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Abstract

Despite its intrinsic difficulty, ancestral character states reconstruction
is an essential tool for testing evolutionary hypothesis. Two major classes
of approaches of this question can be distinguished, depending upon they
are parsimony- or likelihood-based. We focus here on the second class
of methods, more specifically on approaches based on continuous-time
Markov modeling of character evolution. Among them, we consider the
most likely ancestor reconstruction, the posterior probability reconstruc-
tion, the likelihood ratio method, and the Bayesian approach.

We discuss and compare the above-mentioned methods over several
phylogenetic trees, adding the most parsimonious reconstruction perfor-
mance in confrontation. Under the assumption that the character evolves
following a continuous-time Markov process, we compute and compare
the expectations of success of each method for a broad range of evolution
parameter values. Moreover, we show how the knowledge of the evolu-
tion model parameters yields to compute upper bounds of reconstruction
performances, which are provided as references.

The results of all the reconstruction methods are quite close one to
another and the expectations of success are not so far from their theoret-
ical upper bounds. But the performances ranking heavily depends on the
topology of the studied tree, on the ancestral node to infer as well as on
the parameter values. Consequently, we propose a protocol providing for
each parameters value the best method in terms of expectation of success,
with regard to the phylogenetic tree and the ancestral node to infer.

Keywords: Maximum likelihood; Ancestral state reconstruction; Con-
tinuous Markov process, Comparative methods

1 Introduction

Ancestral reconstruction may concern either sequences (Yang et al., 1995}
Koshi and Goldstein, (1996; |Zhang and Nei, [1997; [Krishnan et al., 2004) or spe-



cific ecological, phenotypic, or biogeographic traits, called characters (Felsen-
@ . Even though this question suffers from theoretical inherent lim-
itations (]@L , the reconstruction of ancestral states is hard to avoid
when one wants to test evolutionary theories about selection process (Messier
and Stewart), [1997; Bishop et al., [2000)), neutral evolution (Langlais and Fitchl,
1974; |Templeton, 1996), homoplasy (Ree and Donoghue, 1998), functional diver-
gence etc. The trait to be reconstructed can be more or less complex, discrete
or continuous. In the present work, we consider the most basic case: binary
characters, that is where a trait takes only two different values, typically the
presence or the absence of a given feature. We focus on the reconstruction prob-
lem, which can be introduced as follows. The whole phylogenetic history of a
set of organisms is assumed known and is represented as a tree with specified
branch lengths. The character states of contemporary organisms (tips of the
tree) are also given. The reconstruction process, delineated in Figure 1, aims to
assign, in the most relevant way, the character states of the ancestor organisms
(the internal nodes of the tree).

Different points of view can be used to evaluate the relevance of a particular
ancestral reconstruction. Among them, one can distinguish two major classes.
In the first one, the idea is to explain the contemporary states in the simplest
way, that is generally with the fewer number of changes of state between an an-
cestor and its child. Such approaches are said parsimonious (Fitch, 1971; [Swof-
fford and Maddison) [1992; |Collins et al., [1994; Maddison and Maddison, 2009)
and are still widely used to reconstruct ancestral states. The other main point
of view is to model the character evolution as a stochastic process, generally as
a continuous time Markov model, and to consider the likelihoods of the possible
ancestral character states computed from this model, in order to perform the
reconstruction (Felsenstein, [1981; Koshi and Goldstein, 1996; Schluter et al.,
[1996; [Pagel, 1999; Huelsenbeck and Ronquist), 2001} Nielsen, |2002). One of the
main advantages of likelihood approaches is that they yield to take into account
divergence times (branch lengths) while parsimonious methods consider each
evolution step in the same way. Another concern of parsimonious approaches is
that they are based either on parameters (generalized parsimony) or on strong
assumptions, often controversial, like irreversibility for Dollo parsimony. The
choice of parsimony parameters remains difficult (Ree and Donoghue, |1998}
2011)), while maximum likelihood estimation or Bayesian approaches are
natural answers to the same question for stochastic methods. Several authors
discuss the advantage of likelihood approaches with regard to parsimonious ones
(Schluter et al. [1996; Mooers and Schluter, |1999; [Pagel, |1999; [Nielsen) 2002;
[Huelsenbeck et al., 2003). We argue that the points of view originating these
two classes of approaches differ in such an amount (time influence !) that the
relevance of one or another can only be tested with regard to real biological data
sets. For instance, |Clark et al.|(2008) study Pacific Cyrtandra and conclude that
in this particular case, likelihood-based methods offer more congruent results
than parsimonious ones.

In this study, we focus on several likelihood-based reconstruction methods
which are all based on the continuous-time Markov modeling of character evo-
lution. The most likely ancestor reconstruction returns the states corresponding
to the ancestral history maximizing the total likelihood of the phylogenetic tree
(Yang et all [1995)). The posterior probability reconstruction as described in
[Yang et al.| (1995) computes for each ancestral organisms the posterior proba-




bilities of all possible states and associates the state having the greatest posterior
probability to this organism. The likelihood ratio reconstruction, introduced in
Pagel (1999), computes the likelihoods associated to each possible state of an
ancestral node to determine the most likely. Finally the Bayesian approach
considers weighted sums of posterior probabilities computed from the possible
model parameters values, with weights given by prior distributions (Huelsen-
beck and Ronquist), [2001). Here we rather use an empirical Bayesian method
since some of the prior distributions parameters are estimated from the data
(Maritz and Lwinl 1989; [Pagel et al. |2004)). These likelihood-based methods
are confronted to the most parsimonious reconstruction with equal gain/loss
costs (Fitch parsimony criterion (Fitch, [1971))).

In Maddison| (1995)), author proposes a method to compute the probability
of correct reconstruction by parsimony, under the assumption that the evolution
of the binary character follows a discrete-time Markov process. We apply the
same general scheme to likelihood-based reconstruction methods, but here under
the assumption that character evolution is driven by a continuous-time Markov
chain, which turns out to be the same assumption underlying the likelihood
approaches of reconstruction. It allows us to compute the expectations of success
of each method and thus effectively compare their respective performances.

The rest of the paper is organized as follows. In the first Section, we formally
present the ancestral reconstruction problem and the evolutionary models used
in likelihood approaches. We briefly introduce the likelihood-based approaches
of character state reconstruction above-mentioned, detailing in particular the
strong relation between the likelihood ratio and the posterior probability recon-
struction. In the second section, we start by showing how to compute the expec-
tation of success of any reconstruction method, either likelihood-based or not.
We also provide upper bounds of these reconstruction expectations of success.
Next, we discuss the general influence of the parameters driving the evolution
process on the reconstruction performances and compare the expectations of
success obtained by the methods. Finally we propose a practical protocol de-
signed to select the most relevant reconstruction method with regard to a given
phylogenetic tree, with known contemporary states. The protocol is illustrated
over a biological dataset from [Webster and Purvis| (2002).

2 Materials and methods

2.1 Formal presentation of the ancestral reconstruction
problem

The notation 7 designs both a phylogenetic tree (including branch length
information) and its set of nodes. The (complete) evolutionary history of a
binary character over T associates to each node a state belonging to {0, 1}, says
1 for present and 0 for absent. Formally, it is an element x of {0,1}7. The state
of a node « is then noted x,. We put A and C for the set of the internal nodes
(ancestors) and for the set of tips (contemporary organisms) of 7 respectively.
In the ancestral reconstruction problem, the states of nodes in C are known and
stored in an element c of {0, 1}¢, while the states of nodes A are unknown. The
ancestral state reconstruction problem consists in associating binary states to
all internal nodes, in other words, to find, in a way somehow optimal, an element



a in {0,1}4, which altogether with the known state configuration ¢ € {0,1}¢
of the tips, gives the whole evolutionary history of the binary character over 7T .

2.2 Ancestral reconstruction methods
2.2.1 Evolutionary model: parameters and notations

A basic presentation of continuous time Markov models, including formula
of likelihood computation, is given in Appendix A. We just recall here that for
a binary character, such a model M can be defined with two parameters m
and A, where 7 is the probability of state 1 in the stationary distribution of
M and A can be thought as a scale factor speeding up evolutionary time. More
intuitively, my reflects the propensity of staying in state 1 as well as evolving from
0 to 1. Informally, A is a positive real number which indicates the strength of
the relation, also modulated by branch lengths, between the state of a node and
the state of its direct ancestor: the smaller is A, the unlikelier becomes a change
between a node and its child, while when X is very high, evolution essentially
turns out to draw a state following the stationary distribution (influence of direct
ancestors tends to become negligible). From a given model M, one associates to
any time ¢, the transition matrix B, (t) in which entry (a,b) € {0,1}? contains
the probability to evolve from state a to state b in time ¢ under model M (see
Appendix A).

The probability of a complete configuration of states x € {0,1}7 under the
model M is noted:

B (X7 =x)

where Xs denotes the states variables vector of the nodes of a subset S C 7.

If 7 and J are two non-intersecting subsets of nodes, i and j two states
configurations belonging respectively to {0,1}Z and {0,1}, the probability of
the configuration obtained by merging i and j is noted:

Bv(Xz =1,X7 =]).

If H is a subset of 7 and h a configuration of {0,1}*, the probability of the
partial configuration h, known only over #, is given by:

P (X9 =h) = Z P v (X =h, X7, =1).

refo,1}\#

2.2.2 Most likely ancestor reconstruction

The most likely ancestor reconstruction associates to a tree 7 and a config-
uration of known states ¢ € {0, 1}€ of tips, the configuration of ancestor states
which makes the probability of the corresponding whole evolutionary history as
great as possible. The evolution model parameters are not given and we have to
estimate them from the data available, that are the tips states. This is done by
numerically computing the model M which maximizes the likelihood of the tips
states. Model M is used to compute the most likely ancestor reconstruction
which is the configuration mg; € {0, 1}A defined by:

m ; = argmax B (X4 = a,X¢ =c).
ac{0,1}A



We also denote by m iz (a) or simply MLAg () the state of node v in the most
likely reconstruction m 5.

Remark that the algorithm computing the most likely ancestor does not
compute the likelihoods of all possible ancestors but performs in a very same way
as the algorithm computing the most parsimonious reconstruction. In particular
its time of computation is linear with the number of nodes of the tree.

2.2.3 Posterior probability reconstruction

Let a be a node of T of unknown state. The posterior probability of state
1 for node « is the probability of observing state 1 on «, conditioned to what
is known on the tree (the configuration ¢ of contemporary states). Again the
computation of this conditional probability needs an evolution model which has
to be estimated by maximum likelihood like in the case of most likely ancestor
reconstruction. This estimated model is still noted M and is used to compute
the posterior probability:

PPxi(«) Bu(Xa=1|Xc=c)
Bx(Xo=1,Xc=c¢)

B (Xe =c)

The ancestral reconstruction derived from posterior probability basically as-
sociates to each unknown node «, the state 1 if

PPM\(CY) = IPT,/Q(XQ =1 | Xc = C) > ]P,:M\(Xa =0 | Xc = C)

and the state 0 otherwise. Since these two conditional probabilities are com-
plementary, the previous inequality is equivalent to PPx(a) > 0.5. We will see
later that if we replace the estimated model M by the real underlying evolution
model in the preceding inequality, the state that we guess for node « is actually
the one which minimizes the error expectation.

The computation time of the posterior probability for a given node is propor-
tional with the total number of nodes of the tree. Since it has to be performed
once for each unknown node, the total time of computation of the reconstruction
is quadratic with respect to the size of the tree.

2.2.4 Likelihood ratio reconstruction

The likelihood ratio reconstruction was introduced in [Pagel| (1999). To re-
construct the state of an unknown node «, this methods starts by computing
the maximum likelihood estimations of the Markov model M; and M,, ob-
tained from 7, with the known states (that of tips) and by setting the state
of « respectively to 1 and 0. Next, it computes the likelihoods corresponding
to the two alternative reconstructions for node a, under the two corresponding
models, and finally considers their ratio:

IPT,/W1(XO¢ = 17XC = C)
IPTJQO(XQ =0, X¢ C).

The likelihood ratio LRg, 5, () indicates which hypothesis of reconstruction to
favor for node a. As in the case of posterior probability, one needs a threshold to

LR, mi, () =



perform effectively the reconstruction. A natural choice is to reconstruct state
1 for node « if its likelihood ratio is greater than one and state 0 otherwise.

The computation time of this method is way greater than that of the pre-
ceding methods because we have to estimate the parameters of model twice per
nodes. Since this estimation is done numerically, it implies the computation of
a great number of likelihoods over the tree.

2.2.5 Likelihood ratio and posterior probability

The likelihood ratio is actually very close to the posterior probability. To
explain this point, we recall that to compute the likelihood ratio, models M
and M, are estimated from the tips and by setting the state of a respectively
to 1 and 0. The greater is the tree, the closer are these estimations one to
another and to the estimation M obtained from the only states of the tips (i.e.
the influence of setting the state of o becomes negligible). It comes that for a
sufficient size of tree, we have:

BuXe=1Xc=c

LRg, 5,(0) ~ st X = Lde 0]
Bu(Xa=0,X¢c=c)

A basic calculus using the expression of the posterior probability gives:

PPy (a) ~ — (@)

1+ IRg, 5, (@)

In particular the corresponding reconstruction methods tends to becomes
equivalent since we expect PPy (ar) > % if LRx, 51, (0) > 1 and reciprocally.

2.2.6 Bayesian reconstruction methods

Bayesian approaches aim to incorporate uncertainty in the reconstruction
process. This uncertainty is formalized by a prior probability distribution u
over the model parameters. This prior is used to compute the corresponding
Bayesian posterior probability relative to each unknown node « and defined in
the following way:

B(a) = /MIPW(XQ — 1]Xc = ¢) p(M)

Basically the idea is to sum the posterior probabilities obtained over all the
possible parameters of the binary Markov model of evolution, weighted by the
their prior probabilities. The choice of prior distributions for the parameters
A and 7; will be discussed further. We get a Bayesian posterior probability
which can be used in the same way as the posterior probability obtained from
the maximum likelihood estimation of the model to perform an ancestral recon-
struction. Bayesian reconstruction approach also provides a confidence inter-
val for this Bayesian posterior probability, revealing if its value is significantly
greater (resp. smaller) than 0,5 in order to reconstruct state 1 (resp. 0) or if it
is not relevant enough.

Finally, remark that the Bayesian reconstruction approach can be extended
in order to take into account uncertainty not only on the model of evolution but
also on the phylogenetic tree supporting the character evolution (it then needs
a prior probability on trees) (Ronquist, [2004). This last point is not discussed
further here because the phylogenetic tree is assumed to be known.



2.2.7 Choice of prior distributions in Bayesian reconstructions

We have to choose prior distributions for the parameters A and m. We
chose prior distributions as suggested in [Maritz and Lwinl (1989) and in |Pagel
et al.[(2004). As prior for parameter A\, we use an exponential distribution with
parameter estimated by maximum likelihood from the tips states, and we use
an uniform prior for parameter 7;. Estimating, or determining from biological
consideration, the parameter of the exponential prior distribution can hardly be
avoided since the evolution speed of a character depends on its own nature.

The Bayesian posterior probability is generally computed by stochastic si-
mulations methods like Markov Chain Monte Carlo techniques. Here we eval-
uate an approximation of the Bayesian posterior probability by sampling the
space of parameters as follows. For a given number n, we split the set of pos-
sible values of A (that is non-negative real numbers) into n parts of probability
1 with regard to the exponential distribution considered (in all simulations
presented here the Bayesian probability is computed by splitting the domain
of the scale parameter into n = 10 parts). Each part is then represented by
the parameter value corresponding to its median. Our approximation for the
Bayesian posterior probability is then computed as the mean of the posterior
probabilities obtained for all pairs of parameters (X', 7]) where )’ is the median
of a part and 7] taken in {0.1,0.2,...,0.9}. We choose n in such a way that
increasing the number of parts in which we split the domain of parameters A or
w4 for the approximation of the Bayesian posterior probability, does not change
the expectations of success.

3 Assessing performance

3.1 Reconstruction accuracy

In Maddison| (1995), author provides exact calculations of the probabili-
ties of success for a parsimonious reconstruction under the assumption that
the character evolves following a symmetric discrete time Markov model. In
order to evaluate performances of likelihood-based reconstruction approaches,
we proceed in a same way but we assume here that the character follows a
continuous-time Markov model.

3.2 Conditional expectation of success

Let M be the unknown model used for generating the data. We consider a
particular evolutionary history, where we denote by c the set of contemporary
states and by a the set of ancestral states that are obtained. A particular
reconstruction method m infers ancestral states r€ from the set of contemporary
states c. It succeeds in reconstructing node « if a, = rS. But under the

evolution model M and conditioned to the contemporary states, node « has
either state a, with probability

B (Xo=a,| Xe=c),

or state b, = 1 — a, with the complementary probability.



Consequently, given the contemporary states ¢, a reconstruction method
predicting r¢ for node a succeeds with expectation

> e maBu(Xa =1, | X =c)
uy,€{0,1}

where ¢ is the Kronecker delta:

3 C

Sre o 1, if r§ =u,
o Ua : c

‘ 0, if r$ # u,.

This is nothing but B, (X, =r¢ | X¢ =c).

3.3 Expectation of success

We denote by S, the binary random variable indicating whether the re-
construction method m succeeds in reconstructing node «. The expectation of
success of m is nothing but that of S, o

]E(Sm,a) = Z ]B'M(on = rZ ‘ Xc= C) ]P’ITM(XC = C) (1)
ce{0,1)¢

Consequently, for a given continuous time Markov model of evolution M of
parameters w1 and A, computing the value

PM,a,e = ]PF,M(Xa =1 | XC = C) (2)

for any set of contemporary states ¢ provides the expectation of success of any
reconstruction method at a chosen node a.

Finally, if one wants to select a reconstruction method from its expected
number of correct reconstructed states over the whole phylogenetic tree, one
has to sum IE(S,, ) over all the ancestral nodes a.

3.4 Upper bound for expectation of success - Optimal re-
construction

As yet pointed out, notably in [Mossel| (2003)), ancestral reconstruction suf-
fers from limits inherent to the stochastic character of evolution. Here we are
somehow able to explicit this limit.

From Equation , we derive that

E(Sma) < Y, max B u(Xe=us| Xe=c) Bu(Xce=c).
u,€{0,1}
c e {o,1}¢
This implies that the expectation of success of any reconstruction method m
is smaller than the expectation of success of the reconstruction OP y4 inferring
p at the ancestral nodes in the following way :

1, R (Xa=1]Xe=c¢c) > (Xa=0]|X¢c=c)
Pa = 0, otherwise.



The reconstruction method OP 4 will be referred to as the M-optimal re-
construction since no approach can give better results in terms of expectation of
success. Note that the only difference with the posterior probability reconstruc-
tion lies in the model used to compute the conditional probability. Namely, this
model is the one generating the data for the optimal reconstruction while being
its maximum likelihood estimation from observed states in the case of the pos-
terior probability reconstruction. Naturally in the real life, we never have access
to the model underlying the biological evolution. Nevertheless, in the particular
case of our study, we do know this model and the optimal reconstructions allows
us to present optimal upper bounds of expectations success.

Remark that under the assumption that the evolution model parameters are
not fixed but follows given distributions, a similar argument shows that the
method achieving the best performances is the Bayesian reconstruction with
these distributions as priors.

3.5 Saturation

We are interested here in defining what is a relevant range of values for
parameters m; and A\. Namely, without a priori knowledge, m; may describe the
interval [0, 1], whereas X is constrained by an evolution scale neither too high
(A < Amax) to keep a phylogenetic signal strong enough almost on the shortest
branch, nor too low (A > Apin) to observe some evolution events, almost on the
longest branch. Thus, we fix a threshold € such that the state of a child must
depend on the state of its direct ancestor:

—In(e)

[Poo(t) —p1o(t)| > & A< :

3)
and such that a child and its direct ancestor do not almost surely have the same

state: 1 (1 )
Cln(l —e
Poo(t) —pro(t) <1l—e & A> —— 2

(4)

This provides thresholds Apnin = ﬁ and Apax = QL(g) that have to be
computed for each tree. Thus success results show that saturation is reached as

soon as A is greater than a threshold Ay ax.

4 Results
4.1 Data

We considered several trees (with branch lengths information) as support for
comparing the efficiency of reconstruction methods for binary characters: the
(sampled) tree-of-life restricted to eukaryote organisms (Letunic and Borkl [2007)
(Fig. 2a) and two subtrees extracted from Pleistocene planktic Foraminifera
phylogeny (Webster and Purvis| |2002)) (Fig. 2b and 2c).

Branch lengths are normalized in order to get an average time from root to tips
equal to 100.



4.2 Parameters used for computing the expectations of
success

Applying formulae and with € = 0.01, we get that suitable values
for A must range 0.0001 to 1. We then consider A in the logarithmic scale
{0.0001,0.001,0.01,0.01,1}. As results for A = 0.1 and A = 1 are very close
because saturation is nearly reached at A = 0.1, results for A = 0.1 will not be
shown.

For each tree we compare the accuracy of methods to reconstruct the state
of all the ancestors (including the root of the tree). Thus for any possible tips
configuration, we perform a parsimonious, an optimal, a most likely ancestor, a
posterior probability, a likelihood ratio and a Bayesian reconstruction for every
node « (when needed, the parameters of the model used in reconstruction are
estimated knowing only the states of the tips). We also compute the likelihood
the probability pag,a,c for this internal node to be in state 1, given each tips
configuration, considering combinations of parameters m; and A with m; taken
among {0.1,0.2,--- ,0.9} and A among {0.0001,0.001,0.01,0.1,1}. Then we de-
duce the conditional probability of success associated to configuration ¢ (either
PM,a,ec O 1 — Ppa,c). Finally, by summing over all the possible configura-
tions ¢, we obtain for every node the expectation of success associated to each
reconstruction method.

The results are displayed in Figure 3, where we plot the expectation of
success of each method vs the parameter m; for all the values of A considered.
Actually, for every tree, we display the results only for the root and for the
internal nodes labeled A and B in every tree (Fig. 2).

4.3 Parameters influence

Everything stated here stands for all the reconstruction methods, and for all
the studied trees. As expected, we observe in Figure 4, that all the reconstruc-
tion approaches perform better as A is smaller. Indeed, this corresponds to a
model where character states evolve slowly, and consequently reconstruction is
quite easy.

The parameter 7y also influences the expectations of success of all methods
since, for a fixed A, they are better with m; close to 0 (or symmetrically close
to 1) than with 7; about 0.5. Moreover, this influence of 7; grows with A.
Notably for A = 0.0001, the difference between the expectations of success of
reconstructions obtained from simulations using m; = 0.1 and simulations using
71 = 0.5 is less than 0.005 while this difference is about 0.4 for A = 0.1. We
recall that however small is the difference between expectations of success, it is
significant.

4.4 Saturation

For greater values of parameter A, the ancestor/child relation turns out to
be weaker. Hence, the classifications become less reliable and the influence of
the parameter m; over the reconstruction results increases. Indeed as parame-
ter A increases, the expectations of success tend to decrease linearly with the
parameter m; (for m; > %), and symmetrically. When X is greater than 1, the
optimal expectation of success follows the so-called curve of no-discrimination.

10



Essentially this draws the curve we would obtain by inferring the state 1 if
™ > % and the state 0 otherwise, without taking into account the state of the
other nodes. For such values of A, the phylogenetic signal is no longer strong
enough to be relevant with regard to the reconstruction problem.

4.5 Comparison of M-optimal, most likely ancestor, pos-
terior probability, likelihood ratio, Bayesian and most
parsimonious reconstructions

As stated above, the M-optimal method provides upper bounds for expec-
tations of success when evolution is driven by M. Despite the fact that there
are significant difference between the expectations of success achieved by the
methods, it is worth noting that no method shows really bad results. Indeed,
all the expectations of success are quite close to the optimal one, especially when
A is small.

The reconstruction methods based on likelihood generally obtain better per-
formances comparing with the parsimonious one, except for some of the nodes
as showed in Figure 3, when A is small enough.

We observe that when we reconstruct the root of every tree, the curves cor-
responding to the expectations of success of the posterior probability and the
likelihood ratio reconstructions are not distinguishable. A possible explanation
could be that time from the common ancestor is great enough to make parame-
ters estimations My, M, very close to M, and consequently the reconstructions
coincide.

As expected, the M-optimal reconstruction has the best performances, when
evolution is driven by model M of parameters (A, 71). Since the real param-
eters (A, ) are unknown, the M-optimal reconstruction can not be achieved.
Then one has to choose between the other reconstruction methods. But the
expectations of success depend on the topology of the tree, the node to infer,
the parameters values and hence no rule can be guessed.

5 Discussion

5.1 None reconstruction method can be the best

Under the assumption that the character evolution is driven by a Markov
model M, we have seen that the best method is the so-called M-optimal method
OP uq. It clearly implies that finding a “real” reconstruction method (i.e. work-
ing only from the knowledge of the contemporary states) which gives better
performances than any other method for any model M is hopeless. Though it
certainly has bad performances if the evolution follows a model different from
M, OP pq outperforms any other methods if M actually drives evolution. This
is the reason for which we propose the following protocol as an help to choose
the most suitable reconstruction method with regard to the phylogenetic tree
considered, the internal node of which we want the state to be reconstructed as
well as the evolutionary assumptions we make.

11



5.2 A Protocol to make the best choice
5.2.1 Description

Suppose now that we study a phylogenetic tree with character states known
for several species (generally the contemporary species). All the reconstruction
methods infer a state for the ancestral node «, but they do not necessarily
coincide. Indeed, in the examples previously studied (common ancestor and
internal nodes A, B), the states inferred by the likelihood-based reconstruction
methods do not coincide in at least 10% configurations (see Table 1). Actually,
if we included the most parsimonious reconstruction in this count, the number
of conflicting reconstructions would be much greater. Indeed, the most parsi-
monious reconstruction, lying on the minimization of a discrete criterion, often
reconstructs either state 0 or 1 with the same cost. In this case, reconstruction
is considered failed, and the most parsimonious reconstruction does not coincide
with the other reconstruction methods.

Thus, if all the reconstruction methods return the same inferred for node
«, then any reconstruction method can be chosen. Otherwise the configuration
provides conflicting reconstructed states and one has to select the best recon-
struction method in terms of conditional expectation of success. We recall that
expectations of success are computed with fixed values of parameters A and
w1, defining the model M. Indeed, given the configuration ¢ for contempo-
rary states, the conditional expectation of success of a reconstruction method
m is merely pag qa,c defined in Equation , if it predicts state 1 for the node
o, or 1 — Pag,a,c if it predicts state 0. In other words, the conditional expec-
tation of success of any reconstruction method at fixed parameters (A, my) is
merely the probability to get the reconstructed state at the ancestral node un-
der model (A, 1), given configuration c. Hence, all the reconstruction methods
are split into two categories : the accurate ones, forecasting the state associated
to max(pat,a,c, 1 —PM,a,c), and the other ones, forecasting the state associated
to min(pa,a.es 1 — PM,asc)-

If the real parameters values (A, 7;) were known, one would infer state asso-
clated to max(pam,a.c, 1 —PM,a,c)- Else we explore all the possible evolutionary
models with a given step and identify for every parameters value the most ac-
curate state to infer for node a.

5.2.2 Illustration

We take as example the (sub-)tree-of-life (Fig. 2a), and consider one of the
128 configurations where likely ancestor, posterior probability, likelihood ratio,
Bayesian and most parsimonious reconstruction methods do not return a same
state for the root and for internal nodes A, B (Fig. 5). We underline that
though the inferred state does not depend on the values of the real underlying
parameters (A, ), the conditional expectation of success does so. Hence, to
make the best choice, we compare the conditional expectations of success of
most likely ancestor, posterior probability, likelihood ratio, Bayesian and most
parsimonious reconstruction methods with respect to parameters (A, 7). Since
we have already computed A, = 0.0001 and Ay, = 1 for this tree, we consider
parameter A\ with values in interval [0.0001,1]. A particular grid is chosen to
sweep all the range, becoming more detailed for small values.
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Figure 6 illustrates the results. Thus when predicting a state for the root
(Fig. 6a), the most parsimonious reconstruction is inappropriate because it is
unable to choose between the states ; the likelihood ratio, the posterior prob-
ability and the most likely ancestor reconstructions infer state 1, with a great
expectation of success when parameter A is not too small, associated with a pa-
rameter m; greater than 0.5 or when parameter A is very small, associated with
w1 smaller that 0.5 ; whereas the Bayesian reconstruction infers state 0, which
corresponds to a reliable prediction for the other pairs of parameters (A, ).
But methods are neither split in the same way when reconstructing node A, nor
node B. Indeed, when predicting a state for the internal node A (Fig. 6b), the
posterior probability and the most likely ancestor reconstructions infer state 1,
with a great expectation of success when parameters A\ and 7 are both very
small or both great enough; whereas the most parsimonious, the Bayesian and
the likelihood ratio reconstructions infer state 0, which corresponds to a reliable
prediction for the other pairs of parameters (A, 7). Finally, when predicting a
state for the internal node B (Fig. 6¢), only the most likely ancestor reconstruc-
tion infers state 1, with a great expectation of success when parameters A\ and
m1 are both very small or both great enough; whereas the other reconstruction
methods infer state 0, which corresponds to a reliable prediction for the other
pairs of parameters (\, 7).

As stated above, it is impossible to define a priori the most appropriate re-
construction method. Indeed, the accuracy of a reconstruction method depends
on the topology of the studied tree, on the ancestral node to infer as well as
on the real parameter values. Assuming that the evolutionary speed A and the
parameter 71 do not vary upon the phylogenetic tree, choosing the same recon-
struction method for inferring a state to whole the nodes may be misleading.
Hence when reconstructing any internal node, we suggest to lead the protocol
for this node, and then deduce the suitable inferred state, according to evolution
assumptions.

5.3 A biological example

Here we apply the protocol to the complete data given by (Webster and
Purvis| [2002)) : 20 morphospecies of Pleistocene planktic Foraminifera. In Web-
ster and Purvis| (2002)), several continuous characters are studied : area, ellipse
major axis and ellipse minor axis. For these characters, the states of the tips as
well as the states of 13 ancestral nodes labeled from A to M (Fig. 7) are given.
The states for the 13 ancestors were directly measured on fossils closed to the
phylogenetic positions.

We apply the protocol to the continuous character area, transformed into a
discrete binary character by a 2-means clustering, coding by state 1 the greatest
area (> 0.1 mm?) and by 0 the smallest. Thus the tips configuration is given
and, as in |Webster and Purvis (2002), we aim to reconstruct the states of
the 13 ancestral nodes labeled from A to M. For every internal node, we ran
the protocol, we compared the state inferred by most likely ancestor, posterior
probability, likelihood ratio, Bayesian and most parsimonious reconstructions
with the fossil state (given by Webster and Purvis| (2002))). Then we identified
the good reconstruction methods, pointed out in Figure 8 by their color in
the pie. A filled pie means that none of these reconstruction methods can be
successful.
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It appears that internal nodes A, B, E, F, G, I, J, K, L are well reconstructed
by all the reconstruction methods ; the most parsimonious reconstruction is the
only method failing in reconstructing nodes C, D, H ; whereas no reconstruction
method was able to predict node M. Hence in this biological example, only the
most parsimonious reconstruction method is inappropriate, and any likelihood-
based reconstruction method would be accurate.

In addition, the probability to predict the state given by the fossil record
at any ancestral node A to L depends on the parameters values A\ and .
In figure 9, the colored symbols define the panel of values corresponding to a
high probability (greater that 0.5) for every ancestral node. Hence every node
provides a convenient range of values for parameters A and 7. Assuming that
parameters A\ and m; do not vary over the tree, this remark suggests that the
real parameters generating the character evolution would lie in the common
range of values, identified in Figure 10 by the symbols that are not lightened.
Besides, under such models (A, 1), the probability of observing state 1 at node
M is more likely than state 0, but state 0 is not excluded, especially if the
evolutionary speed is great. Indeed, under a great evolutionary speed A and an
intermediate parameter 71, such that model (A, 1) keeps convenient with the
reconstruction of ancestral states A to L, the probability of observing state 1 at
node M rounds 0.5, and then nearly equals the probability of observing state 0.
Thus in Webster and Purvis| (2002), state 0 is associated to the ancestral node
M whereas state 1 is associated to all its direct descendants (see Fig. 8), which
is consistent with the fact that the area character seems to be led by a great
evolutionary speed and a moderate tendency to the loss of the character (great
sizes are likely to be lost).

6 Conclusion

We presented a tour of the most used likelihood-based reconstruction ap-
proaches, and we compared them one against each other and against the most
parsimonious reconstruction method.

The performances, in term of expectation of success, of each method were
evaluated over phylogenetic trees where the evolution of a binary character is
supported by a Markov model. Moreover all the methods are systematically
compared to the theoretical upper bounds of expectations of success that a
reconstruction process can achieve with regard to the random character of evo-
lution.

Since the expectation of success of any reconstruction method depends on
the phylogenetic tree and on the node to infer, our general conclusion is that
no reconstruction method can be designed a priori as the best. Worst, a sin-
gle method may not be suitable for whole the ancestral nodes. Hence, before
inferring a state to an ancestral node, one has to lead a study, as described
in our protocol, which is a guideline to choose the method suitable under the
parameters (A, ) likely to have generated the evolution.
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A Details on ML reconstruction methods and
notations

A.1 Binary continuous time Markov models parameters

We refer to [Ronquist| (2004)) for a more complete survey of topic. Basically,
a binary continuous time Markov model is defined from two instantaneous tran-
sition rates: the gain rate qo; and the loss rate qi0. As it will be recalled below,
the transitions probabilities associated to M are computed from its infinitesimal

generator Qa:
_ —qo1  qo1
@ ( g0 —q10 > '

Note that each row in Q4 sums to zero.
An equivalent and more intuitive way of defining such a model M is to write
its infinitesimal generator Q¢ as:

@ = A< R )

qo1
Go1+q1o
Indeed (1 — 7y, ), also denoted by (7o, ) is the stationary distribution of M

while X is a scale factor representing the relation between a child and its direct
ancestor, also modulated by the branch lengths (this relation being stronger as
A is smaller — see below).

where A = qo1+¢q10 and m; = . This parametrization is quite more explicit.

A.2 Transition probabilities

The probabilities of transition in a time ¢ are then given by the entries of
the matrix B (¢): entry B (t)qp is the transition probability from a to b in time
t. The matrix B (¢) is defined from the infinitesimal generator of M as:

QM 1—m(1—e ) m(1— e )
PM(t) = eQ = ( 7To(1—e_)‘t) 1—7To(1—€_)‘t) >

In particular, if A = 0 then B,(¢) is the identity matrix (no change can occur).

o T4

When A — 400, matrix B, (t) tends to < . which means that the state
0

™
of a child does not depend on the state of its ancestor and is just drawn following

the stationary distribution.

A.3 Evolution history likelihood

Let 7 be a given phylogenetic tree 7 (topology and branch lengths). A
binary character-state evolution history over 7 is a configuration x associating
a state x,, € {0,1} to each node n of 7. The random vector X7 describes the
state of the evolutionary history on the tree. The probability/likelihood of a
configuration x of 7 under a binary continuous Markov model M is denoted
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B (X7 = x) and is then computed as:

P (X7 = %) = 7, H H Pu(tnm)xnxom
n€T meD(n)

where r is the root of T, D(n) designs the set of child nodes of n in T and ¢,
is the branch length connecting n to m.

Tables and Figures

TABLE 1 - Percentage of configurations with conflicting reconstructions for
the common ancestor, and internal nodes A and B within trees 2a, 2b and 2c.

Tree root internal node A | internal node B | configurations number
Tree-of-life 2a | 10.9% 17.2% 25.0% 128
Subtree 2b 16.0% 10.9% 16.8% 512
Subtree 2¢ 17.6% 18.0% 25.0% 512
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Figure 1: This diagram illustrates the principle of reconstruction: unknown
character states are inferred from the known ones using an evolution model
that rules the character state evolution.
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a)

b)

Danio rerio

root

-Takifugu rubripes

Pan troglodytes

Homo sapiens

Rattus norvegicus

Mus musculus

Gallus gallus

root

Turborotalita detrita

Globigerinella adamsi

lobigerinoides conglobatus

lobigerinoides elongatus

L——————————Orbulina quadrilobatus

Sphaerodinella dehiscens

Ehrenbergellus pachydermus

——Globigerina rubescent
B

L———Globigerina bulloides
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c)

Fﬁuncorotalia pseudocrassa
Falsella spiritumida
B

LGloborotalia fijensis

Deshayesulus pucticulatus

LObandyella cibaoensis

Fohsella fohsi

Blowellus birnageae
root

Puleniatina helicina

Pulleniatina obliqueloculata

Figure 2: The trees used for supporting the evolution of binary character states
in order to assess performance of reconstruction methods: (a) the tree-of-life
restricted to eukaryote organisms (Letunic and Bork, 2007); (b) and (c) two
subtrees extracted from Pleistocene planktic Foraminifera phylogeny
land Purvis, [2002). In every tree, two internal nodes are labeled A and B, to be
referred to in further studies.
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A=1e-04 oot A=0001 oot A=001 oot A= oot

internal internal internal
A=le-04 node B A=0.001 node B A=001 node 8

Figure 3: Expectations of success for M-optimal, most likely ancestor, posterior
probability, likelihood ratio, Bayesian and most parsimonious reconstructions.
Each plot displays the expectations of success versus parameter 7y, for a fixed
value of parameter A among {0.0001, 0.001,0.01,1}. Scale of plots changes with
parameter \. Plots are ordered by line for each node. From top to bottom: root,
internal node A and internal node B. Trees are displayed in separate figures :
Fig. 3a) for tree 2a), Fig. 3b) for tree 2b) and Fig. 3c) for tree 2¢).
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Tree 2a) - root

Expectaion of success

Expectaion of success

Figure 4: Expectations for success when predicting the state of the common
ancestor with M-optimal, most parsimonious, Bayesian, most likely ancestor,
likelihood ratio and posterior probability reconstruction methods. Each plot
displays the expectations of success versus parameter m;, with parameter A
varying among {0.0001,0.001,0.01,0.1,1}. The expectations of success for A =
0.1 and A = 1 are not distinguishable, so only curves for A = 1 are plotted.
Plots are ordered from top to bottom referring to the trees 2a), 2b) and 2c).
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Danio rerio

Takifugu rubripes

Pan troﬁlodﬁeg

root

Homo sapiens

Mus_musculug

Gallus ﬁallug

Figure 5: A particular tips configuration of tree 2a), used for illustrating the
protocol. The states of the tips are either 1 for tips with a rectangular frame
printed around their label and a blue background, or 0 for the other tips. The
root and the internal nodes A and B will be reconstructed.
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Figure 6: From the particular tips configuration given in Fig. 5, the root and
the internal nodes A and B are inferred by M-optimal, most parsimonious,
Bayesian, most likely ancestor, likelihood ratio and posterior probability recon-
structions. The inferred state does not depend on the parameters (A, m); 0 is
represented with a solid circle and 1 by a solid square. But the symbol size
varies according to A and m; values, because it represents the associated con-
ditional expectation of success. When the conditional expectation of success is
greater than 0.5, the reconstruction method is considered as accurate and the
symbol is colored, else it remains grey. Note that for the M-optimal reconstruc-
tion, symbols are always colored, whatever parameters A and 7. Results are
displayed with a log-scale on y-axis for the root in Fig. 6a), for internal node A
in 6b) and for internal node B in 6c).
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Truncorotalia pseudocrassa

M

L Falsella spiritumida

loborotalia fijensis

K

Deshayesulus pucticulatus
J —{ G
bandyella cibaoensis

Fohsella fohsi

L Blowellus birnageae

J—Puleniatina helicina
F
]—Pulleniatina obliqueloculata

J—Globorotaloides indigena
E
]—Globorotaloides hexagonus

Turborotalita detrita

Globigerinella adamsi

I:(ilobigerinoides conglobatus
lobigerinoides elongatus

—e¢ H
Orbulina quadrilobatus
D
Sphaerodinella dehiscens
c Ehrenbergellus pachydermus
B

lobigerina rubescent

lobigerina bulloides

Figure 7: The tree used for supporting the protocol : Pleistocene planktic
Foraminifera phylogeny (Webster and Purvisl 2002)), with 13 ancestral nodes
labeled from A to M.
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Figure 8: The tree used for supporting the protocol with the area states given
for the contemporary species and also for the 13 ancestors. The states of the tips
are either 1 for tips with a rectangular frame printed around their label and a
blue background, or 0 for the other tips. For every ancestral state, a pie is drawn
and filled with the colors associated to the accurate reconstruction methods, in
terms of predicting the theoretical state given in [Webster and Purvis (2002).
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Figure 9: Probability of observing state 0 (solid circle) or 1 (solid square) under
models (A, 1), with a log-scale on y-axis. The symbol size varies according to
A and 7 values, because it represents the associated conditional expectation of
success. When the conditional expectation of success is greater than 0.5, the
reconstruction method is considered as accurate and the symbol is colored, else
it remains grey. Since all likelihood-based methods coincide when reconstructing
nodes A to L, only the common graphic is given for every node, instead of one
by method.
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Figure 10: Probability of observing state 0 (solid circle) or 1 (solid square) under
models (A, 1), with a log-scale on y-axis. The symbol size varies according to
A and 7 values, because it represents the associated conditional expectation of
success for the optimal reconstruction method. By construction of the optimal
reconstruction method, its conditional expectation of success is always greater

than 0.5. We lightened the symbols associated to models (A, 7r1) not convenient

with accurate reconstructions of nodes A to L.
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