprehensive view of the
developer communities around a project, for instance. This approach usually
involves mining repositories or social sites through custom interfaces (via SOAP
for instance), and later converting to RDF. But we believe there would be a
great benefit in avoiding such potentially error-prone conversions if development
platforms would natively produce DOAP/ADMS.SW (or FOAF) descriptions
“out of the box”, as explained above.
16 http://fusionforge.org/plugins/mediawiki/wiki/fusionforge/index.php/

ADMS.SW_Plugin
17 like Debian’s own Alioth forge operated by FusionForge at http://alioth.debian.

org/
18 http://joinup.ec.europa.eu/
19 more details at https://joinup.ec.europa.eu/software/federated_forge

http://fusionforge.org/plugins/mediawiki/wiki/fusionforge/index.php/ADMS.SW_Plugin
http://fusionforge.org/plugins/mediawiki/wiki/fusionforge/index.php/ADMS.SW_Plugin
http://alioth.debian.org/
http://alioth.debian.org/
http://joinup.ec.europa.eu/
https://joinup.ec.europa.eu/software/federated_forge

6 Applications 11

PREFIX doap: <ht tp : // u s e f u l i n c . com/ns/doap#>

SELECT ∗ WHERE {
GRAPH <ht tp : // packages . qa . debian . org/> {
?dp doap:homepage ?h

}
GRAPH <ht tp : // p r o j e c t s . apache . org/> {
?ap doap:homepage ?h

}
}

Listing 3. SPARQL query matching Apache and Debian projects by common home-
pages

6 Applications

As with every Linked (Open) Data initiatives, the use of standard representa-
tions and their availability on the Semantic Web can lead to lots of different
uses.

An obvious case of using such ADMS.SW description of Debian source pack-
age is the matching of Debian packages with other packages/projects described
in their respective projects directories, allowing more interlinking of resources.

6.1 Matching Projects / Software Across Repositories

The doap:homepage of the “upstream” SoftwareProject resources generated
by the Debian PTS can be an obvious matching key, provided that one has a
database of upstream project descriptions (as DOAP[7]).

As an illustration, we demonstrate this by loading DOAP descriptions of
projects of the Apache foundation20, together with a dump of the Debian source
package descriptions in a single triple store (virtuoso). The example SPARQL
query in Listing 3 shows how to query for such matches between Debian and
Apache.

Such a query currently returns 62 matched source packages and Apache
upstream projects (see an excerpt in table 1, where URLs have been compacted
for brievity).

But the reliability of this matching method isn’t very good in practice.
There may be many more Apache foundation projects packaged in Debian,
but the maintainers may have forgotten to add a homepage link in the package
descriptors. Or the URLs mentioned may not be matching, as project homepage
naming conventions can vary (and evolve in time).
20 collected from projects.apache.org (see http://projects.apache.org/docs/

index.html)

http://projects.apache.org/docs/index.html
http://projects.apache.org/docs/index.html

12 Olivier Berger and Christian Bac

Table 1. Matching upstream project homepages with Debian source packages’
dp h ap
ivy ant.a.o/ivy/ ant.a.o/ivy/
apr apr.a.o/ apr.a.o/
apr-util apr.a.o/ apr.a.o/
libcommons-cli-java commons.a.o/cli/ commons.a.o/cli/
libcommons-codec-java commons.a.o/codec/ commons.a.o/codec/
libcommons-collections3-java commons.a.o/collections/ commons.a.o/collections/
libcommons-collections-java commons.a.o/collections/ commons.a.o/collections/
commons-daemon commons.a.o/daemon/ commons.a.o/daemon/
libcommons-discovery-java commons.a.o/discovery/ commons.a.o/discovery/
libcommons-el-java commons.a.o/el/ commons.a.o/el/
libcommons-fileupload-java commons.a.o/fileupload/ commons.a.o/fileupload/
commons-io commons.a.o/io/ commons.a.o/io/
commons-jci commons.a.o/jci/ commons.a.o/jci/
libcommons-launcher-java commons.a.o/launcher/ commons.a.o/launcher/
.

An alternate matching method could be based on project name litterals, but
that isn’t always feasable either, due to homonimy for instance. One will refer
to [18] for an analysis of this problem.

The distromatch project21, started in 2011, intended to try and help solve
these project/packages matching issues, although it is unfortunately not main-
tained anymore at the time of writing.

In any case, this first quick proof of concept allows us to plan further de-
velopments based on such meta-data, which will be tested on real life cases,
for instance in constructing RDF harvesters and meta-data aggregators, and
eventually merging with initiatives like distromatch.

6.2 Large Scale Perspective

The RDF-ization of the Debian PTS has just started. Next steps will include
modelling of relations between source and binary packages. These will probably
require extending ADMS.SW or integrating complementary ontologies.

When deployments of ADMS.SW have been made on software forges (like
FusionForge servers), software catalogues (like Joinup) or in other FLOSS dis-
tributions, it will become one of the tools allowing automated traceability at
large scale of FLOSS releases and associated artefacts, by interlinking their
Linked Data resources.

Some interlinking of security advisories, patches, or bug reports (for instance
combined with the OSLC-CM standard22) should then be easier, and dimin-
ish manual intervention needs, for the benefits of all actors along the FLOSS
production chains.
21 http://www.enricozini.org/2011/debian/distromatch/
22 http://open-services.net/wiki/change-management/

http://www.enricozini.org/2011/debian/distromatch/
http://open-services.net/wiki/change-management/

7 Conclusion 13

6.3 Future Developments

We believe the current early result can be a driving force for more deployments
around ADMS.SW as a standardization core. However there seems to be a
reluctance in adopting RDF in FLOSS projects, to some extent, maybe linked
to an erronous perception that RDF must be expressed as XML (which is
certainly not the case, with representations of the RDF model like Turtle [1],
which has been adopted as a default for the Debian PTS).

We can foresee that only when novel inter-project “killer” applications mak-
ing use of such Linked Data will have been developed, will it be possible to
convince FLOSS projects that adoption of Linked Data standards descriptions
can really be for their own benefit.

It is likely that even when lots of Linked Data descriptions of FLOSS arti-
facts are made available by major FLOSS projects, achieving effective interop-
erability will require many implementation efforts, far beyond a single actor’s
reach. More standardisation will be needed, and services will have to be pro-
vided to establish trusted reference catalogues of Semantic project descriptors
(in the direction set by Joinup of the distromatch project for instance). Such ac-
tors would provide FLOSS “semantic hubs”, or project matching “brokers” which
could maintain reference interlinking relations for the concurrent Semantic de-
scriptions which were produced in the many venues of the FLOSS ecosystem.

7 Conclusion

We have presented a first significant deployment of an ADMS.SW 1.0 imple-
mentation, which illustrates the potential for interlinking large sets of FLOSS
project descriptions on the Semantic Web. ADMS.SW allows us to describe
relations between projects, programs and their releases so that such entities
become part of the Linked Open Data “cloud”.

In [4], we envisioned some novel uses of Linked Data representations of
FLOSS development artefacts, both for software engineers and researchers ob-
serving their efforts. But to achieve the full potential of that approach, the
Linked Data representations must be semantically interoperable, authoritative,
accurate, and using standard naming schemes for the same resources. We have
achieved a first concrete step in this direction, through the current results for
the Debian PTS.

The way we did it for the Debian PTS can be inspirational for other FLOSS
distributions, either independant, or derived from Debian. By integrating such
meta-data generation in the heart of the technical infrastructure of Debian, we
hope to establish such an authoritative reference for Debian source packages
identification on the Semantic Web.

14 Olivier Berger and Christian Bac

References

1. Dave Beckett and Tim Berners-Lee. Turtle - terse RDF triple language, W3C
team submission, 2008. See: http://www.w3.org/TeamSubmission/turtle/.

2. Olivier Berger. Linked data descriptions of debian source packages using
ADMS.SW. In Elisa F. Kendall, Jeff Z Pan, Ljiljana Stojanovic, and Yuting
Zhao, editors, SWESE 2012: 8th International Workshop on Semantic Web En-
abled Software Engineering, pages 43–55, Nara, Japan, 2012.

3. Olivier Berger, Sabri Labbene, Madhumita Dhar, and Christian Bac. Introducing
OSLC, an open standard for interoperability of open source development tools.
In ICSSEA, pages ISSN–0295–6322, Paris, France, 2011.

4. Olivier Berger, Ion Valentin Vlasceanu, Christian Bac, Quang Vu Dang, and
Stéphane Lauriere. Weaving a semantic web across OSS repositories: Unleash-
ing a new potential for academia and practice. International Journal of Open
Source Software and Processes (IJOSSP), 2(2):29–40, 2010.

5. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So
Far. International Journal on Semantic Web and Information Systems (IJSWIS),
5(3):1–22, 3 2009.

6. E Gabriella Coleman. Coding Freedom: The Ethics and Aesthetics of Hacking.
Princeton University Press, 2012.

7. Edd Dumbill. Decentralizing software project registries with DOAP. In Intelligent
Search on XML Data - XML, 2004.

8. unspecified authors. ISO/IEC 19770-2: Software identification tag standard.
9. unspecified authors. Software Package Data eXchange specification, 2011.

10. unspecified authors. Asset Description Metadata Schema specification 1.00, 2012.
11. Jesus M. Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr, Juan José

Amor, and Daniel M. German. Macro-level software evolution: a case study of a
large software compilation. Empirical Software Engineering, 14(3):262–285, June
2009.

12. Mike Graves, Adam Constabaris, and Dan Brickley. FOAF: Connecting People
on the Semantic Web. Cataloging & classification quarterly, 43(3):191–202, April
2007.

13. James Howison. Cross-repository data linking with RDF and OWL: Towards
common ontologies for representing FLOSS data. In WoPDaSD (Workshop on
Public Data at International Conference on Open Source Software), 2008.

14. Aftab Iqbal and Michael Hausenblas. Integrating developer-related information
across open source repositories. In Information Reuse and Integration (IRI), 2012
IEEE 13th International Conference on, pages 69 –76, aug. 2012.

15. Ian Jackson, Christian Schwarz, et al. Debian policy manual. version 3.9.4.0,
2012-09-19 - http://www.debian.org/doc/debian-policy/.

16. Ora Lassila, Ralph R. Swick, and World Wide Web Consortium. Resource de-
scription framework (RDF) model and syntax specification, 1998. W3C Recom-
mendation.

17. Martin Michlmayr. Managing debian. AUUGN, The journal of AUUG Inc., 25(3),
9 2004.

18. Megan Squire. Integrating projects from multiple open source code forges.
IJOSSP, 1(1):46–57, 2009.

19. Stuart L. Weibel, John A. Kunze, Carl Lagoze, and Misha Wolf. Dublin core
metadata for resource discovery, 1998. RFC 2413.

http://www.debian.org/doc/debian-policy/

	Authoritative Linked Data descriptions of Debian source packages using ADMS.SW
	Olivier Berger and Christian Bac

